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Outline

We discuss various constructions of C*-correspondences arising from
group representations and from group actions on graphs.

The class of the associated Cuntz-Pimsner algebras is very large and in
some cases we can identify them as graph algebras or crossed products
and determine their K-theory.

There are connections with Doplicher-Roberts algebras, Nekrashevych
algebras of self-similar group actions and with Cuntz-Pimsner algebras
considered by Kumjian.

We illustrate with several examples.



C*-correspondences

Let A, B be C*-algebras. A right Hilbert B-module X" is a Banach space
with a right action of B and an B-valued inner product satisfying

<£’77b> = <£777>b7 <£777> = <777£>*a
(&,€) >0, and ||¢]| = ||<€’£>||1/2

We say that X is a A—B C*-correspondence if moreover there is a
s-homomorphism ¢ : A — Lg(X') which gives the left action, where
Lp(X) denotes the C*-algebra of all adjointable operators on X

Suppose A = B. A Toeplitz representation of the C*-correspondence X
over A in a C*-algebra D is a pair (7, 7) with 7 : X — D a linear map
and 7 : A — D a x-homomorphism, such that

7(§-a) = 7(§)m(a), 7(§)*7(n) = ({5, )
7(a- &) = w(a)(§).



Cuntz-Pimsner algebras

The universal C*-algebra for such representations is called the Toeplitz
algebra of X, denoted by Tx.

There is a x-homomorphism ) : IC4(X) — D such that

P(Oc.n) = 7(E)T(0)",

where K4 (X) is the closed linear span of the operators
Oc.n(C) = £(n, C)-

The Cuntz-Pimsner algebra Oy is universal for Toeplitz representations
which are Cuntz-Pimsner covariant:

Y(p(a)) = m(a) forall a € Jy = ¢ ' (Ka(X)) N (kerp)*.



C*-algebras of graphs

e Let E = (E° E', r,s) be a directed graph with E* and E' at most
countable.

o If r~!(v) is finite for all v, the algebra C*(E) is defined using
projections p, for v € E° and partial isometries u, for e € E' with

U u, = py(ey for e € E', p,= Z uu’ for ver(E".
r(e)=v
o We view C*(E) as the Cuntz-Pimsner algebra Oy of the
C*-correspondence X' = Xy over A = Cy(E®), obtained as a

completion of C.(E') with the inner product

) = 3 &@mle), &ne CE
s(e)=v
and multiplications

(& -S)(e) = &(e)f (s(e)), (f-&)(e) =f(r(e))(e).



C*-correspondences from representations

Let G be a locally compact group and let p : G — U(#) be a unitary
representation.

Let m = 7, : C*(G) — L(H) be the extension of p to the group
C*-algebra,

w(1)¢ = [ Fop(ncar torf € L1(G).€ € M.
G
Then € = £(p) = H ®c C*(G) becomes a C*-correspondence over
C*(G) with inner product

E@an®b) = (&n)ab

and operations

(E®a)-b=¢(®ab, a-(E@b) =7(a)é ®b.



A first result

Theorem (D). If G is a compact group and p : G — U(H) is any
representation with H separable, then O¢(,) is SME to a graph
C*-algebra.

If 7, : C*(G) — L(H) is injective, then the graph has no sources.

If p = p; @ p», then the incidence matrix for the graph of p is the sum
of incidence matrices for p; and p,.

Proof (sketch). The group C*-algebra C*(G) decomposes as a direct
sum of matrix algebras A; with units p;, indexed by the discrete set G.
Let E be the graph with vertex space E® = G and with edges
determined by the A;-A; C*-correspondences p;€(p)p;.

O¢(p) is isomorphic to the C*-algebra of a graph of
C*-correspondences in which we assign the algebra A; at the vertex v;
and the minimal components of p;€(p)p; for each edge from v; to v;.

By construction, this C*-algebra is SME to C*(E).



Example: S3

e Donote by S5 the symmetric group. Then S3 = {1, ¢, 0} and the graphs

associated with the representations ¢, € and o are
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Example: S3

e For p = 0 ® o we get the following graph of C*-correspondences

with incidence matrix

—_—

Byso =B, +B.+B,= | 1 1



Example: cyclic groups

Any representation p of a cyclic group G is determined by a unitary
p(1) € U(H) that decomposes into characters.

If G = Z/nZ, then G = {x1, ..., x»} and €(p) determines a graph with
n vertices and incidence matrix [a;;], where a; = dim x;Hx;.

For G = Z, assume that H = L*(X, j1) for a measure space (X, i) and
that p(1) = M,,, the multiplication operator with a function ¢ : X — T.

Then £(p) = L*(X, u) ® C*(Z) = C(T, L*(X, ;1)) becomes a

~

C*-correspondence over C*(Z) = C(T) with operations

(&) (k) = (€(k), (k) 12(x ), for &m € CZ,L*(X, 1))

and

(&) k) =D _Ek)f(k), (f-&Kk) =D flk)E(k),

k k

for f € C(Z),& € C(Z,L* (X, p)).



Example: cyclic groups

If dim L%(X, ;1) = n is finite, then the function ¢ is given by

(Wi, ..., w,) € T" and £(p) is isomorphic to the C*-correspondence of
the following topological graph.

The vertex space is E° = T, the edge space is E' = T x {1,2,...,n},
and the source and range maps are

s:E' 5 E0 s(z,k) =z, r:E' = E° r(z,k) = wmiz.

If A is the left regular representation of G = Z on ¢*(Z), we will see that
Og¢(») is simple and purely infinite with the same K-theory as C(T).



Kumjian’s construction

Theorem (Kumjian). Let A be a separable unital C*-algebra and let
m : A — L(H) be a faithful representation such that

m(A) NK(H) = {0}.

Then £ = H ®c A is a C*-correspondence such that Og = T¢ is
simple, purely infinite and KK-equivalent to A.

Corollary. Let G be an infinite, discrete and amenable group, and let
A : G — U(*(G)) be the left regular representation. Then O is
simple and purely infinite, KK-equivalent to C*(G).

Proof. Since G is amenable, the representation
7y 1 C*(G) — L(*(G)) induced by A is faithful. Since G is infinite,

m(C*(G) NK(*(G)) = {0}.



Example: R

e Let G = R and let u be the Lebesgue measure on R.

o Consider the representation

piR = UL R, ), (p(DE)(s) = €&(s)

which extends to the Fourier transform 7, on C*(R) = Cy(RR), where

(7o (1)E) / FOESE($)du(r), forf € L'(R, ). € € AR, ).

o It is known that p is equivalent to the right regular representation of R
and that p is a direct integral of characters y;, where x,(s) = €.

e Then &(p) = L*(R, 1) ® C*(R) = Co(R, L*(R, 1)) becomes a
C*-correspondence over C*(R) 2 Cy(R) such that the left
multiplication is injective and 7,(Co(R)) N K(L*(R, n)) = {0}.

e It follows that O,y has the K-theory of Cy(IR), but since Co(R) is not
unital, we cannot apply Kumjian’s Theorem to conclude that this
algebra is simple or purely infinite.



The crossed product C*-correspondence

Let G be locally compact and let p : G — U(H) be a representation
withdim#H =n € {1,2,3,...} U {co}.

Then D(p) = H ®¢ C*(G) with the same inner product and right
multiplication as £(p) becomes a C*-correspondence using the left
multiplication

(h-€)(1) = / h(s)p(s)€(s™ )ds

for¢ € C.(G,H) and h € C.(G).
This left multiplication is always injective and D(p) is nondegenerate.

Theorem. The representation p determines a quasi-free action of G on
the Cuntz algebra O, such that Op(,) = O, %, G.



The abelian case

If G is compact and abelian, then p decomposes into characters and
determines a cocycle ¢ : E} — G, where E,, is the graph with one vertex
and n edges.

O, %, G is isomorphic to C* (E.(c)), where E,(c) is the skew product
graph (G, G x E},r,s) with

r(x,e) = xc(e),s(x,e) = x.

If G=Tand \: T — U(L*(T)) is the left regular representation, then
O x T is isomorphic to the graph algebra where the vertices are
labeled by Z and the incidence matrix has each entry equal to 1.

If G = R and n is finite, Kishimoto and Kumjian showed that O, x, R
is simple and purely infinite if the corresponding characters generate R
as a closed semigroup.



Group actions on C*-correspondences

e A group action on a C*-correspondence X’ over A is a homomorphism
p: G — Lc(X) with values invertible C-linear operators on X’ and an
action of G on A by x-automorphisms such that

(p(8)S, p(&)n) = &~ (&;m),
p(8)(&a) = (p(8)€)(g - a), p(g)(a- &) = (g-a)(p(8)S)-
e A group action on a graph E determines an action on X by
(p(8)€)(e) =&(g™" - e) for & € C(E),

(g-a)(v) =a(g™" -v) fora e Cy(E").
e By the universal property, an action of G on Ay determines an action of
G on C*(E) and an action on the core AF-algebra C*(E)™.



Crossed products

Let A be a C*-algebra and let X’ be a C*-correspondence over A. An
action of G on X determines an action on the Cuntz-Pimsner algebra
Oyx.

The crossed product X x G = X ®4 (A x G) becomes a
C*-correspondence over A X G after the completion of C.(G, X) using
the operations

@mxw=1§*~@wm@m¢7

/5 ))ds, (f - €)(t /f “11))ds,

where £ € C.(G, X),f € C.(G,A). Recall
Theorem (Hao, Ng). If G is amenable, then

OXXIG = OX X G.



Another result

Theorem (D). Given a discrete locally finite graph E and a finite group
G acting on E, the crossed product C*(E) x G is the C*-algebra of a
graph of minimal C*-correspondences.

Hence C*(E) x G is SME to a graph C*-algebra, where the number of
vertices is the cardinality of the spectrum of Co(E°) x G.

Proof (sketch). Recall that if G acts on a finite or countable set X, then
Co(X) x G decomposes as a direct sum of crossed products C(Gx) x G
over the orbit space X/G.

Since the action on each orbit Gx is transitive, this can be identified
with G/G,, where G, is the stabilizer group and G acts on G/G, by left
multiplication. Moreover,

C(G/Gx) X G = M\Gx\ ® C*(Gx)



Sketch of Proof

We decompose the C*-correspondence Xr x G over the C*-algebra
CQ(EO) X G.

Let Cy(E®) x G = @Ai, where n € NU {oco} and A; are simple

i=1
matrix algebras. This decomposition is obtained in two stages, from the
orbits in E° and from the characters of the stabilizer groups.
Consider the graph with n vertices and at each vertex v; we assign the
C*-algebra A;.
The edges and the assigned C*-correspondences are constructed from
the orbits in E' and multiplicities.
C*(E) % G is isomorphic to the C*-algebra of this graph of (minimal)
C*-correspondences.

Corollary. We have C*(E)"T x G = (C*(E) x G)".



Example

e For the permutation action of S3 on the O3 graph we get the following
graph of C*-correspondences for O3 x S3:

C? c?



Exel-Pardo C*-correspondences

Let G be a group acting on a graph E = (E°, E'| r, s). Recall that G acts
onA = Cy(E®) and on X = Xg by

ap(F)(v) =f(g7'v), € CE), 7(&)(e) =&(g"e), &€ C(EY).

A cocycle isamap ¢ : G x E! — G such that (g, e) - s(e) = g - s(e)
for all (g,e) € G x E'. Particular case ¢(g,e) = g.
Define an action of G on the Hilbert module Xz %, G by

(Veb)(e.h) = E(g7 e, (g7 e)h), € € C(E' x G).
Together with the left action of Cy(E®) on Xz %, G given by

(w(F)E)(e, h) = f(r(e))&(e, h),

we get a covariant representation (, V) of (Co(E®), G, a).
This induces a map Cy(E®) x4 G — L(Xg % G), s0 Xg %, G
becomes a C*-correspondence Xz () over Co(E?) %, G.

The Cuntz-Pimsner algebra O () is the Exel-Pardo algebra
associated to (E, G, ).



Example: Katsura algebras

To realize all Kirchberg algebras as topological graph algebras and to
lift automorphisms of K-theory groups, Katsura introduced the algebras
O, p for certain n x n matrices A, B with integer entries.

Using generators and relations, Exel and Pardo proved that

Oap = Ox,(y), Where

The matrix A is the incidence matrix of a finite graph E and the matrix
B defines an action of Z on E.

This action fixes the vertices and if the edges from i to j are labeled ey,
for 0 < n < Ay, then m - e;;, = e, where mB;; + n = gA;; + r with
0<r< A,:j.

The cocycleis ¢ : Z x E' = Z, @(m, e,) = q.

ij>



Self-similar actions

Let X be a finite alphabet with n letters and let X* = U X* be the set of
k=0
finite words with X° = {(}.

An action of G on X* is self-similar if for all g € G and x € X there
exist unique y € X and & € G such that

8- (w) =y(h-w)

forall w € X*.

A self-similar action comes from an action of G on the graph E, with
one vertex and n loops.

The cocycle is given by (g, e) = h, where g - (xe) = y(h - €), since X*
is the space of finite paths in E,,.
Let Tx be the universal cover of E,,, which is a directed tree. We obtain

Theorem. There is an action of G on Ty and on the boundary 0Ty such
that C*(Tx) x G is SME with Cy(9Tx) x G.



Examples

The odometer. Let X = {0, 1} and G = Z = (a) where
a-(Ow)=1w, a-(lw) =0(a-w),w € X*.

It is known that 0T is a Cantor set, the action of Z on 9Ty is minimal
and Cy(0Tx) x Z is the Bunce-Deddens algebra BD(2°°).

It follows that C*(Tx) x Z is SME with BD(2°°).
The Basilica group. For X = {x, y} and G = (a,b) C Aut(Tx), where

a-(xw)=yb-w), a-(yw)=2xw,

b-(xw) =x(a-w), b-(yw)=yw,
we get an action of G on C*(Ty).
Question. What are C*(Tx )%, C*(Tx) x G, Ko(C*(Tx) x G) ?



Doplicher-Roberts algebras

The Doplicher-Roberts algebra O, associated to a unitary
representation p of a compact Lie group G on H = C" were introduced
to construct a new duality theory which strengthens the Tannaka-Krein
duality.

Consider p* : G — U(H®¥) the tensor power, and let

(0", p) = {T : HE* = 1™ | Tpk = p"T}.

It follows that the linear span of U(pm, ©) has a natural multiplication
m,k

and involution, after identifying 7 with T ® I.
The Doplicher-Roberts algebra O, is defined as the C*-closure of the
linear span of U(p’”, o).

m,k

The C*-algebra O, is identified with the fixed point algebra O, where
O, is the Cuntz algebra.



Higher-rank DR algebras (Albandik, Meyer)

Let G be a compact group, let py, pa, ..., px be finite dimensional
representations and for m = (my, ..., m;) € NF let

Pr=p"M @ @ pP™ acting on V.

Fix 7 : G — U(#H) which contains each irreducible representation of G
and construct a product system & over (N¥, +) where

En T K(H, V™ ® H) is the space of compact intertwiners between 7
and p" ® .

There are natural associative multiplication maps &, X Epn, = Eny+m,
and an &y-valued inner product on &,, given by (T, T,) = T} T, such
that gml ®go gmg = mi+my

The higher-rank Doplicher-Roberts algebra for py, ps, ..., px relative to
7 is the Cuntz-Pimsner algebra of the product system (&,,),nen-
Different choices of 7 give SME algebras.

It seems unlikely that these algebras are higher-rank graph algebras.
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