Cuntz-Pimsner algebras from group representations

Valentin Deaconu

University of Nevada, Reno

Multivariable Operator Theory

In honor of Baruch Solel

Technion, Haifa, June 18-22, 2017

Outline

- We discuss various constructions of C*-correspondences arising from group representations and from group actions on graphs.
- The class of the associated Cuntz-Pimsner algebras is very large and in some cases we can identify them as graph algebras or crossed products and determine their *K*-theory.
- There are connections with Doplicher-Roberts algebras, Nekrashevych algebras of self-similar group actions and with Cuntz-Pimsner algebras considered by Kumjian.
- We illustrate with several examples.

C*-correspondences

• Let A, B be C^* -algebras. A right Hilbert B-module \mathcal{X} is a Banach space with a right action of B and an B-valued inner product satisfying

$$\begin{split} &\langle \xi, \eta b \rangle = \langle \xi, \eta \rangle b, \ \ \langle \xi, \eta \rangle = \langle \eta, \xi \rangle^*, \\ &\langle \xi, \xi \rangle \geq 0, \ \text{and} \ ||\xi|| = ||\langle \xi, \xi \rangle||^{1/2}. \end{split}$$

- We say that \mathcal{X} is a A–B C^* -correspondence if moreover there is a *-homomorphism $\phi: A \to \mathcal{L}_B(\mathcal{X})$ which gives the left action, where $\mathcal{L}_B(\mathcal{X})$ denotes the C^* -algebra of all adjointable operators on \mathcal{X} .
- Suppose A=B. A *Toeplitz representation* of the C^* -correspondence $\mathcal X$ over A in a C^* -algebra D is a pair (τ,π) with $\tau:\mathcal X\to D$ a linear map and $\pi:A\to D$ a *-homomorphism, such that

$$\tau(\xi \cdot a) = \tau(\xi)\pi(a), \ \tau(\xi)^*\tau(\eta) = \pi(\langle \xi, \eta \rangle)$$
$$\tau(a \cdot \xi) = \pi(a)\tau(\xi).$$

Cuntz-Pimsner algebras

- The universal C^* -algebra for such representations is called the Toeplitz algebra of \mathcal{X} , denoted by $\mathcal{T}_{\mathcal{X}}$.
- There is a *-homomorphism $\psi: \mathcal{K}_A(\mathcal{X}) \to D$ such that

$$\psi(\theta_{\xi,\eta}) = \tau(\xi)\tau(\eta)^*,$$

where $K_A(\mathcal{X})$ is the closed linear span of the operators $\theta_{\mathcal{E},n}(\zeta) = \xi \langle \eta, \zeta \rangle$.

• The Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}}$ is universal for Toeplitz representations which are Cuntz-Pimsner covariant:

$$\psi(\phi(a)) = \pi(a)$$
 for all $a \in J_{\mathcal{X}} := \phi^{-1}(\mathcal{K}_A(\mathcal{X})) \cap (\ker \phi)^{\perp}$.

C*-algebras of graphs

- Let $E = (E^0, E^1, r, s)$ be a directed graph with E^0 and E^1 at most countable.
- If $r^{-1}(v)$ is finite for all v, the algebra $C^*(E)$ is defined using projections p_v for $v \in E^0$ and partial isometries u_e for $e \in E^1$ with

$$u_e^* u_e = p_{s(e)}$$
 for $e \in E^1$, $p_v = \sum_{r(e)=v} u_e u_e^*$ for $v \in r(E^1)$.

• We view $C^*(E)$ as the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}}$ of the C^* -correspondence $\mathcal{X} = \mathcal{X}_E$ over $A = C_0(E^0)$, obtained as a completion of $C_c(E^1)$ with the inner product

$$\langle \xi, \eta \rangle(v) = \sum_{s(e)=v} \overline{\xi(e)} \eta(e), \ \xi, \eta \in C_c(E^1)$$

and multiplications

$$(\xi \cdot f)(e) = \xi(e)f(s(e)), (f \cdot \xi)(e) = f(r(e))\xi(e).$$

C^* -correspondences from representations

- Let G be a locally compact group and let $\rho: G \to U(\mathcal{H})$ be a unitary representation.
- Let $\pi = \pi_{\rho}: C^*(G) \to \mathcal{L}(\mathcal{H})$ be the extension of ρ to the group C^* -algebra,

$$\pi(f)\xi = \int_G f(t)\rho(t)\xi dt \text{ for } f \in L^1(G), \xi \in \mathcal{H}.$$

• Then $\mathcal{E}=\mathcal{E}(\rho)=\mathcal{H}\otimes_{\mathbb{C}}C^*(G)$ becomes a C^* -correspondence over $C^*(G)$ with inner product

$$\langle \xi \otimes a, \eta \otimes b \rangle = \langle \xi, \eta \rangle a^* b$$

and operations

$$(\xi \otimes a) \cdot b = \xi \otimes ab, \ a \cdot (\xi \otimes b) = \pi(a)\xi \otimes b.$$

A first result

• **Theorem** (D). If G is a compact group and $\rho: G \to U(\mathcal{H})$ is any representation with \mathcal{H} separable, then $\mathcal{O}_{\mathcal{E}(\rho)}$ is SME to a graph C^* -algebra.

If $\pi_{\rho}: C^*(G) \to \mathcal{L}(\mathcal{H})$ is injective, then the graph has no sources. If $\rho \cong \rho_1 \oplus \rho_2$, then the incidence matrix for the graph of ρ is the sum of incidence matrices for ρ_1 and ρ_2 .

- **Proof** (sketch). The group C^* -algebra $C^*(G)$ decomposes as a direct sum of matrix algebras A_i with units p_i , indexed by the discrete set \hat{G} .
- Let E be the graph with vertex space $E^0 = \hat{G}$ and with edges determined by the A_j - A_i C^* -correspondences $p_j \mathcal{E}(\rho) p_i$.
- O_{ε(ρ)} is isomorphic to the C*-algebra of a graph of
 C*-correspondences in which we assign the algebra A_i at the vertex v_i
 and the minimal components of p_iε(ρ)p_i for each edge from v_i to v_j.
- By construction, this C^* -algebra is SME to $C^*(E)$.

Example: S_3

• Donote by S_3 the symmetric group. Then $\hat{S}_3 = \{\iota, \varepsilon, \sigma\}$ and the graphs associated with the representations ι, ε and σ are

Example: S_3

• For $\rho = \sigma \otimes \sigma$ we get the following graph of C^* -correspondences

with incidence matrix

$$B_{\sigma \otimes \sigma} = B_{\iota} + B_{\varepsilon} + B_{\sigma} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

Example: cyclic groups

- Any representation ρ of a cyclic group G is determined by a unitary $\rho(1) \in U(\mathcal{H})$ that decomposes into characters.
- If $G = \mathbb{Z}/n\mathbb{Z}$, then $\hat{G} = \{\chi_1, ..., \chi_n\}$ and $\mathcal{E}(\rho)$ determines a graph with n vertices and incidence matrix $[a_{ji}]$, where $a_{ji} = \dim \chi_j \mathcal{H} \chi_i$.
- For $G = \mathbb{Z}$, assume that $\mathcal{H} = L^2(X, \mu)$ for a measure space (X, μ) and that $\rho(1) = M_{\varphi}$, the multiplication operator with a function $\varphi : X \to \mathbb{T}$.
- Then $\mathcal{E}(\rho) = L^2(X, \mu) \otimes C^*(\mathbb{Z}) \cong C(\mathbb{T}, L^2(X, \mu))$ becomes a C^* -correspondence over $C^*(\mathbb{Z}) \cong C(\mathbb{T})$ with operations

$$\langle \xi, \eta \rangle(k) = \langle \xi(k), \eta(k) \rangle_{L^2(X,\mu)}, \text{ for } \xi, \eta \in C_c(\mathbb{Z}, L^2(X,\mu))$$

and

$$(\xi \cdot f)(k) = \sum_{k} \xi(k)f(k), \quad (f \cdot \xi)(k) = \sum_{k} f(k)\varphi^{k}\xi(k),$$
for $f \in C_{c}(\mathbb{Z}), \xi \in C_{c}(\mathbb{Z}, L^{2}(X, \mu)).$

Example: cyclic groups

- If dim $L^2(X, \mu) = n$ is finite, then the function φ is given by $(w_1, ..., w_n) \in \mathbb{T}^n$ and $\mathcal{E}(\rho)$ is isomorphic to the C^* -correspondence of the following topological graph.
- The vertex space is $E^0 = \mathbb{T}$, the edge space is $E^1 = \mathbb{T} \times \{1, 2, ..., n\}$, and the source and range maps are

$$s: E^1 \to E^0, s(z, k) = z, r: E^1 \to E^0, r(z, k) = w_k z.$$

• If λ is the left regular representation of $G = \mathbb{Z}$ on $\ell^2(\mathbb{Z})$, we will see that $\mathcal{O}_{\mathcal{E}(\lambda)}$ is simple and purely infinite with the same K-theory as $C(\mathbb{T})$.

Kumjian's construction

- Theorem (Kumjian). Let A be a separable unital C^* -algebra and let $\pi: A \to \mathcal{L}(\mathcal{H})$ be a faithful representation such that $\pi(A) \cap \mathcal{K}(\mathcal{H}) = \{0\}.$
- Then $\mathcal{E} = \mathcal{H} \otimes_{\mathbb{C}} A$ is a C^* -correspondence such that $\mathcal{O}_{\mathcal{E}} \cong \mathcal{T}_{\mathcal{E}}$ is simple, purely infinite and KK-equivalent to A.
- Corollary. Let G be an infinite, discrete and amenable group, and let $\lambda: G \to U(\ell^2(G))$ be the left regular representation. Then $\mathcal{O}_{\mathcal{E}}$ is simple and purely infinite, KK-equivalent to $C^*(G)$.
- **Proof**. Since G is amenable, the representation $\pi_{\lambda}: C^*(G) \to \mathcal{L}(\ell^2(G))$ induced by λ is faithful. Since G is infinite,

$$\pi_{\lambda}(C^*(G)) \cap \mathcal{K}(\ell^2(G)) = \{0\}.$$

Example: \mathbb{R}

- Let $G = \mathbb{R}$ and let μ be the Lebesgue measure on \mathbb{R} .
- Consider the representation

$$\rho: \mathbb{R} \to U(L^2(\mathbb{R}, \mu)), (\rho(t)\xi)(s) = e^{its}\xi(s)$$

which extends to the Fourier transform π_{ρ} on $C^*(\mathbb{R}) \cong C_0(\mathbb{R})$, where

$$(\pi_{\rho}(f)\xi)(s) = \int_{\mathbb{R}} f(t)e^{its}\xi(s)d\mu(t), \text{ for } f \in L^1(\mathbb{R},\mu), \xi \in L^2(\mathbb{R},\mu).$$

- It is known that ρ is equivalent to the right regular representation of \mathbb{R} and that ρ is a direct integral of characters χ_t , where $\chi_t(s) = e^{its}$.
- Then $\mathcal{E}(\rho) = L^2(\mathbb{R}, \mu) \otimes C^*(\mathbb{R}) \cong C_0(\mathbb{R}, L^2(\mathbb{R}, \mu))$ becomes a C^* -correspondence over $C^*(\mathbb{R}) \cong C_0(\mathbb{R})$ such that the left multiplication is injective and $\pi_{\rho}(C_0(\mathbb{R})) \cap \mathcal{K}(L^2(\mathbb{R}, \mu)) = \{0\}.$
- It follows that $\mathcal{O}_{\mathcal{E}(\rho)}$ has the K-theory of $C_0(\mathbb{R})$, but since $C_0(\mathbb{R})$ is not unital, we cannot apply Kumjian's Theorem to conclude that this algebra is simple or purely infinite.

The crossed product C^* -correspondence

- Let *G* be locally compact and let $\rho: G \to U(\mathcal{H})$ be a representation with dim $\mathcal{H} = n \in \{1, 2, 3, ...\} \cup \{\infty\}$.
- Then $\mathcal{D}(\rho) = \mathcal{H} \otimes_{\mathbb{C}} C^*(G)$ with the same inner product and right multiplication as $\mathcal{E}(\rho)$ becomes a C^* -correspondence using the left multiplication

$$(h \cdot \xi)(t) = \int_G h(s)\rho(s)\xi(s^{-1}t)ds$$

for $\xi \in C_c(G, \mathcal{H})$ and $h \in C_c(G)$.

- This left multiplication is always injective and $\mathcal{D}(\rho)$ is nondegenerate.
- **Theorem**. The representation ρ determines a quasi-free action of G on the Cuntz algebra \mathcal{O}_n such that $\mathcal{O}_{\mathcal{D}(\rho)} \cong \mathcal{O}_n \rtimes_{\rho} G$.

The abelian case

- If G is compact and abelian, then ρ decomposes into characters and determines a cocycle $c: E_n^1 \to \hat{G}$, where E_n is the graph with one vertex and n edges.
- $\mathcal{O}_n \rtimes_{\rho} G$ is isomorphic to $C^*(E_n(c))$, where $E_n(c)$ is the skew product graph $(\hat{G}, \hat{G} \times E_n^1, r, s)$ with

$$r(\chi, e) = \chi c(e), s(\chi, e) = \chi.$$

- If $G = \mathbb{T}$ and $\lambda : \mathbb{T} \to U(L^2(\mathbb{T}))$ is the left regular representation, then $\mathcal{O}_{\infty} \rtimes_{\lambda} \mathbb{T}$ is isomorphic to the graph algebra where the vertices are labeled by \mathbb{Z} and the incidence matrix has each entry equal to 1.
- If $G = \mathbb{R}$ and n is finite, Kishimoto and Kumjian showed that $\mathcal{O}_n \rtimes_{\rho} \mathbb{R}$ is simple and purely infinite if the corresponding characters generate \mathbb{R} as a closed semigroup.

Group actions on C^* -correspondences

A group action on a C*-correspondence X over A is a homomorphism
 ρ: G → L_C(X) with values invertible C-linear operators on X and an
 action of G on A by *-automorphisms such that

$$\langle \rho(g)\xi, \rho(g)\eta \rangle = g \cdot \langle \xi, \eta \rangle,$$

$$\rho(g)(\xi a) = (\rho(g)\xi)(g \cdot a), \ \rho(g)(a \cdot \xi) = (g \cdot a)(\rho(g)\xi).$$

• A group action on a graph E determines an action on \mathcal{X}_E by

$$(\rho(g)\xi)(e) = \xi(g^{-1} \cdot e) \text{ for } \xi \in C_c(E^1),$$

 $(g \cdot a)(v) = a(g^{-1} \cdot v) \text{ for } a \in C_0(E^0).$

• By the universal property, an action of G on \mathcal{X}_E determines an action of G on $C^*(E)$ and an action on the core AF-algebra $C^*(E)^{\mathbb{T}}$.

Crossed products

- Let A be a C^* -algebra and let \mathcal{X} be a C^* -correspondence over A. An action of G on \mathcal{X} determines an action on the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}}$.
- The crossed product $\mathcal{X} \rtimes G = \mathcal{X} \otimes_A (A \rtimes G)$ becomes a C^* -correspondence over $A \rtimes G$ after the completion of $C_c(G, \mathcal{X})$ using the operations

$$\langle \xi, \eta \rangle(t) = \int_G s^{-1} \cdot \langle \xi(s), \eta(st) \rangle ds,$$

$$(\xi \cdot f)(t) = \int_G \xi(s)(s \cdot f(s^{-1}t)) ds, \ (f \cdot \xi)(t) = \int_G f(s) \cdot (s \cdot \xi(s^{-1}t)) ds,$$
 where $\xi \in C_c(G, \mathcal{X}), f \in C_c(G, A)$. Recall

• Theorem (Hao, Ng). If G is amenable, then

$$\mathcal{O}_{\mathcal{X}\rtimes G}\cong\mathcal{O}_{\mathcal{X}}\rtimes G.$$

Another result

- Theorem (D). Given a discrete locally finite graph E and a finite group G acting on E, the crossed product $C^*(E) \rtimes G$ is the C^* -algebra of a graph of minimal C^* -correspondences.
- Hence $C^*(E) \rtimes G$ is SME to a graph C^* -algebra, where the number of vertices is the cardinality of the spectrum of $C_0(E^0) \rtimes G$.
- **Proof** (sketch). Recall that if G acts on a finite or countable set X, then $C_0(X) \rtimes G$ decomposes as a direct sum of crossed products $C(Gx) \rtimes G$ over the orbit space X/G.
- Since the action on each orbit Gx is transitive, this can be identified with G/G_x , where G_x is the stabilizer group and G acts on G/G_x by left multiplication. Moreover,

$$C(G/G_x) \rtimes G \cong M_{|Gx|} \otimes C^*(G_x).$$

Sketch of Proof

- We decompose the C^* -correspondence $\mathcal{X}_E \rtimes G$ over the C^* -algebra $C_0(E^0) \rtimes G$.
- Let $C_0(E^0) \rtimes G \cong \bigoplus_{i=1}^n A_i$, where $n \in \mathbb{N} \cup \{\infty\}$ and A_i are simple matrix algebras. This decomposition is obtained in two stages, from the orbits in E^0 and from the characters of the stabilizer groups.
- Consider the graph with n vertices and at each vertex v_i we assign the C^* -algebra A_i .
- The edges and the assigned C^* -correspondences are constructed from the orbits in E^1 and multiplicities.
- $C^*(E) \rtimes G$ is isomorphic to the C^* -algebra of this graph of (minimal) C^* -correspondences.
- Corollary. We have $C^*(E)^{\mathbb{T}} \rtimes G \cong (C^*(E) \rtimes G)^{\mathbb{T}}$.

Example

• For the permutation action of S_3 on the \mathcal{O}_3 graph we get the following graph of C^* -correspondences for $\mathcal{O}_3 \rtimes S_3$:

Exel-Pardo C*-correspondences

• Let G be a group acting on a graph $E = (E^0, E^1, r, s)$. Recall that G acts on $A = C_0(E^0)$ and on $\mathcal{X} = \mathcal{X}_E$ by

$$\alpha_{g}(f)(v) = f(g^{-1}v), \ f \in C_{0}(E^{0}), \ \gamma_{g}(\xi)(e) = \xi(g^{-1}e), \ \xi \in C_{c}(E^{1}).$$

- A cocycle is a map $\varphi: G \times E^1 \to G$ such that $\varphi(g, e) \cdot s(e) = g \cdot s(e)$ for all $(g, e) \in G \times E^1$. Particular case $\varphi(g, e) = g$.
- Define an action of G on the Hilbert module $\mathcal{X}_E \rtimes_{\gamma} G$ by

$$(V_g\xi)(e,h) = \xi(g^{-1}e, \varphi(g^{-1},e)h), \ \xi \in C_c(E^1 \times G).$$

• Together with the left action of $C_0(E^0)$ on $\mathcal{X}_E \rtimes_{\gamma} G$ given by

$$(\pi(f)\xi)(e,h) = f(r(e))\xi(e,h),$$

we get a covariant representation (π, V) of $(C_0(E^0), G, \alpha)$.

- This induces a map $C_0(E^0) \rtimes_{\alpha} G \to \mathcal{L}(\mathcal{X}_E \rtimes_{\gamma} G)$, so $\mathcal{X}_E \rtimes_{\gamma} G$ becomes a C^* -correspondence $\mathcal{X}_E(\varphi)$ over $C_0(E^0) \rtimes_{\alpha} G$.
- The Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}_E(\varphi)}$ is the Exel-Pardo algebra associated to (E, G, φ) .

Example: Katsura algebras

- To realize all Kirchberg algebras as topological graph algebras and to lift automorphisms of K-theory groups, Katsura introduced the algebras $\mathcal{O}_{A,B}$ for certain $n \times n$ matrices A, B with integer entries.
- Using generators and relations, Exel and Pardo proved that $\mathcal{O}_{A,B} \cong \mathcal{O}_{\mathcal{X}_E(\varphi)}$, where
- The matrix A is the incidence matrix of a finite graph E and the matrix B defines an action of Z on E.
- This action fixes the vertices and if the edges from i to j are labeled e_{ijn} for $0 \le n < A_{ij}$, then $m \cdot e_{ijn} = e_{ijr}$, where $mB_{ij} + n = qA_{ij} + r$ with $0 \le r < A_{ij}$.
- The cocycle is $\varphi : \mathbb{Z} \times E^1 \to \mathbb{Z}, \ \ \varphi(m, e_{ijn}) = q.$

Self-similar actions

- Let X be a finite alphabet with n letters and let $X^* = \bigcup_{k=0}^n X^k$ be the set of finite words with $X^0 = \{\emptyset\}$.
- An action of G on X^* is self-similar if for all $g \in G$ and $x \in X$ there exist unique $y \in X$ and $h \in G$ such that

$$g \cdot (xw) = y(h \cdot w)$$

for all $w \in X^*$.

- A self-similar action comes from an action of G on the graph E_n with one vertex and n loops.
- The cocycle is given by $\varphi(g,e) = h$, where $g \cdot (xe) = y(h \cdot e)$, since X^* is the space of finite paths in E_n .
- Let T_X be the universal cover of E_n , which is a directed tree. We obtain
- **Theorem**. There is an action of G on T_X and on the boundary ∂T_X such that $C^*(T_X) \rtimes G$ is SME with $C_0(\partial T_X) \rtimes G$.

Examples

• The odometer. Let $X = \{0, 1\}$ and $G = \mathbb{Z} = \langle a \rangle$ where

$$a \cdot (0w) = 1w, \ a \cdot (1w) = 0(a \cdot w), w \in X^*.$$

- It is known that ∂T_X is a Cantor set, the action of \mathbb{Z} on ∂T_X is minimal and $C_0(\partial T_X) \rtimes \mathbb{Z}$ is the Bunce-Deddens algebra $BD(2^{\infty})$.
- It follows that $C^*(T_X) \rtimes \mathbb{Z}$ is SME with $BD(2^{\infty})$.
- The Basilica group. For $X = \{x, y\}$ and $G = \langle a, b \rangle \subset \operatorname{Aut}(T_X)$, where

$$a \cdot (xw) = y(b \cdot w), \ a \cdot (yw) = xw,$$

$$b \cdot (xw) = x(a \cdot w), \ b \cdot (yw) = yw,$$

we get an action of G on $C^*(T_X)$.

• Question. What are $C^*(T_X)^G$, $C^*(T_X) \rtimes G$, $K_0(C^*(T_X) \rtimes G)$?

Doplicher-Roberts algebras

- The Doplicher-Roberts algebra \mathcal{O}_{ρ} associated to a unitary representation ρ of a compact Lie group G on $\mathcal{H} = \mathbb{C}^n$ were introduced to construct a new duality theory which strengthens the Tannaka-Krein duality.
- Consider $\rho^k: G \to U(\mathcal{H}^{\otimes k})$ the tensor power, and let

$$(\rho^m, \rho^k) = \{T : \mathcal{H}^{\otimes k} \to \mathcal{H}^{\otimes m} \mid T\rho^k = \rho^m T\}.$$

- It follows that the linear span of $\bigcup_{m,k} (\rho^m, \rho^k)$ has a natural multiplication and involution, after identifying T with $T \otimes I$.
- The Doplicher-Roberts algebra \mathcal{O}_{ρ} is defined as the C^* -closure of the linear span of $\bigcup_{m} (\rho^m, \rho^k)$.
- The C^* -algebra \mathcal{O}_{ρ} is identified with the fixed point algebra \mathcal{O}_n^G , where \mathcal{O}_n is the Cuntz algebra.

Higher-rank DR algebras (Albandik, Meyer)

- Let G be a compact group, let $\rho_1, \rho_2, ..., \rho_k$ be finite dimensional representations and for $m = (m_1, ..., m_k) \in \mathbb{N}^k$ let $\rho^m = \rho_1^{\otimes m_1} \otimes \cdots \otimes \rho_k^{\otimes m_k}$ acting on V^m .
- Fix $\pi: G \to U(\mathcal{H})$ which contains each irreducible representation of G and construct a product system \mathcal{E} over $(\mathbb{N}^k, +)$ where $\mathcal{E}_m \subseteq \mathcal{K}(\mathcal{H}, V^m \otimes \mathcal{H})$ is the space of compact intertwiners between π and $\rho^m \otimes \pi$.
- There are natural associative multiplication maps $\mathcal{E}_{m_1} \times \mathcal{E}_{m_2} \to \mathcal{E}_{m_1+m_2}$ and an \mathcal{E}_0 -valued inner product on \mathcal{E}_m given by $\langle T_1, T_2 \rangle = T_1^* T_2$ such that $\mathcal{E}_{m_1} \otimes_{\mathcal{E}_0} \mathcal{E}_{m_2} \cong \mathcal{E}_{m_1+m_2}$.
- The higher-rank Doplicher-Roberts algebra for $\rho_1, \rho_2, ..., \rho_k$ relative to π is the Cuntz-Pimsner algebra of the product system $(\mathcal{E}_m)_{m \in \mathbb{N}^k}$. Different choices of π give SME algebras.
- It seems unlikely that these algebras are higher-rank graph algebras.

Selected references

- E. Bédos, S. Kaliszewski, J. Quigg, On Exel-Pardo algebras, arXiv preprint 1512.07302v3
- V. Deaconu, *Group actions on graphs and C*-coorespondences*, to appear in Houston J. Math.
- V. Deaconu, A. Kumjian, D. Pask and A. Sims, Graphs of C*-correspondences and Fell bundles, Indiana Univ. Math. J. 59 (2010) 1687–1735.
- R. Exel, E. Pardo, Self-Similar graphs: a unified treatment of Katsura and Nekrashevych algebras, arXiv preprint 1409.1107 v2.
- G. Hao, C.-K. Ng, Crossed products of C*-correspondences by amenable group actions, J. Math. Anal. Appl. 345 (2008), no. 2, 702–707.
- A. Kumjian, On certain Cuntz-Pimsner algebras, Pacific J. Math. 217 (2004) 275–289.
- M.H. Mann, I. Raeburn, C.E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46(1992), 225-243.
- V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math 630(2009), 59–123.