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1. Framework

In this talk we focus on encoding:

{ C*-dynamical systems } s { Operator algebras }

e Origins: Murray, von Neumann (1936, 1940) — Type |, Il, and IlI
factors.

e C*-crossed products: are constructed based on a given group action
o: G — Aut(A) on a C*-algebra A by *-automorphisms.

e We turn our focus to semigroup actions ¢&: P — End(A) on a
C*-algebra A by *-endomorphisms.

e Case example: P=17,.



1. Framework

Definition
A C*dynamical system o: Z, — End(A) consists of a *-endomorphism
o: A— A of a C*-algebra A.

e Use operators to encode the evolution of the system (in discrete time):

t=0 t=1 t=2

e The key is to introduce an “external” operator V that satisfies the

covariance relation
a-V=V-.aa) for all ac A

e Sometimes we would like to impose that V is an isometry (so that
positive points in time are reversed).



1. Framework

Example of a unitary pair

For AC %(H) and o € Aut(A) we have a pair (7, U) on (?(H):
U: bilateral shift n(a)=diag{a"(a):ne€Z} st. n(a)U= Ura(a).
Notice that U also “undoes” a: m(a) = Umo(a)U*.

Gauge Invariant Uniqueness Theorem

Every unitary pair (', U’) that admits a gauge action with 7’ injective lifts
to a faithful representation of C*(7(A), U).

e In other words C*(m(A),U) ~ Ax Z.

Question

What is the analogue for o € End(A)?



I1. Operator algebras over a: Z, — End(A)

Cuntz-Pimsner 04 o) (Katsura)

Universal C*-algebra generated by A and V such that a-V =V -«a(a), V
is an isometry (V*V =1), and

a-(I—w* =0, for ackerat:={acA|akera=(0)}.

Remarks
1. If € Aut(A) then kera’ = A.Thus V is unitary and Oaa) =AXG L.
2. When « is injective then O(A, ) ~ Aw X, Z for

2> A——> A, (Minimal automorphic extension)

Ty

— = A—— A,



I1. Operator algebras over a: Z, — End(A)

Cuntz-Pimsner 04 4 (Katsura)

Universal C*-algebra generated by A and V such that a-V =V -«a(a), V
is an isometry (V*V =1), and

a-(I-w*) =0, for ackerat:={acA|a kera=(0)}.

Remarks (Katsura)

3. kera is the largest ideal where the restriction of « is injective.
4. Notice that a= Va(a)V* for all a € kera™.

5. A= O(A,a) (Katsura 2004). In fact O(A, @) is the smallest for
which aV = Va(a), V is an isometry and A — O(A, ).

6. O(A,a) satisfies the GIUT.



I1. Operator algebras over a: Z, — End(A)

Cuntz-Pimsner 04 o) (Katsura)

Universal C*-algebra generated by A and V such that a-V =V -«a(a), V
is an isometry (V*V =1), and

a-(I—vww*) =0, for ackeralt:={acA|a kera=(0)}.

Remarks (Katsura)

7. Alis exact if and only if O(A, ) is exact.
8. If A'is nuclear then (A, ) is nuclear (but not the converse).

9. If O(A, ) is nuclear then A/kera' is nuclear and kerat < O(A, )P
is nuclear.



I1. Operator algebras over a: Z, — End(A)

Cuntz-Pimsner O, o) (Katsura)

Universal C*-algebra generated by A and V such that a-V =V -a(a), V
is an isometry (V*V =1), and

a-(I-vwW*) =0, for ackerat:={acA|a kera=(0)}.

Remarks (Katsoulis-Kribs)

10. O(A, ) is the C*-envelope in the sense of Arveson for a natural
nonselfadjoint operator algebra. Let's pause for a second and put this
result into some context.



Intermission: on the C*-envelope

Operator algebras are subalgebras of Z(H)

1. Selfadjoint norm-closed subalgebras, i.e. C*-algebras.

2. Non-involutive, i.e. nonselfadjoint operator algebras (nsa).

By definition every nsa o7 C %(H) generates a C*-algebra C*(.</)
It may happen that 1;: &/ — $B(H1) and 12: &7 — B(H>) but

C(u (o)) # C*(12())-

Example

The disc algebra A(ID) generates the Toeplitz algebra, C(D), and C(T).
However C(T) is the minimal C*-algebra generated by A(D), and we call
C(T) the C*-envelope of A(D).



Intermission: on the C*-envelope

Question, Arveson (1969)

Does every nsa have a C*-envelope?

Answer: Yes

J1: of — B(H) s.t. for any other 1': &7 — Z(K), 3 a *-epimorphism
o: C*(1()) = C*(1(«)) with ®1/(a) =1(a), Vae .

The C*(1(7)) is the C*-envelope of o/. We write CZ, (&) = C*(1()).
Proofs by:

1. Hamana (1979): Ci, () is generated in the injective envelope.

env

2. Dritschel-McCullough (2001): C,, (<) is generated by a maximal
dilation.

Arveson's Program on the C*-envelope

Determine! and examine? the C*-envelope of a given nsa.



Intermission: on the C*-envelope

Dilations
Let T € B(H). A power dilation U € #(K) of T is of the form

*
U= |x

*

* o O

0
0
*
A dilation is maximal if it has only trivial dilations.

Example
If T is a contraction (|| T|| < 1), then the maximal dilation is achieved by
a unitary U (U*U = UU* =1).

Dilations

The idea is that by dilating we obtain “better-behaved” objects.



I1. Operator algebras over a: Z, — End(A)

Going back to a € End(A).

Semicrossed product A X o Z.+

Universal nonselafdjoint operator algebra generated by A and V such that
a-V =V.a(a) and V is a contraction.

Remark
Inititated by Arveson (1967), formally defined by Peters (1984).

Theorem (Muhly-Solel 2006)

The scp A X g Zy coincides with the nsa generated by A and V such that
a-V=V-.a(a) and V is an isometry.

Theorem (Katsoulis-Kribs 2005)
The C*-envelope of AxqZy is O ).



I1. Operator algebras over a: Z, — End(A)

Cuntz-Pimsner O, o) (Katsura)

Universal C*-algebra generated by A and V such that a-V =V -«a(a), V
is an isometry (V*V =1), and

a-(I—ww*) =0, for ackerat:={acA|a kera=(0)}.

Question

Why such complexity?

Remark

1. Let a faithful p: A— %(H) and an isometry V s.t. p(a)V = Vpa(a).
2. 1f p(a0) + Y p=0 Vap(as) Vi =0 then ap € ker ot (Katsura 2004).

3. This happens because such equations transform in p(ap)(/ — VV*)=0.



I1. Operator algebras over a: Z, — End(A)

Question

Can we connect (A, o) to a C*-crossed product in any case?

Two-step dilation (K. 2011)

1. Add a tail: From (A, @) construct an injective (B, f3) given by

aO q id id
A~ Alkerat T Alkerat T ...

2. Extend by a direct limit: For (B,B) form the minimal automorphic
extension (Buw, fw).



I1. Operator algebras over a: Z, — End(A)

Theorem (K. 2011)

o Z+ = El’ld(A) ﬁ(A,(x)
\
dilation | strong
Y
B Z — Aut(B-)

Morita equivalent

ﬁ(Bw,ﬁw) ~ B, XB., 7

Corollary (K. 2011)
Let A= C(X). TFAE:

1. (A,a) is minimal and a" # a™ for all n,m € Z.;

2. (Bw,B) is minimal and BL # id for all n € Z (topol. free);
3. Bwxp, Z is simple;
4

- O(a,q) is simple (has no non-trivial two-sided closed ideals).



III. Program on semigroup actions

Question 1

o: P — End(A) ——— C*-envelope of a scp

|
dilation | strong ( Morita equivalent ?

Y
B: G — Aut(B) ——— C*-crossed product

Question 2

Is the C*-envelope a Cuntz-type C*-algebra? Can we describe it by
x-algebraic relations?

Applications 3

Relate the intrinsic properties of a: P — End(A) to C*-properties of the
obtained object.



III. Program on semigroup actions

Davidson-Fuller-K. (2014)

o: P — End(A) ——— C*-envelope of a sem. prod.
\
dilation | strong ( Morita equivalent
¥
B: G— Aut(B) C*-crossed product

1. We confirm this when P is 77, IF‘;F, a spanning cone, an Ore sgrp.
2. For P =17 we identify the Cuntz-Nica-Pimsner algebra.

3. We study the Cuntz-Nica-Pimsner algebras in terms of ideal structure.

K. (2014)

4. We study the Nica-Pimsner algebras in terms of nuclearity, exactness,
KMS states.



III. Operator algebras over a: Z — End(A)

Notation
We write i = (0,...,0,1,0,...,0) for all i =1,...,n.
Thus a: Z7 — End(A) is defined by n commuting o5 € End(A).

Requirements

1. n contractions V; such that a- V, = V;- a;(a).
2. The V4, commute.

Is this enough?

The aim is to reach a crossed product. For A= C we would like to dilate
the V; to unitaries. Parrott’s counterexample shows that this cannot be
done for any n.

3. We focus on doubly commuting V;, i.e. \/i\/j* = \/j*\/i for i # .



III. Operator algebras over a: Z — End(A)

The Nica-covariant semicrossed product Ax 77 (no involution)
Universal nonselafdjoint generated by
Vsa, with a€ A, se Z",
for n doubly commuting contractions V; with a- V; = V- o5(a).
Remark
A embeds in Axg 7" .

Example
For AC H let K= H®(?(Z") and define

Si(§®es) =& ®eits and m(a)(§ ®es) = as(a)g @es

for all s € Z} and & € H. Then 7 is a faithful representation of A.



III. Operator algebras over a: Z — End(A)

Question

Why do we call it Nica covariant?

Theorem (Davidson-Fuller-K. 2014)

The Nc-scp A x gt Z! coincides with the nsa generated by doubly com-
muting isometries V; and A such that a- Vi = V4 04(a).

Remark

Doubly commuting isometries form a representation of Z! in the sense of
Nica.

Corollary

If C;

env

(AxgEZn) is generated by A and V' then
C*

env

(AxyZh) ~span{VsaV{ :ac .o/ and s, t € Z1 }.



III. Reductions

The plan

Dilate a system o : Z7 — End(A) to a group action f: Z" — Aut(B).

Injective case: ker g = (0) for all i=1,...,n.

We can then construct the direct limit f; € Aut(B) s.t.

As—"=Agye —= B

o e iﬁi

As—> Ay —B

where A; = A for all s € Zi.

Then C¢

env

(AxgSZh ) ~ B xgZ" (Corollary Davidson-Fuller-K. 2014).



III. Reductions

The (revised) plan
Dilate a system o : Z] — End(A) where ker 0 # (0) to a system B: Z7 —
End(B) such that ker ; = (0).
The n=1 case (K. 2011)
For I =kerat let B=A® co(A/l) and B(a,(xn)) = (at(a),a+1,(xn)).
o

qi /lii$ id
AT A/l A/l

The n= 2 case

Let ag,ap € End(A) such that ajap = opay. We want two injective
commuting fB1, B2 on some B D A that dilate ag, 0.



III. Non-injective case

A first attempt
Let I(l,l) = (ker oy - ker Olz)L, h = ﬂ,,ocz_”(/(lvl)) = ﬂnal‘"(l(l,l)).

Let B1 be the solid arrows and f; the broken arrows:

A A

| |
i id _ id
@/4//2 q1
A

A/I(I,I)L)
A

:C'Iz

a :CIQ
QA q Al id
/A

. LA
aQ// (X2(/

with 1 g2 = q102 and g1g1 = q(1,1) (plus the symmetrical ones).
Then B is injective and generalises the n =1 case.

However this construction is bound to faill



III. Non-injective case

How did we end up with /1 1) = (ker oy - ker )7

1. Let a faithful p: A— Z(H) and doubly commuting isometries V; such
that

p(a)Vi = Vipai(a).
2. Because of a gauge action, we will have to deal with equations
P(a0) + Lsso Vep(as) Vi = 0.
3. This transforms into

p(a0)(/ — V1 V§)(I — VaV5) = 0.

4. From this we get that ag L ker o, ker ap.



III. Non-injective case

Why isn't [1.1) = (ker oy - ker o)+ enough?
However we will also have equations of the form

p(a0) +Xn=0 Vinoyp(an) V(i 0) =0
which transform into
plao)(I ~ V1 V{) =0.
From this we get that ag | kera;.
From this we also get that 0/ )(a0) L ker oy for all n> 0.
This happens because pop(a) = V5 p(a)Va.
So we need the ideal i =N,a, "(ker ) instead of N0t (/).

And of course its symmetrical /5.



III. Non-injective case

Correct tail
Iy = (kerog -kerop)t  hh =Nn0p "(kerayq-) = Naoy "(keray).
Then define 1 and B, by

A A
| |
a (id . id .
GA/Iz o A//(l,l) Id% 0oo
A A
a2 '
alQ/‘A @ A)I id
o\ /A C
(05 /v/ o,

with d192 = g102 and Ga2g1 = q(1,1) (plus the symmetrical ones).
Then By and B2 generalise the n =1 case.

It is not immediate but they are commuting and injective.



III. General construction

For x = (x1,...,%n) € Z", define
supp(x) = {i: x; # 0} and x* = {y € Z : supp(y) Nsupp(x) = 0}
and let the ideals
he=Nyext % ((Micauppi ker ) )
Let By = A/lx and on the C*-algebra
B =Yy ez Bx
define the x-endomorphisms

9x05(a) @ ex + qx+i(a) ® exyi  forie xt,
gx(a) ® exti for i € supp(x).

Bi(gx(a) ® ex) = {

Then the B; commute and are injective (this is not trivial).



ITI. C*-envelope

Theorem (Davidson-Fuller-K. 2014)

Let a: 7T — End(A) be a semigroup action. Apply the constructions:
1. dilate (A, @) to the injective (B,B) by adding a tail;
2. use the direct limit to extend it to Pw: Z" — Aut(B.).

Then the C*-envelope of A xg°Z" is Morita equivalent to B., xp_Z".

Remarks

1. The C*-envelope is defined by a co-universal property for which

*
Cenv

(AxDCZT) ~ span{VsaV; :a€ o and s,t € Z" }.
2. This was one of the challenging points in the proof.

What about the structure of the C*-envelope?

Can we identify the C*-envelope by C*-algebraic relations?



III. Towards a Cuntz algebra

Recall
For n =2 we arrived to the equalities
1. a(l—WVf)=0;
2. a(l— W V3) =0;
3. a(l =WV Vi) (I = Vo V) =0;
subject to a. Then we used the solutions/ideals to produce the tail. This
appears to be more than an innocent coincidence.

The Cuntz-Nica-Pimsner algebra for n =2 case

It is the universal C*-algebra such that: (a) V4 are doubly commuting
isometries; (b) aV; = V;0i(a); and (c) we have

c.l a(l—V4V§) =0 for all a € Ny, "(kerog);

c.2 a(l — Vo V3) =0 for all a € Npay "(keray);

c.3 a(l— VA Vi) (I — VaVi5) =0 for all a € (keray - kerap)t.



III. The Cuntz-Nica-Pimsner algebra

Definition (Davidson-Fuller-K. 2014)

The Cuntz-Nica-Pimsner algebra N O(A,a) of o: Z1 — End(A) is the
universal C*-algebra generated by A and V; so that:

1. V; are commuting isometries;

2. aV; = Vioi(a); and
* _ 1
3. a'Hiesupp(&)(l -V V, ) =0forae ﬂxEKL axl ((ﬂiesupp(é) ker ai) )

Corollary (Davidson-Fuller-K. 2014)

1. The C*-envelope of Axyt 2! is /' O(A, ).

2. For o: ZT — End(A) there exists a dilation Bu.: Z" — Aut(B.) such
that N O(A, &) & B xp 7.

3. N/ O(A,a) satisfies the GIUT with respect to the CNP representations.



III. Simplicity

Theorem (Davidson-Fuller-K. 2014)

o: 71 — End(A)
\

dilation | strong ( Morita equivalent
A

Be: Z" — Aut(B-) B xp 7"

NO(A o) ~Cg (Axp ZT)

Corollary (Davidson-Fuller-K. 2014)

Let A= C(X) and let ¢s: X — X related to as: X — X. TFAE:

1. (A, ) is minimal and {x € X | ¢s(x) # ¢,(x)}° =0 for all s,r € Z,
(top. free);

2. (Bw,B) is minimal and topologically free;
3. Bwxp, Z is simple;
4. N O(aq) Is simple.



III. Exactness/Nuclearity

Theorem (K. 2014)
N O(A, ) is exact if and only if A is exact.

Theorem (K. 2014)
Let B..: Z" — Aut(B.) be the automorphic dilation of a: Z] — End(A).
TFAE:

1. the embeddings A,A/ls — B.. are nuclear for all s € 7 ;

2. B. is nuclear;

3. B. Xp,, Z" is nuclear;

4. N O(A, o) is nuclear.

Proposition (K. 2014)

If A is nuclear or if A— C*(VnaV);|a€ Ane€Z,) is nuclear then
N O(A, ) is nuclear. The converse is not true.



IV. Remarks

Remarks on A7 (A, o) (K. 2014)
1. There is a second variant, the Toeplitz-Nica-Pimsner algebra.

2. For this we get A is nuclear (resp. exact) if and only if 4.7 (A, ) is
nuclear (resp. exact).

KMS states (K. 2014)

3. The gauge action implements an action of R on the Nica-Pimsner
algebras. We are able to identify all KMS states at finite temperature:
for any T < oo there is exactly one KMS; 1 state.

4. For T =  the KMS states are the tracial states and there is no
bijection (there might be more than one).



IV. Remarks

Remarks on simplicity

5. Kalantar-Kennedy show that simplicity of the reduced C*-crossed
product is equivalent to topological freeness of the group action on a
boundary.

6. We are working towards formulating this property for semigroups and
showing its stability under the automorphic dilation.

Remarks on product systems
7. Both /"7 (A,a) and A O(A, ) are examples of C*-algebras
associated to product systems.

8. A gauge invariance uniqueness theorem for general
Toeplitz-Nica-Pimsner algebras is easy to obtain by our methods.

9. We believe that the same is true for the Cuntz-Nica-Pimsner algebras
(with Adam Dor-On).

The end.



