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Introduction

We study tensor operator algebras (to be defined shortly) and their
ultraweak closures: the Hardy algebras. I hope to present enough
evidence for the claim that these algebras can be viewed as
noncommutative H∞(D).
To do this, we will consider these algebras as algebras of
(operator valued) functions defined on the representation space
of the algebra.
More precisely, we are led to consider a family of functions
defined on a family of sets.
We shall discuss the “matricial structure” of this family of
functions and their “power series” expansions.

♣ We were inspired by works of J. Taylor, D. Voiculescu,
Kaliuzhnyi-Verbovetskyi and Vinnikov and
Helton-Klepp-McCullough ,G. Popescu, K. Davidson and D. Pitts
and others.
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The Setup

H∞(D) can be viewed as the algebra generated by I and the shift
on `2. Our Hardy algebras are generated by a copy of a
W ∗-algebra and a collection of shifts.

More precisely, the set up is

� M - a W ∗-algebra.

� E - a W ∗-correspondence over M. This means that E is a
bimodule over M which is endowed with an M-valued inner
product (making it a right-Hilbert C ∗-module that is self
dual). The left action of M on E is given by a unital, normal,
∗-homomorphism ϕ of M into the (W ∗-) algebra of all
bounded adjointable operators L(E ) on E .
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Examples

• (Basic Example) M = C, E = Cd , d ≥ 1.

• G = (G 0,G 1, r , s)- a finite directed graph. M = `∞(G 0),
E = `∞(G 1), aξb(e) = a(r(e))ξ(e)b(s(e)) , a, b ∈ M,ξ ∈ E
〈ξ, η〉(v) =

∑
s(e)=v ξ(e)η(e), ξ, η ∈ E .

• M- arbitrary , α : M → M a normal unital, endomorphism.
E = M with right action by multiplication, left action by
ϕ = α and inner product 〈ξ, η〉 := ξ∗η. Denote it αM.

• Φ is a normal, contractive, CP map on M. E = M ⊗Φ M is
the completion of M ⊗M with 〈a⊗ b, c ⊗ d〉 = b∗Φ(a∗c)d
and c(a⊗ b)d = ca⊗ bd .

Note: If σ is a representation of M on H, E ⊗σ H is a Hilbert
space with 〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉E )h2〉H .
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Given two correspondences E and F over M, we can form the
(internal) tensor product E ⊗ F by setting

〈e1 ⊗ f1, e2 ⊗ f2〉 = 〈f1, ϕ(〈e1, e2〉E )f2〉F
ϕE⊗F (a)(e ⊗ f )b = ϕE (a)e ⊗ fb

and applying an appropriate completion.
In particular we get “tensor powers” E⊗k .

Also, given a sequence {Ek} of correspondences over M, the direct
sum E1 ⊕ E2 ⊕ E3 ⊕ · · · is also a correspondence (after an
appropriate completion).
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For a correspondence E over M we define the Fock correspondence

F(E ) := M ⊕ E ⊕ E⊗2 ⊕ E⊗3 ⊕ · · ·

For every a ∈ M define the operator ϕ∞(a) on F(E ) by

ϕ∞(a)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = (ϕ(a)ξ1)⊗ ξ2 ⊗ · · · ⊗ ξn

and ϕ∞(a)b = ab.
For ξ ∈ E , define the “shift” (or “creation”) operator Tξ by

Tξ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn.

and Tξb = ξb. So that Tξ maps E⊗k into E⊗(k+1).
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Definition

(1) The norm-closed algebra generated by ϕ∞(M) and
{Tξ : ξ ∈ E} will be called the tensor algebra of E and
denoted T+(E ).

(2) The ultra-weak closure of T+(E ) will be called the Hardy
algebra of E and denoted H∞(E ).

Examples

1. If M = E = C, F(E ) = `2, T+(E ) = A(D) and
H∞(E ) = H∞(D).

2. If M = C and E = Cd then F(E ) = `2(F+
d ), T+(E ) is

Popescu’s Ad and H∞(E ) is F∞d (Popescu) or Ld
(Davidson-Pitts). These algebras are generated by d shifts.

(3) M general, E =α M for an automorphism α.
T+(E ) = the analytic crossed product.
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Representations

Theorem

Every completely contractive representation of T+(E ) on H whose
restriction to M is normal, is given by a pair (σ, z) where

1 σ is a normal representation of M on H = Hσ.
(σ ∈ NRep(M))

2 z : E ⊗σ H → H is a contraction that satisfies

z(ϕ(·)⊗ IH) = σ(·)z.

We write σ × z for the representation and we have
(σ × z)(ϕ∞(a)) = σ(a) and (σ × z)(Tξ)h = z(ξ ⊗ h) for a ∈ M,
ξ ∈ E and h ∈ H.

Write I(ϕ⊗ I , σ) for the intertwining space and D(0, 1, σ) for the
open unit ball there. Thus the c.c. representations of the tensor
algebra are parametrized by the family {D(0, 1, σ)}σ∈NRep(M).
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Examples

(1) M = E = C. So T+(E ) = A(D), σ is the trivial representation
on H, E ⊗ H = H and D(0, 1, σ) is the (open) unit ball in
B(Hσ).

(2) M = C, E = Cd . T+(E ) = Ad (Popescu’s algebra) and
D(0, 1, σ) is the (open) unit ball in B(Cd ⊗ H,H). Thus the
c.c. representations are parameterized by row contractions
(T1, . . . ,Td).

(3) M general, E =α M for an automorphism α.
T+(E ) = the analytic crossed product.
The intertwining space can be identified with
{X ∈ B(H) : σ(α(T ))X = Xσ(T ),T ∈ B(H)} and the c.c.
representations are σ × z where z is a contraction there.
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Write I(ϕ⊗ I , σ) for the intertwining space

{z : E ⊗σ H → H : z(ϕ(·)⊗ IH) = σ(·)z.

It is a (left) correspondence and its adjoint is written Eσ and is a
W ∗-correspondence over σ(M)′. Thus, the representations can be
parameterized by ∐

σ

(Eσ)1 ⊆
∐
σ

(Eσ).

When M = C, E = Cd and σ is the (trivial) representation on an
n-dimensional space, Eσ = Mn(C)d and the representations can be
parameterized by∐

n

(Mn(C)d)1 ⊆
∐
n

(Mn(C)d) = Md

(an nc set).
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Representations of H∞(E )
The representations of H∞(E ) are given by the representations of
T+(E ) that extend to an ultraweakly continuous representations of
H∞(E ).
For a given σ, we write AC(σ) for the set of all z ∈ D(0, 1, σ) such
that σ × z is a representation of H∞(E ).
We have

Theorem

D(0, 1, σ) ⊆ AC(σ) ⊆ D(0, 1, σ).

Example

When M = E = C, H∞(E ) = H∞(D) and AC(σ) is the set of all
contractions in B(Hσ) that have an H∞-functional calculus.
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Example

Induced representations: Fix a normal representation π of M on
K , let H = F(E )⊗π K and define the representation of H∞(E ) on
H by X 7→ X ⊗ IK .
It is σ × z for σ(a) = ϕ∞(a)⊗ IK and z(ξ ⊗ h) = (Tξ ⊗ IK )h.
Note that ||z|| = 1 and z ∈ AC(σ).

When π is faithful of infinite multiplicity we write σ0 × s0 for the
induced representation. It is essentially independent of π and is a
universal generator in the following sense.
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Universal induced representation

Theorem

Let σ × z be a c.c. representation of T+(E ) on H. Then the
following are equivalent.

(1) The representation σ × z extends to a c.c. ultra weakly
continuous representation of H∞(E ) (that is, z ∈ AC(σ)).

(2) H =
∨
{Ran(C ) : C ∈ I(σ0 × s0, σ × z)}.

Here I(σ0 × s0, σ × z)} is the space of all maps from Hσ0 to Hσ

that intertwine the representations σ0 × s0 and σ × z.

Partial results: Douglas (69), Davidson-Li-Pitts (05).
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The commutant of an induced representation

Recall that, acting on H2(D), H∞(D)′ = H∞(D). Also, H∞(D) is
reflexive.
Similarly, we can view H∞(E ) as acting on F(E )⊗σ H (for a
faithful representation σ of M) and write H∞(Eσ)⊗ IH for the
algebra H∞(Eσ) represented on F(Eσ)⊗ι H (where ι is the
identity representation of σ(M)′ on H). Then

Theorem

The commutant of H∞(E )⊗ IH is unitarily isomorphic to
H∞(Eσ)⊗ IH .
Consequently (by duality), (H∞(E )⊗ IH)′′ = H∞(E )⊗ IH .

• In most cases, H∞(E ) is reflexive (L. Helmer, E. Kakariadis and
Bickerton-Kakariadis ).
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The functions

Conclusion: We now view the elements of H∞(E ) as functions
(B(H)-valued ) on AC(σ) or on D(0, 1, σ). For F ∈ H∞(E ), we
write F̂σ for the resulting function. Thus

F̂σ(z) = (σ × z)(F ).

Note: In fact, for every F ∈ H∞(E ), we get a family of functions
{F̂σ}. The relation between the functions (defined by the same F )
for two different σ’s) will be discussed later. Now we deal with a
fixed σ.

What is the image of this transform? What functions do we
get?
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Schur class operator functions

Each of the functions F̂σ (F ∈ H∞(E )) is Frechet-differentiable
and can be thought of as a (multiple of ) generalized Schur class
functions.
Recall : The classical Schur class S consists of the functions f in
H∞(D) with ‖f ‖ ≤ 1. The operator valued Schur class S(H)
consists of analytic functions S on D with ‖S(z)‖ ≤ 1 for all z ∈ D.
They have several characterizations. The following is well known.
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Theorem

For an B(H)-valued function S on D TFAE:

(1) S ∈ S(H).

(2) There is a Hilbert space E and a coisometric operator

U =

(
A B
C D

)
:

(
E
H

)
→
(
E
H

)
so that S can be realized

S(z) = D + C (IE − zA)−1zB.

(3)

KS(z ,w) =
I − S(z)S(w)∗

1− zw

is a positive kernel on D× D (into B(H)).

• An analogous result holds when one replaces S(H) by
{F̂σ : F ∈ H∞(E ), ||F || ≤ 1}.



Introduction The algebras Representations The functions Automorphisms Family of functions without a generator The weighted case

Theorem

Let E be a W ∗-correspondence over M, σ a faithful normal
representation of M on H and Z : D(0, 1, σ)→ B(H). Then
Z = F̂ for some F ∈ H∞(E ) with ‖F‖ ≤ 1 if and only if there is a
Hilbert space E , a normal representation τ of σ(M)′ on E and a
coisometric operator matrix

U =

(
A B
C D

)
:

(
E
H

)
→
(

Eσ ⊗τ E
H

)
(with A,B,C ,D module maps ) so that Z can be realized

Z (z) = D + C (IE − LzA)−1LzB.

Here Lz : Eσ ⊗τ E → E is defined by Lz(η ⊗ h) = zηh.
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Theorem

Let E be a W ∗-correspondence over M, σ a faithful normal
representation of M on H and Z : D(0, 1, σ)→ B(H). Then
Z = F̂ for some F ∈ H∞(E ) with ‖X‖ ≤ 1 if and only if the kernel
KZ : D(0, 1, σ)× D(0, 1, σ)→ B(σ(M)′,B(H)) is completely
positive definite (BBLS04) where

KZ (z, v) = (id − Ad(Z (z),Z (v)) ◦ (id − θz,v)−1.

Here Ad(Z (z),Z (v))(a) = Z (z)aZ (v)∗ and θz,v(a) = z(IE ⊗ a)v∗

for a ∈ σ(M)′. The complete positivity of KZ means that, for every
z1, . . . , zm ∈ D(0, 1, σ), the matrix of maps (KZ (zi , zj)) defines a
completely positive map from Mm(σ(M)′) into Mm(B(H)).
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Automorphisms

Viewing H∞(E ) as an algebra of functions on D(0, 1, σ), one can
expect to have a relationship between automorphisms of this
algebra and appropriate automorphisms on the domain. Given an
(completely isometric, w∗-homeomorphic) automorphism α of
H∞(E ) and a fixed representation σ of M, it is clear how to define
the map τ of the domain :

T̂ξ(τ(z)) = α̂(Tξ)(z), ξ ∈ E .

Thus
τ(z)(ξ ⊗ h) = α̂(Tξ)(z)h, h ∈ H.

Then τ maps D(0, 1, σ) into AC(σ) and, under certain
assumptions, into itself.
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Sample results :

Theorem

If Z (M), the center of M, is atomic and the left action of M on E
is faithful, and α is an automorphism that leaves ϕ∞(M)
elementwise fixed, then τ is a biholomorphic map from D(0, 1, σ)
onto itself and, for every X ∈ H∞(E ) and z ∈ D(0, 1, σ),

α̂(X )(z) = X̂ (τ(z)).

Definition

The centre of D(0, 1, σ) is

ZD(0, 1, σ) := {z ∈ D(0, 1, σ) : cz = z(IE ⊗ c), c ∈ σ(M)′}.

Fact : A map τ as above would map ZD(0, 1, σ) into itself.
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Lemma

Given γ ∈ ZD(0, 1, σ), one can define a biholomorphic map gγ of
D(0, 1, σ) that maps 0 to γ and γ to 0 (a “Moebius
transformation”) and an automorphism αγ of H∞(E ) such that

α̂γ(F )(z) = F̂ (gγ(z)).

Note: ZD(0, 1, σ) is the orbit of 0 under the maps τ associated
with automorphisms of H∞(E ) as above.
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Theorem

Let E be a faithful W ∗-correspondence over M and σ be a faithful
representation of M . Let α be an automorphism of H∞(E ) that
leaves ϕ∞(M) elementwise fixed and for which a map τ , as above,
exists (in particular, if Z (M) is atomic ). Then there is some
γ ∈ ZD(0, 1, σ) and a unitary operator u in L(E ), satisfying
u(Z (E )) = Z (E ), such that

α = αγ ◦ αu,

where αu(Tξ) = Tuξ for every ξ ∈ E and αγ is as in the lemma.
In particular, if Z (E ) = {0}, every such automorphism is αu for
some unitary operator u ∈ L(E ).
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The families of functions

Recall that, given F ∈ H∞(E ), we define a family {F̂σ}σ∈NRep(M)

of (operator valued) functions by

F̂σ(z) = (σ × z)(F )

(defined on AC(σ) or on D(0, 1, σ) and takes values in B(Hσ)).
Here NRep(M) is the set of all normal representations of M.
Note that the family of domains (either {AC(σ)} or {D(0, 1, σ)})
is a matricial family in the following sense.

Definition

A family of sets {U(σ)}σ∈NRep(M), with U(σ) ⊆ I(ϕ⊗ I , σ),
satisfying U(σ)⊕ U(τ) ⊆ U(σ ⊕ τ) is called a matricial family of
sets.
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Definition

Suppose {U(σ)}σ∈NRep(M) is a matricial family of sets and suppose
that for each σ ∈ NRep(M), fσ : U(σ)→ B(Hσ) is a function. We
say that f := {fσ}σ∈NRep(M) is a matricial family of functions in
case

Cfσ(z) = fτ (w)C (1)

for every z ∈ U(σ), every w ∈ U(τ) and every C ∈ I(σ × z, τ ×w)
(equivalently, C ∈ I(σ, τ) and C z = w(IE ⊗ C )).

Theorem

For every F ∈ H∞(E ), the family {F̂σ} is is a matricial family (on
{AC(σ)}).
Conversely, if f = {fσ}σ∈NRep(M) is a matricial family of functions,
with fσ defined on AC(σ) and mapping to B(Hσ), then there is an
F ∈ H∞(E ) such that f is the Berezin transform of F , i.e.,
fσ = F̂σ for every σ.
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Notation: For z ∈ I(ϕ⊗ I , σ) and k ≥ 1,
z(k) = z(IE ⊗ z) · · · (IE⊗k−1 ⊗ z) ∈ I(ϕE⊗k ⊗ I , σ).
For a sequence θ = {θk}, with θk ∈ E⊗k ,

Lθk : H → E⊗k ⊗ H, Lθk h = θk ⊗ h

and R(θ) = (lim supk→∞ ‖θk‖
1
k )−1. (Popescu)

Theorem

If f = {fσ}σ∈MRep(M) is a family of functions, with fσ mapping
D(0, 1, σ) to B(Hσ), then f is a matricial family of functions if and
only if there is a formal tensor series θ with R(θ) ≥ 1 such that f
is the family of tensorial power series determined by θ; that is,

fσ(z) =
∑
k≥0

z(k)Lθk .

Moreover, f = F̂ for some F ∈ H∞(E ) if and only if

sup{‖fσ(z)‖ | σ ∈ NRep(M), z ∈ D(0, 1, σ)} <∞. (2)
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Function theory without a generator

Now we fix an additive subcategory Σ of NRep(M) that do not
necessarily contain a special generator. Then

Theorem

Suppose that f = {fσ}σ∈Σ is a matricial family of functions defined
on {D(0, 1, σ)} that is locally uniformly bounded in the sense that
for each r < 1, supσ∈Σ supz∈D(0,r ,σ) ‖fσ(z)‖ <∞. Then:

1 Each fσ is Frechet analytic on D(0, 1, σ) and

fσ(z) =
∞∑
n=0

1

n!
Dnfσ(0)(z).

2 If the subcategory is full and if each σ ∈ Σ is faithful, then
there is θ = {θk} with R(θ) ≥ 1 and

fσ(z) =
∑
k≥0

Zk(z)Lθk
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Now, inspired by V. Vinnikov and D.Kalyuznyi-Verbovetsky, we
discuss another expansion: the Taylor-Taylor series. Generalizing
their analysis, one can define ∆nfσ - the nth- order Taylor
derivative of fσ. We get the following.
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Theorem (T-T Series)

Let f = {fσ}σ∈Σ be a matricial family of functions defined on a
matricial disc D(0, r) (= {D(0, r , σ)}σ) and suppose that f is
locally uniformly bounded. Then:

1 Each fσ is Frechet differentiable in z, z ∈ D(0, r , σ), and

f ′σ(z)(w) = ∆f (z)(w).

2

Dk fσ(0)(w) = k!∆k fσ(0)(w).

3 Each fσ may be expanded on D(0, r , σ) as

fσ(z) =
∞∑
k=0

∆k fσ(0)(z, . . . , z), (3)

where the series converges absolutely and uniformly on every
disc D(0, r0, σ) with r0 < r .
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Other domains

Q: Can we construct other operator algebras (associated with E )
whose representations will be parameterized by other matricial
families of subsets of

∐
σ I(ϕ⊗ I , σ)?

Inspired by the works of V. Muller and G. Popescu, we studied
algebras of weighted shifts.
To define the general situation, let Z = {Zk} such that

Zk ∈ L(E⊗k) ∩ ϕk(M)′.

Zk ≥ 0 and invertible for all k ≥ 1.

supk ||Zk || <∞
and define, for ξ ∈ E , the Z -weighted shift Wξ ∈ L(F(E )) by

Wξ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = Zn+1(ξ ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn).

and Wξb = Z1(ξb).
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Definition

(1) The norm-closed algebra generated by ϕ∞(M) and
{Wξ : ξ ∈ E} will be called the Z-tensor algebra of E and
denoted T+(E ,Z ).

(2) The ultra-weak closure of T+(E ,Z ) will be called the
Z-Hardy algebra of E and denoted H∞(E ,Z ).

Q: What are the representations of these algebras? In general:
Unknown.

Theorem

Under certain conditions the representations of the Z-tensor
algebra are parameterized by

∐
σ DX ,σ where

DX ,σ := {z ∈ I(ϕ⊗ I , σ) : ||
∞∑
k=1

z(k)(Xk ⊗ IHσ)z(k)∗|| ≤ 1}

and X = {Xk} is a sequence defined by Z .

The representations of the Z -Hardy algebra is a subset AC(σ,X )
that contains DX ,σ. We don’t have a characterization of these.
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Examples

If E = M = C, σ is on H and Xk = xk ∈ C,
DX ,σ = {T ∈ B(H) :

∑
k xkT kT ∗k ≤ I}.

If M = C, E = Cd , σ is on H and Xk is the dk × dk matrix
(xα,β) (where α, β are words of length k in {1, . . . , d}),

DX ,σ = {T = (T1, . . . ,Td) :
∑
|α|=|β|

xα,βTαT ∗β ≤ I}

where Tα = Tα1 · · ·Tαk
.

If E =α M, xk ∈ Z (M) and

Dx ,σ = {T ∈ B(Hσ) : Tσ(α(·)) = σ(·)T ,
∑
k

T kσ(xk)T k∗ ≤ I}.
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Theorem

For every F ∈ H∞(E ,Z ), the family {F̂σ} is a matricial family of
functions on {DX ,σ}σ and on {AC(σ)}.

Does the converse hold?

Theorem

If f = {fσ}σ∈NRep(M) is a matricial family of functions, with fσ
defined on AC(σ) and mapping to B(Hσ), then there is an
F ∈ H∞(E ,Z ) such that f and the Berezin transform of F , F̂ ,
agree on DX ,σ , i.e.,

fσ(z) = F̂σ(z)

for every σ and every z ∈ DX ,σ.
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Another thought:
Together with O. Shalit, we studied Hardy (and tensor) algebras
associated with subproduct systems. Some of the results (such as
dilation results) there (obtained by us and by A. Viselter) bear
strong similarity to results on the Hardy algebras of weighted shifts.
As an example, recall that, the representations of H∞(E ,Z ) are
given by

DX ,σ := {z ∈ I(ϕ⊗ I , σ) : ||
∞∑
k=1

z(k)(Xk ⊗ IHσ)z(k)∗|| ≤ 1}.

For a subproduct tensor algebra (associated with the subproduct
{Y (n)} where Y (n) = pnE⊗n) the representations are given by

{z ∈ I(ϕ⊗ I , σ) : ||
∞∑
k=1

z(k)(Xk ⊗ IHσ)z(k)∗|| ≤ 1}

(where X1 = I , Xk =∞p⊥k k > 1: the sequence one gets from
Zk = pk) which is a (strange) way of saying: z(k)|p⊥n = 0 for all k
and ||z|| ≤ 1.
There should be a way to formalize this similarity.
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