Semigroup actions on operator algebras

Evgenios Kakariadis

Newcastle University

Multivariable Operator Theory at the Technion, June 2017
Davidson KR, Fuller AH, Kakariadis ETA, Semicrossed products of operator algebras by semigroups., Memoirs Amer. Math. Soc. 247, No. 1168 (2017), ($97+$ v pages).

Kakariadis ETA, On Nica-Pimsner algebras of C^{*}-dynamical systems over \mathbb{Z}_{+}^{n}., to apear in International Mathematics Research Notices.

I. Framework

In this talk we focus on encoding:

$$
\left.\left\{C^{*} \text {-dynamical systems }\right\} \quad \text { m } \quad \text { Operator algebras }\right\}
$$

- Origins: Murray, von Neumann $(1936,1940)$ - Type I, II, and III factors.
- C^{*}-crossed products: are constructed based on a given group action $\alpha: G \rightarrow \operatorname{Aut}(A)$ on a C^{*}-algebra A by ${ }^{*}$-automorphisms.
- We turn our focus to semigroup actions $\alpha: P \rightarrow \operatorname{End}(A)$ on a C^{*}-algebra A by ${ }^{*}$-endomorphisms.
- Case example: $P=\mathbb{Z}_{+}$.

I. Framework

Definition

A C^{*}-dynamical system $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$ consists of a ${ }^{*}$-endomorphism $\alpha: A \rightarrow A$ of a C^{*}-algebra A.

- Use operators to encode the evolution of the system (in discrete time):

- The key is to introduce an "external" operator V that satisfies the covariance relation

$$
a \cdot V=V \cdot \alpha(a) \text { for all } a \in A
$$

- Sometimes we would like to impose that V is an isometry (so that positive points in time are reversed).

I. Framework

Example of a unitary pair

For $A \subseteq \mathscr{B}(H)$ and $\alpha \in \operatorname{Aut}(A)$ we have a pair (π, U) on $\ell^{2}(H)$:
U : bilateral shift $\pi(a)=\operatorname{diag}\left\{\alpha^{n}(a): n \in \mathbb{Z}\right\}$ s.t. $\quad \pi(a) U=U \pi \alpha(a)$.
Notice that U also "undoes" $\alpha: \pi(a)=U \pi \alpha(a) U^{*}$.

Gauge Invariant Uniqueness Theorem

Every unitary pair (π^{\prime}, U^{\prime}) that admits a gauge action with π^{\prime} injective lifts to a faithful representation of $\mathrm{C}^{*}(\pi(A), U)$.

- In other words $\mathrm{C}^{*}(\pi(A), U) \simeq A \rtimes \mathbb{Z}$.

Question

What is the analogue for $\alpha \in \operatorname{End}(A)$?

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$ (Katsura)

Universal C^{*}-algebra generated by A and V such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry ($V^{*} V=I$), and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } \quad a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\} .
$$

Remarks

1. If $\alpha \in \operatorname{Aut}(A)$ then ker $\alpha^{\perp}=A$. Thus V is unitary and $\mathscr{O}_{(A, \alpha)} \simeq A \rtimes_{\alpha} \mathbb{Z}$.
2. When α is injective then $\mathscr{O}(A, \alpha) \simeq A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ for

(Minimal automorphic extension)

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$ (Katsura)

Universal C^{*}-algebra generated by A and V such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry $\left(V^{*} V=I\right)$, and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } \quad a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\} .
$$

Remarks (Katsura)

3. $\operatorname{ker} \alpha^{\perp}$ is the largest ideal where the restriction of α is injective.
4. Notice that $a=V \alpha(a) V^{*}$ for all $a \in \operatorname{ker} \alpha^{\perp}$.
5. $A \hookrightarrow \mathscr{O}(A, \alpha)$ (Katsura 2004). In fact $\mathscr{O}(A, \alpha)$ is the smallest for which $a V=V \alpha(a), V$ is an isometry and $A \hookrightarrow \mathscr{O}(A, \alpha)$.
6. $\mathscr{O}(A, \alpha)$ satisfies the GIUT.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$ (Katsura)

Universal C^{*}-algebra generated by A and V such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry $\left(V^{*} V=I\right)$, and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } \quad a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\} .
$$

Remarks (Katsura)

7. A is exact if and only if $\mathscr{O}(A, \alpha)$ is exact.
8. If A is nuclear then $\mathscr{O}(A, \alpha)$ is nuclear (but not the converse).
9. If $\mathscr{O}(A, \alpha)$ is nuclear then $A / \operatorname{ker} \alpha^{\perp}$ is nuclear and $\operatorname{ker} \alpha^{\perp} \hookrightarrow \mathscr{O}(A, \alpha)^{\beta}$ is nuclear.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$ (Katsura)

Universal C^{*}-algebra generated by A and V such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry $\left(V^{*} V=l\right)$, and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } \quad a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\}
$$

Remarks (Katsoulis-Kribs)

10. $\mathscr{O}(A, \alpha)$ is the C^{*}-envelope in the sense of Arveson for a natural nonselfadjoint operator algebra. Let's pause for a second and put this result into some context.

Intermission: on the C^{*}-envelope

Operator algebras are subalgebras of $\mathscr{B}(H)$

1. Selfadjoint norm-closed subalgebras, i.e. C^{*}-algebras.
2. Non-involutive, i.e. nonselfadjoint operator algebras (nsa).

By definition every nsa $\mathscr{A} \subseteq \mathscr{B}(H)$ generates a C^{*}-algebra $\mathrm{C}^{*}(\mathscr{A})$
It may happen that $t_{1}: \mathscr{A} \rightarrow \mathscr{B}\left(H_{1}\right)$ and $l_{2}: \mathscr{A} \rightarrow \mathscr{B}\left(H_{2}\right)$ but

$$
\mathrm{C}^{*}\left(l_{1}(\mathscr{A})\right) \neq \mathrm{C}^{*}\left(l_{2}(\mathscr{A})\right) .
$$

Example

The disc algebra $\mathbb{A}(\mathbb{D})$ generates the Toeplitz algebra, $C(\overline{\mathbb{D}})$, and $C(\mathbb{T})$. However $C(\mathbb{T})$ is the minimal C^{*}-algebra generated by $\mathbb{A}(\mathbb{D})$, and we call $C(\mathbb{T})$ the C^{*}-envelope of $\mathbb{A}(\mathbb{D})$.

Intermission: on the C^{*}-envelope

Question, Arveson (1969)

Does every nsa have a C^{*}-envelope?

Answer: Yes

$\exists \imath: \mathscr{A} \rightarrow \mathscr{B}(H)$ s.t. for any other $\imath^{\prime}: \mathscr{A} \rightarrow \mathscr{B}(K), \exists$ a $*$-epimorphism $\Phi: \mathrm{C}^{*}\left(\imath^{\prime}(\mathscr{A})\right) \rightarrow \mathrm{C}^{*}(\imath(\mathscr{A}))$ with $\Phi^{\prime}(a)=l(a), \forall a \in \mathscr{A}$.
The $\mathrm{C}^{*}(l(\mathscr{A}))$ is the C^{*}-envelope of \mathscr{A}. We write $\mathrm{C}_{\text {env }}^{*}(\mathscr{A})=\mathrm{C}^{*}(l(\mathscr{A}))$.
Proofs by:

1. Hamana (1979): $\mathrm{C}_{\mathrm{env}}^{*}(\mathscr{A})$ is generated in the injective envelope.
2. Dritschel-McCullough (2001): $\mathrm{C}_{\text {env }}^{*}(\mathscr{A})$ is generated by a maximal dilation.

Arveson's Program on the C^{*}-envelope
Determine ${ }^{1}$ and examine ${ }^{2}$ the C^{*}-envelope of a given nsa.

Intermission: on the C^{*}-envelope

Dilations

Let $T \in \mathscr{B}(H)$. A power dilation $U \in \mathscr{B}(K)$ of T is of the form

$$
U=\left[\begin{array}{ccc}
* & 0 & 0 \\
* & T & 0 \\
* & * & *
\end{array}\right] .
$$

A dilation is maximal if it has only trivial dilations.

Example

If T is a contraction $(\|T\| \leq 1)$, then the maximal dilation is achieved by a unitary $U\left(U^{*} U=U U^{*}=I\right)$.

Dilations

The idea is that by dilating we obtain "better-behaved" objects.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Going back to $\alpha \in \operatorname{End}(A)$.

Semicrossed product $A \times{ }_{\alpha} \mathbb{Z}_{+}$

Universal nonselafdjoint operator algebra generated by A and V such that a. $V=V \cdot \alpha(a)$ and V is a contraction.

Remark

Inititated by Arveson (1967), formally defined by Peters (1984).
Theorem (Muhly-Solel 2006)
The $\operatorname{scp} A \times_{\alpha} \mathbb{Z}_{+}$coincides with the nsa generated by A and V such that a. $V=V \cdot \alpha(a)$ and V is an isometry.

Theorem (Katsoulis-Kribs 2005)
The C^{*}-envelope of $A \times_{\alpha} \mathbb{Z}_{+}$is $\mathscr{O}_{(A, \alpha)}$.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$ (Katsura)

Universal C*-algebra generated by A and V such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry $\left(V^{*} V=I\right)$, and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } \quad a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\} .
$$

Question

Why such complexity?

Remark

1. Let a faithful $\rho: A \rightarrow \mathscr{B}(H)$ and an isometry V s.t. $\rho(a) V=V \rho \alpha(a)$.
2. If $\rho\left(a_{0}\right)+\sum_{n>0} V_{n} \rho\left(a_{s}\right) V_{n}^{*}=0$ then $a_{0} \in \operatorname{ker} \alpha^{\perp}$ (Katsura 2004).
3. This happens because such equations transform in $\rho\left(a_{0}\right)\left(I-V V^{*}\right)=0$.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Question

Can we connect $\mathscr{O}(A, \alpha)$ to a C^{*}-crossed product in any case?

Two-step dilation (K. 2011)

1. Add a tail: From (A, α) construct an injective (B, β) given by

$$
{ }^{\alpha} \bigodot_{A} \xrightarrow{q} A / \operatorname{ker} \alpha^{\perp} \xrightarrow{\text { id }} A / \operatorname{ker} \alpha^{\perp} \xrightarrow{\mathrm{id}} \ldots
$$

2. Extend by a direct limit: For (B, β) form the minimal automorphic extension ($B_{\infty}, \beta_{\infty}$).

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Theorem (K. 2011)
$\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A) \longrightarrow \mathscr{O}_{(A, \alpha)}$
dilation
v
strong $\{$ Morita equivalent
$\beta_{\infty}: \mathbb{Z} \rightarrow \operatorname{Aut}\left(B_{\infty}\right) \longrightarrow \mathscr{O}_{\left(B_{\infty}, \beta_{\infty}\right)} \simeq B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}$

Corollary (K. 2011)

Let $A=C(X)$. TFAE:

1. (A, α) is minimal and $\alpha^{n} \neq \alpha^{m}$ for all $n, m \in \mathbb{Z}_{+}$;
2. ($B_{\infty}, \beta_{\infty}$) is minimal and $\beta_{\infty}^{n} \neq$ id for all $n \in \mathbb{Z}$ (topol. free);
3. $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}$ is simple;
4. $\mathscr{O}_{(\mathrm{A}, \alpha)}$ is simple (has no non-trivial two-sided closed ideals).

III. Program on semigroup actions

Question 1

$$
\begin{aligned}
& \alpha: P \rightarrow \operatorname{End}(A) \longrightarrow C^{*} \text {-envelope of a scp } \\
& \text { dilation I } \\
& \text { r } \\
& \beta: G \rightarrow \operatorname{Aut}(B) \longrightarrow C^{*} \text {-crossed product }
\end{aligned}
$$

Question 2

Is the C*-envelope a Cuntz-type C*-algebra? Can we describe it by *-algebraic relations?

Applications 3

Relate the intrinsic properties of $\alpha: P \rightarrow \operatorname{End}(A)$ to C^{*}-properties of the obtained object.

III. Program on semigroup actions

Davidson-Fuller-K. (2014)

1. We confirm this when P is $\mathbb{Z}_{+}^{n}, \mathbb{F}_{n}^{+}$, a spanning cone, an Ore sgrp.
2. For $P=\mathbb{Z}_{+}^{n}$ we identify the Cuntz-Nica-Pimsner algebra.
3. We study the Cuntz-Nica-Pimsner algebras in terms of ideal structure.
K. (2014)
4. We study the Nica-Pimsner algebras in terms of nuclearity, exactness, KMS states.

III. Operator algebras over $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$

Notation

We write $\mathbf{i}=(0, \ldots, 0,1,0, \ldots, 0)$ for all $i=1, \ldots, n$.
Thus $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ is defined by n commuting $\alpha_{i} \in \operatorname{End}(A)$.

Requirements

1. n contractions V_{i} such that $a \cdot V_{i}=V_{i} \cdot \alpha_{i}(a)$.
2. The V_{i} commute.

Is this enough?

The aim is to reach a crossed product. For $A=\mathbb{C}$ we would like to dilate the V_{i} to unitaries. Parrott's counterexample shows that this cannot be done for any n.
3. We focus on doubly commuting $V_{\mathbf{i}}$, i.e. $V_{\mathbf{i}} V_{\mathbf{j}}^{*}=V_{\mathbf{j}}^{*} V_{\mathbf{i}}$ for $i \neq j$.

III. Operator algebras over $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$

The Nica-covariant semicrossed product $A \times{ }_{\alpha}^{n c} \mathbb{Z}_{+}^{n} \quad$ (no involution)
Universal nonselafdjoint generated by

$$
V_{s} a \text {, with } a \in A, s \in \mathbb{Z}_{+}^{n},
$$

for n doubly commuting contractions V_{i} with $a \cdot V_{i}=V_{i} \cdot \alpha_{i}(a)$.

Remark

A embeds in $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$.

Example

For $A \subseteq H$ let $K=H \otimes \ell^{2}\left(\mathbb{Z}_{+}^{n}\right)$ and define

$$
S_{\mathrm{i}}\left(\xi \otimes e_{s}\right)=\xi \otimes \mathrm{e}_{\mathrm{i}+s} \text { and } \pi(a)\left(\xi \otimes e_{s}\right)=\alpha_{s}(a) \xi \otimes e_{s}
$$

for all $s \in \mathbb{Z}_{+}^{n}$ and $\xi \in H$. Then π is a faithful representation of A.

III. Operator algebras over $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$

Question

Why do we call it Nica covariant?
Theorem (Davidson-Fuller-K. 2014)
The $N c$-scp $A \times{ }_{\alpha}^{n c} \mathbb{Z}_{+}^{n}$ coincides with the nsa generated by doubly commuting isometries V_{i} and A such that $a \cdot V_{i}=V_{i} \cdot \alpha_{i}(a)$.

Remark

Doubly commuting isometries form a representation of \mathbb{Z}_{+}^{n} in the sense of Nica.

Corollary

If $\mathrm{C}_{\text {env }}^{*}\left(A \times{ }_{\alpha}^{n c} \mathbb{Z}_{+}^{n}\right)$ is generated by A and V then

$$
\mathrm{C}_{\mathrm{env}}^{*}\left(A \times_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}\right) \simeq \overline{\operatorname{span}}\left\{V_{s} a V_{t}^{*}: a \in \mathscr{A} \text { and } s, t \in \mathbb{Z}_{+}^{n}\right\} .
$$

III. Reductions

The plan

Dilate a system $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ to a group action $\beta: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}(B)$.

Injective case: $\operatorname{ker} \alpha_{i}=(0)$ for all $i=1, \ldots, n$.
We can then construct the direct limit $\beta_{\mathrm{i}} \in \operatorname{Aut}(B)$ s.t.
where $A_{s}=A$ for all $s \in \mathbb{Z}_{+}^{2}$.
Then $\mathrm{C}_{\text {env }}^{*}\left(A \times_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}\right) \simeq B \rtimes_{\beta} \mathbb{Z}^{n}$ (Corollary Davidson-Fuller-K. 2014).

III. Reductions

The (revised) plan

Dilate a system $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ where $\operatorname{ker} \alpha_{\mathbf{i}} \neq(0)$ to a system $\beta: \mathbb{Z}_{+}^{n} \rightarrow$ $\operatorname{End}(B)$ such that $\operatorname{ker} \beta_{\mathbf{i}}=(0)$.

The $n=1$ case (K. 2011)
For $I=\operatorname{ker} \alpha^{\perp}$ let $B=A \oplus c_{0}(A / I)$ and $\beta\left(a,\left(x_{n}\right)\right)=\left(\alpha(a), a+I,\left(x_{n}\right)\right)$.

The $n=2$ case
Let $\alpha_{1}, \alpha_{2} \in \operatorname{End}(A)$ such that $\alpha_{1} \alpha_{2}=\alpha_{2} \alpha_{1}$. We want two injective commuting β_{1}, β_{2} on some $B \supseteq A$ that dilate α_{1}, α_{2}.

III. Non-injective case

A first attempt

Let $I_{(1,1)}:=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}, I_{1}:=\cap_{n} \alpha_{2}^{-n}\left(I_{(1,1)}\right), I_{2}:=\cap_{n} \alpha_{1}^{-n}\left(I_{(1,1)}\right)$.
Let β_{1} be the solid arrows and β_{2} the broken arrows:

with $\dot{\alpha}_{1} q_{2}=q_{1} \alpha_{2}$ and $\dot{q}_{1} q_{1}=q_{(1,1)}$ (plus the symmetrical ones).
Then β is injective and generalises the $n=1$ case.
However this construction is bound to fail!

III. Non-injective case

How did we end up with $I_{(1,1)}=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}$?

1. Let a faithful $\rho: A \rightarrow \mathscr{B}(H)$ and doubly commuting isometries V_{i} such that

$$
\rho(a) V_{\mathrm{i}}=V_{\mathrm{i}} \rho \alpha_{\mathrm{i}}(a) .
$$

2. Because of a gauge action, we will have to deal with equations

$$
\rho\left(a_{0}\right)+\sum_{s>0} V_{s} \rho\left(a_{s}\right) V_{s}^{*}=0
$$

3. This transforms into

$$
\rho\left(a_{0}\right)\left(I-V_{1} V_{1}^{*}\right)\left(I-V_{2} V_{2}^{*}\right)=0
$$

4. From this we get that $a_{0} \perp \operatorname{ker} \alpha_{1}, \operatorname{ker} \alpha_{2}$.

III. Non-injective case

Why isn't $I_{(1,1)}=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}$ enough?

However we will also have equations of the form

$$
\rho\left(a_{0}\right)+\sum_{n>0} V_{(n, 0)} \rho\left(a_{n}\right) V_{(n, 0)}^{*}=0
$$

which transform into

$$
\rho\left(a_{0}\right)\left(I-V_{1} V_{1}^{*}\right)=0 .
$$

From this we get that $a_{0} \perp \operatorname{ker} \alpha_{1}$.
From this we also get that $\alpha_{(0, n)}\left(a_{0}\right) \perp \operatorname{ker} \alpha_{1}$ for all $n>0$.
This happens because $\rho \alpha_{2}(a)=V_{2}^{*} \rho(a) V_{2}$.
So we need the ideal $I_{1}=\cap_{n} \alpha_{2}^{-n}\left(\operatorname{ker} \alpha_{1}^{\perp}\right)$ instead of $\cap_{n} \alpha_{2}^{-n}(I)$.
And of course its symmetrical I_{2}.

III. Non-injective case

Correct tail

$I_{(1,1)}=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp} \quad I_{1}=\cap_{n} \alpha_{2}^{-n}\left(\operatorname{ker} \alpha_{1}^{\perp}\right) \quad I_{2}=\cap_{n} \alpha_{1}^{-n}\left(\operatorname{ker} \alpha_{2}^{\perp}\right)$.
Then define β_{1} and β_{2} by

with $\dot{\alpha}_{1} q_{2}=q_{1} \alpha_{2}$ and $\dot{q}_{2} q_{1}=q_{(1,1)}$ (plus the symmetrical ones).
Then β_{1} and β_{2} generalise the $n=1$ case.
It is not immediate but they are commuting and injective.

III. General construction

For $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{+}^{n}$, define

$$
\operatorname{supp}(\underline{x})=\left\{\mathbf{i}: x_{i} \neq 0\right\} \text { and } \underline{x}^{\perp}=\left\{\underline{y} \in \mathbb{Z}_{+}^{n}: \operatorname{supp}(\underline{y}) \cap \operatorname{supp}(\underline{x})=\emptyset\right\}
$$

and let the ideals

$$
\left.I_{\underline{x}}=\bigcap_{\underline{y} \in \underline{x}^{\perp}} \alpha_{\underline{y}}^{-1}\left(\left(\bigcap_{\mathrm{i} \in \operatorname{supp}(\underline{x}}\right)^{\operatorname{ker}} \alpha_{\mathbf{i}}\right)^{\perp}\right) .
$$

Let $B_{\underline{x}}=A / I_{\underline{x}}$ and on the C^{*}-algebra

$$
B=\sum_{\underline{x} \in \mathbb{Z}_{+}^{\oplus}} B_{\underline{x}}
$$

define the $*$-endomorphisms

$$
\beta_{\mathbf{i}}\left(q_{\underline{x}}(a) \otimes e_{\underline{x}}\right)= \begin{cases}q_{\underline{x}} \alpha_{\mathbf{i}}(a) \otimes e_{\underline{x}}+q_{\underline{x}+\mathbf{i}}(a) \otimes e_{\underline{x}+\mathbf{i}} & \text { for } \mathbf{i} \in \underline{x}^{\perp}, \\ q_{\underline{x}}(a) \otimes e_{\underline{x}+\mathbf{i}} & \text { for } \mathbf{i} \in \operatorname{supp}(\underline{x}) .\end{cases}
$$

Then the β_{i} commute and are injective (this is not trivial).

III. C*-envelope

Theorem (Davidson-Fuller-K. 2014)

Let $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ be a semigroup action. Apply the constructions:

1. dilate (A, α) to the injective (B, β) by adding a tail;
2. use the direct limit to extend it to $\beta_{\infty}: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}\left(B_{\infty}\right)$.

Then the C^{*}-envelope of $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$ is Morita equivalent to $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}^{n}$.

Remarks

1. The C^{*}-envelope is defined by a co-universal property for which

$$
\mathrm{C}_{\mathrm{env}}^{*}\left(A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}\right) \simeq \overline{\operatorname{span}}\left\{V_{s} a V_{t}^{*}: a \in \mathscr{A} \text { and } s, t \in \mathbb{Z}_{+}^{n}\right\} .
$$

2. This was one of the challenging points in the proof.

What about the structure of the C^{*}-envelope?
Can we identify the C^{*}-envelope by C^{*}-algebraic relations?

III. Towards a Cuntz algebra

Recall

For $n=2$ we arrived to the equalities

$$
\begin{aligned}
& \text { 1. } a\left(I-V_{1} V_{1}^{*}\right)=0 ; \\
& \text { 2. } a\left(I-V_{2} V_{2}^{*}\right)=0 ; \\
& \text { 3. } a\left(I-V_{1} V_{1}^{*}\right)\left(I-V_{2} V_{2}^{*}\right)=0 \text {; }
\end{aligned}
$$

subject to a. Then we used the solutions/ideals to produce the tail. This appears to be more than an innocent coincidence.

The Cuntz-Nica-Pimsner algebra for $n=2$ case

It is the universal C^{*}-algebra such that: (a) V_{i} are doubly commuting isometries; (b) a $V_{i}=V_{i} \alpha_{i}(a)$; and (c) we have
c. $1 a\left(I-V_{1} V_{1}^{*}\right)=0$ for all $a \in \cap_{n} \alpha_{2}^{-n}\left(\operatorname{ker} \alpha_{1}^{\perp}\right)$;
c. $2 a\left(I-V_{2} V_{2}^{*}\right)=0$ for all $a \in \cap_{n} \alpha_{1}^{-n}\left(\operatorname{ker} \alpha_{2}^{\perp}\right)$;
c. $3 a\left(I-V_{1} V_{1}^{*}\right)\left(I-V_{2} V_{2}^{*}\right)=0$ for all $a \in\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}$.

III. The Cuntz-Nica-Pimsner algebra

Definition (Davidson-Fuller-K. 2014)

The Cuntz-Nica-Pimsner algebra $\mathscr{N} \mathscr{O}(A, \alpha)$ of $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ is the universal C^{*}-algebra generated by A and V_{i} so that:

1. V_{i} are commuting isometries;
2. $a V_{i}=V_{i} \alpha_{i}(a)$; and
3. $a \cdot \prod_{i \in \operatorname{supp}(\underline{x})}\left(I-V_{\mathbf{i}} V_{\mathbf{i}}^{*}\right)=0$ for $a \in \bigcap_{\underline{y} \in \underline{x}^{\perp}} \alpha_{\underline{y}}^{-1}\left(\left(\bigcap_{\mathbf{i} \in \operatorname{supp}(\underline{x})} \operatorname{ker} \alpha_{\mathbf{i}}\right)^{\perp}\right)$.

Corollary (Davidson-Fuller-K. 2014)

1. The C^{*}-envelope of $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$ is $\mathscr{N} \mathscr{O}(A, \alpha)$.
2. For $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ there exists a dilation $\beta_{\infty}: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}\left(B_{\infty}\right)$ such

3. $\mathscr{N} \mathscr{O}(A, \alpha)$ satisfies the GIUT with respect to the CNP representations.

III. Simplicity

Theorem (Davidson-Fuller-K. 2014)

$$
\begin{aligned}
& \alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A) \longrightarrow \mathscr{N} \mathscr{O}(A, \alpha) \simeq \mathrm{C}_{\text {env }}^{*}\left(A \times{ }_{\alpha}^{\text {nc }} \mathbb{Z}_{+}^{n}\right) \\
& \text { dilation I } \\
& \beta_{\infty}: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}\left(B_{\infty}\right) \longrightarrow B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}^{n}
\end{aligned}
$$

Corollary (Davidson-Fuller-K. 2014)

Let $A=C(X)$ and let $\phi_{s}: X \rightarrow X$ related to $\alpha_{s}: X \rightarrow X$. TFAE:

1. (A, α) is minimal and $\left\{x \in X \mid \phi_{s}(x) \neq \phi_{r}(x)\right\}^{\circ}=\emptyset$ for all $s, r \in \mathbb{Z}_{+}^{n}$ (top. free);
2. $\left(B_{\infty}, \beta_{\infty}\right)$ is minimal and topologically free;
3. $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}$ is simple;
4. $\mathscr{N} \mathscr{O}_{(A, \alpha)}$ is simple.

III. Exactness/Nuclearity

Theorem (K. 2014)
$\mathscr{N} \mathscr{O}(A, \alpha)$ is exact if and only if A is exact.
Theorem (K. 2014)
Let $\beta_{\infty}: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}\left(B_{\infty}\right)$ be the automorphic dilation of $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$. TFAE:

1. the embeddings $A, A / I_{s} \hookrightarrow B_{\infty}$ are nuclear for all $s \in \mathbb{Z}_{+}^{n}$;
2. B_{∞} is nuclear;
3. $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}^{n}$ is nuclear;
4. $\mathscr{N} \mathscr{O}(A, \alpha)$ is nuclear.

Proposition (K. 2014)

If A is nuclear or if $A \hookrightarrow C^{*}\left(V_{n 1} a V_{n 1}^{*} \mid a \in A, n \in \mathbb{Z}_{+}\right)$is nuclear then $\mathscr{N} \mathscr{O}(A, \alpha)$ is nuclear. The converse is not true.

IV. Remarks

Remarks on $\mathscr{N} \mathscr{T}(A, \alpha)(\mathrm{K} .2014)$

1. There is a second variant, the Toeplitz-Nica-Pimsner algebra.
2. For this we get A is nuclear (resp. exact) if and only if $\mathscr{N} \mathscr{T}(A, \alpha)$ is nuclear (resp. exact).

KMS states (K. 2014)

3. The gauge action implements an action of \mathbb{R} on the Nica-Pimsner algebras. We are able to identify all KMS states at finite temperature: for any $T<\infty$ there is exactly one $\mathrm{KMS}_{1 / T}$ state.
4. For $T=\infty$ the KMS states are the tracial states and there is no bijection (there might be more than one).

IV. Remarks

Remarks on simplicity

5. Kalantar-Kennedy show that simplicity of the reduced C^{*}-crossed product is equivalent to topological freeness of the group action on a boundary.
6. We are working towards formulating this property for semigroups and showing its stability under the automorphic dilation.

Remarks on product systems

7. Both $\mathscr{N} \mathscr{T}(A, \alpha)$ and $\mathscr{N} \mathscr{O}(A, \alpha)$ are examples of C^{*}-algebras associated to product systems.
8. A gauge invariance uniqueness theorem for general

Toeplitz-Nica-Pimsner algebras is easy to obtain by our methods.
9. We believe that the same is true for the Cuntz-Nica-Pimsner algebras (with Adam Dor-On).

