Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0000	0	0

Representations of Toeplitz-Cuntz-Krieger algebras

Adam Dor-On University of Waterloo

Joint work with Kenneth Davidson and Boyu Li

June 22nd, 2017 Technion, Haifa, Israel

$ \bigoplus_{i=1}^{Motivation} $	TCK families	Structure	LvNW-decomp.	Consequences	End
	0000	0000	0000	O	0
Motivati	ion				

- Perhaps the simplest example of a C^* -algebra with uncountably many unitarily inequivalent irreducible representations is the Cuntz algebra \mathcal{O}_n .
- \mathcal{O}_n and \mathcal{T}_n are the universal C^* -algebras generated by n isometries $S_i : \mathcal{H} \to \mathcal{H}$ such that $\sum_{i=1}^n S_i S_i^* = I_{\mathcal{H}}$ and $\sum_{i=1}^n S_i S_i^* \leq I_{\mathcal{H}}$ respectively.
- Glimm showed that one cannot classify all irreducible representations of \mathcal{O}_n with countable structures. Instead, one looks at subclasses of those, or weakens the invariant.
- Irreducible representations of C^* -algebras are used in their classification, but results on them have applications to wavelets, fractals, and dynamical systems. (!)

Motivatio	on TCK families	Structure	LvNW-decomp.	Consequences	End
0	•000	0000	0000	0	0
Toep	olitz-Cuntz-Kri	eger fami	lies		

Let G = (V, E, r, s) be a countable directed graph. A family $S = (S_v, S_e)_{v \in V, e \in E}$ of operators on a Hilbert space \mathcal{H} is called a *Toeplitz-Cuntz-Krieger* family if

(P) $(S_v)_{v \in V}$ are pairwise orthogonal projections,

(IS)
$$S_e^* S_e = S_{s(e)}$$
 for all $e \in E$,

(TCK)
$$\sum_{e \in r^{-1}(v)} S_e S_e^* \leq S_v$$
 for all $v \in V$.

We say S is *Cuntz-Krieger* if additionally

(CK) $\sum_{e \in r^{-1}(v)} S_e S_e^* = S_v$ for all $v \in V$ with $0 < |r^{-1}(v)| < \infty$, and *fully-coisometric* if additionally

(FC)
$$\sum_{e \in r^{-1}(v)} S_e S_e^* = S_v$$
 for all $v \in V$.
 $\mathcal{T}(G)$ and $\mathcal{O}(G)$ are the universal C^* algebras generated by TCK and CK families respectively.

Motivation	TCK families $0 \bullet 00$	Structure	LvNW-decomp.	Consequences	End
0		0000	0000	O	0
тс	1	, ,•			

Left-regular representations

For a graph G we let $\mathbb{F}^+(G)$ be the set of all finite paths $\lambda = e_1 \dots e_n$ in G where $s(e_i) = r(e_{i+1})$.

Example (Left-regular)

Let $\mathcal{H}_G = \ell^2(\mathbb{F}^+(G))$ be the Hilbert space with o.n.b. $\{\xi_\lambda\}_{\lambda \in \mathbb{F}^+(G)}$. For $v \in V$ and $e \in E$ we have

$$L_{v}(\xi_{\lambda}) = \begin{cases} \xi_{\lambda} & : \ r(\lambda) = v \\ 0 & : \ else \end{cases}, \quad L_{e}(\xi_{\lambda}) = \begin{cases} \xi_{e\lambda} & : \ r(\lambda) = s(e) \\ 0 & : \ else \end{cases}$$

Then $L = (L_v, L_e)$ is a TCK family, and we call the algebra

$$\mathcal{L}_G := \overline{\operatorname{Alg}}^{\operatorname{WOT}} \{ L_\lambda \mid \lambda \in \mathbb{F}^+(G) \}$$

is called the left-regular free semigroupoid algebra.

Motivation	TCK families 0000	Structure	LvNW-decomp.	Consequences	End
0		0000	0000	o	0
History					

- Row-contractions of operators were investigated in a series of papers by Popescu, generalizing many important results in dilation theory to the multivariable context. In fact, Popescu and Arias establish reflexivity and a Beurling type theorem for \mathcal{L}_n ; the case of a single-vertex with *n* loops.
- Davidson and Pitts also establish these results at around the same time. They show hyperreflexivity of \mathcal{L}_n and classify atomic representations up to unitary equivalence.
- Kribs–Power, Jury–Kribs and Katsoulis–Kribs generalize and expand many of the known results to arbitrary graphs. Among other things, they characterize semisimplicity and describe invariant subspaces of \mathcal{L}_G .

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0000	0	0
Wold-de	ecompositio	n			

We denote $\mathcal{H}_{G,w} := \overline{Sp}\{\xi_{\lambda}\}_{s(\lambda)=w}$, which is reducing for $L = (L_v, L_e)$, and denote $L_{G,w} := (L_v|_{\mathcal{W}_{G,w}}, L_e|_{\mathcal{W}_{G,w}})$.

Theorem (Wold-decomposition)

Let $S = (S_v, S_e)$ be a non-deg. TCK family for G. Then it is unitarily equivalent to $T \oplus \bigoplus_{v \in V} L_{G,v}^{(\alpha_v)}$, where T is a non-degenerate fully-coisometric family.

Definition

Let $S = (S_v, S_e)$ be a non-deg. TCK family. We call $\mathfrak{S} := \overline{\operatorname{Alg}}^{\operatorname{WOT}} \{S_\lambda\}_{\lambda \in \mathbb{F}^+(G)}$ a free semigroupoid algebra.

Clearly, if S and S' are unitarily equivalent, then \mathfrak{S} and \mathfrak{S}' are weak*-homeomorphic and completely isometrically isomorphic.

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0000	0	0
Wander	ing vectors				

Definition

Let \mathfrak{S} be a free semigroupoid algebra generated by a non-degenerate TCK family $S = (S_v, S_e)$ on \mathcal{H} .

- A vector $\xi \in \mathcal{H}$ is called wandering if $\{S_{\lambda}\xi\}_{\lambda \in \mathbb{F}^+(G)}$ is an orthogonal set.
- **2** We say that \mathfrak{S} is analytic / type L if \mathfrak{S} is weak^{*} homeo. and completely isometrically isomorphic to \mathcal{L}_{G_S} where G_S is the subgraph on v such that $S_v \neq 0$.

Every free semigroupoid algebra on a space spanned by wandering vectors is analytic. In the single vertex case, we call \mathfrak{S} a free semigroup algebra. Davidson, Katsoulis and Pitts prove a spatial structure theorem for them, and conjectured that every analytic free semigroup is spanned by wandering vectors. Kennedy was able to prove this conjecture is true.

Motivation	TCK families	Structure $0 \bullet 00$	LvNW-decomp.	Consequences	End
0	0000		0000	O	0
Inductiv	e type repr	esentatio	n		

Example (Inductive type)

Let $x = e_1 e_2 \dots$ be an infinite backward path in G with r(x) = v. Define $x_m = e_1 \dots e_m$ and let $\Gamma_x := \mathbb{F}^+(G)x^{-1}$ be elements of the form $\mu = \lambda x_m^{-1}$ in the free groupoid $\mathbb{F}(G)$ where we identify ee^{-1} with r(e), and e identified with r(e)e and es(e). Take $\mathcal{H}_x := \ell^2(\Gamma_x)$ with o.n.b. $\{\xi_\mu\}_{\mu\in\Gamma}$. For $v \in V$ and $e \in E$ define

$$S_{v}(\xi_{\mu}) = \begin{cases} \xi_{\mu} & : \ r(\mu) = v \\ 0 & : \ else \end{cases} , \quad S_{e}(\xi_{\mu}) = \begin{cases} \xi_{\mu} & : \ r(\mu) = s(e) \\ 0 & : \ else \end{cases}$$

Then $S = (S_v, S_e)$ is a fully-coisometric, and is spanned by wandering vectors. Hence \mathfrak{S} is analytic, but is not left-regular.

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	00●0	0000	o	o
Structu	re theorem				

Theorem (Davidson, D., Li)

Let \mathfrak{S} be a free semigroupoid algebra generated by $S = (S_v, S_e)$ on \mathcal{H} , of a graph G. Let $\mathfrak{M} = W^*(S)$ be the von-Neumann algebra generated by S. There is a projection $P \in \mathfrak{S}$ such that

• With respect to $\mathcal{H} = P\mathcal{H} \oplus P^{\perp}\mathcal{H}$ we have

$$\mathfrak{S} = \begin{bmatrix} P\mathfrak{M}P & 0\\ P^{\perp}\mathfrak{M}P & \mathfrak{S}P^{\perp} \end{bmatrix}$$

If S ≠ M then SP[⊥] is analytic, isomorphic to L_{G'} where G' is the subgraph on vertices v such that v ∉ ⟨S_e⟩_{e∈E}^{WOT}.
P[⊥]H is spanned by wandering vectors. (!)
If each vertex is on a cycle, then P is the largest projection such that PSP is self-adjoint. (!)

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0000	0	0
Self-adjo	oint exampl	les			

A free semigroup algebra can be self-adjoint as Read was able to show. He produced a free semigroup algebra equal to $B(\mathcal{H})$.

Definition

Let G be a finite, transitive and d-in-degree regular graph.

• A strong edge coloring is a function $c: E \to \{1, 2, ..., d\}$ where $c(e) \neq c(f)$ for all $e \neq f$ in $r^{-1}(v)$ for $v \in V$.

• A word $\gamma \in \mathbb{F}_d^+$ is called synchronizing for $v \in V$ if for any vertex $w \in V$ there's $\mu \in \mathbb{F}^+(G)$ from v to w with $c(\mu) = \gamma$.

A famous conjecture of Adler and Weiss in graph theory is that G above is *aperiodic* iff some / all vertices have synchronizing words. It took 37 years until it was finally proven by Trahtman.

Theorem (Davidson, D., Li)

Suppose G is a finite, aperiodic, transitive and in-degree regular graph. Then there exists a CK family S such that $\mathfrak{S} = B(\mathcal{H})$.

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	●000	o	0
History					

- Absolute continuity of representations of \mathcal{T}_n where $n \geq 2$ were introduced by Davidson, Li and Pitts in an attempt to better understand analytic free semigroup algebras.
- Kennedy showed that every absolutely continuous representation is analytic, and this was used to get an analogue of the Lebesgue-von-Neumann-Wold decomposition for isometries.
- Muhly and Solel investigated absolute continuity of representations of W^* -correspondences. They asked how far Kennedy's results on wandering vectors and absolute continuity can be stretched.

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0●00	O	0
Dilations	5				

If we have a family $A = (A_v, A_e)$ that satisfies the conditions of a TCK family, except that $S_e^* S_e \leq S_{s(e)}$ instead of (IS), we call A a contractive G-family.

Theorem (Bunce-Frahzo-Popescu; Muhly-Solel for C^* -cor.)

Let $A = (A_v, A_e)$ be a contractive *G*-family on \mathcal{H} . Then there exists a Hilbert space \mathcal{K} containing \mathcal{H} and a TCK family $S = (S_v, S_e)$ on \mathcal{K} such that $P_{\mathcal{H}}S_{\lambda}|_{\mathcal{H}} = A_{\lambda}$ for every $\lambda \in \mathbb{F}^+(G)$, and *S* is the unique minimal dilation in the sense that the smallest *S*-invariant subspace of \mathcal{K} containing \mathcal{H} is \mathcal{K} , and any two such minimal TCK dilations are unitarily equivalent.

Contractive G-families are easy to produce, even in finite dimensional spaces. So an easy way to get examples of TCK families is to minimally dilate a contractive G-family.

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End		
0	0000	0000	00●0	o	0		
Absolute continuity							

Let
$$\mathcal{T}_+(G) = \overline{\operatorname{Alg}}^{\|\cdot\|} \{L_\lambda\}_{\lambda \in \mathbb{F}^+(G)}$$
 as a subalgebra of $\mathcal{T}(G)$.

Definition

Let $S = (S_v, S_e)$ be a TCK family on \mathcal{H} for a graph G. S is

- absolutely continuous if for all $x, y \in \mathcal{H}$ there are $\xi, \eta \in \mathcal{H}_G$ such that $\langle \pi_S(A)x, y \rangle = \langle \pi_L(A)\xi, \eta \rangle$ for all $A \in \mathcal{T}_+(G)$,
- o singular if \mathfrak{S} is a von-Neumann algebra,
- of dilation type if S is the minimal dilation of the contractive G family $A = (PS_vP, PS_eP)$ on PH.

Theorem (Davidson, D., Li)

Let S be a is a TCK family of a non-cycle transitive graph. Then S is analytic if and only if it is absolutely continuous.

Motivation o	TCK families 0000	Structure 0000	LvNW-decomp.	Consequences o	End 0		
Lebesuge-von-Neumann-Wold decomposition							

The following extends Kennedy's decomposition theorem to families of operators associated to some directed graphs.

Theorem (Lebesgue-von-Neumann-Wold decomposition; DDL)

Let S be a TCK family of a non-cycle transitive graph. Then up to unitary equivalence we may decompose,

$$S \cong S_{\ell} \oplus S_a \oplus S_s \oplus S_d$$

where

- S_{ℓ} is a left-regular TCK family.
- **2** S_a is an absolutely continuous fully-coisometric family.
- \bigcirc S_s is a singular fully-coisometric family.
- S_d is a dilation type fully-coisometric family.

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0000	•	0
Consequ	iences				

As a consequence of a theorem of Katsoulis and Kribs and our structure theorem, we obtain an isomorphism theorem

Theorem (Davidson, D., Li)

Let \mathfrak{S}_1 and \mathfrak{S}_2 be nonselfadjoint free semigroupoid algebras for a transitive row-finite graphs G_1 and G_2 respectively. Then \mathfrak{S}_1 and \mathfrak{S}_2 are algebraically isomorphic if and only if G_1 and G_2 are isomorphic graphs.

As a consequence of our absolute continuity results and methods of Davidson, Li and Pitts, we get a Kaplansky density theorem

Theorem (Davidson, D., Li)

Let S be a TCK family of a transitive non-cycle graph G. Then the unit of $\pi_S(\mathcal{T}_+(G))$ is weak^{*} dense in the unit ball of \mathfrak{S} .

Motivation	TCK families	Structure	LvNW-decomp.	Consequences	End
0	0000	0000	0000	o	•
Ending					

Thank you for your attention, and Happy 65th birthday to Baruch Solel !