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I. Framework

In this talk we focus on encoding:

{
C*-dynamical systems

}
!

{
Operator algebras

}

• Origins: Murray, von Neumann (1936, 1940) – Type I, II, and III
factors.

• C*-crossed products: are constructed based on a given group action
α : G → Aut(A) on a C*-algebra A by *-automorphisms.

• We turn our focus to semigroup actions α : P → End(A) on a
C*-algebra A by *-endomorphisms.

• Case example: P = Z+.



I. Framework

Definition

A C*-dynamical system α : Z+ → End(A) consists of a *-endomorphism
α : A→ A of a C*-algebra A.

• Use operators to encode the evolution of the system (in discrete time):

a α(a) α2(a) · · ·
|

t=0
|

t=1
|

t=2

• The key is to introduce an “external” operator V that satisfies the
covariance relation

a ·V = V ·α(a) for all a ∈ A.

• Sometimes we would like to impose that V is an isometry (so that
positive points in time are reversed).



I. Framework

Example of a unitary pair

For A⊆B(H) and α ∈ Aut(A) we have a pair (π,U) on `2(H):

U: bilateral shift π(a) = diag{αn(a) : n ∈ Z} s.t. π(a)U = Uπα(a).

Notice that U also “undoes” α: π(a) = Uπα(a)U∗.

Gauge Invariant Uniqueness Theorem

Every unitary pair (π ′,U ′) that admits a gauge action with π ′ injective lifts
to a faithful representation of C∗(π(A),U).

• In other words C∗(π(A),U)' AoZ.

Question

What is the analogue for α ∈ End(A)?



II. Operator algebras over α : Z+→ End(A)

Cuntz-Pimsner O(A,α) (Katsura)

Universal C*-algebra generated by A and V such that a ·V = V ·α(a), V
is an isometry (V ∗V = I ), and

a · (I −VV ∗) = 0, for a ∈ ker α⊥ := {a ∈ A | a ·ker α = (0)}.

Remarks

1. If α ∈ Aut(A) then ker α⊥ = A.Thus V is unitary and O(A,α) ' Aoα Z.

2. When α is injective then O(A,α)' A∞ oα∞
Z for

A
α //

α

��

A //

α

��

A∞

α∞

��

(Minimal automorphic extension)

A
α // A // A∞



II. Operator algebras over α : Z+→ End(A)

Cuntz-Pimsner O(A,α) (Katsura)

Universal C*-algebra generated by A and V such that a ·V = V ·α(a), V
is an isometry (V ∗V = I ), and

a · (I −VV ∗) = 0, for a ∈ ker α⊥ := {a ∈ A | a ·ker α = (0)}.

Remarks (Katsura)

3. ker α⊥ is the largest ideal where the restriction of α is injective.

4. Notice that a = Vα(a)V ∗ for all a ∈ ker α⊥.

5. A ↪→ O(A,α) (Katsura 2004). In fact O(A,α) is the smallest for
which aV = Vα(a), V is an isometry and A ↪→ O(A,α).

6. O(A,α) satisfies the GIUT.



II. Operator algebras over α : Z+→ End(A)

Cuntz-Pimsner O(A,α) (Katsura)

Universal C*-algebra generated by A and V such that a ·V = V ·α(a), V
is an isometry (V ∗V = I ), and

a · (I −VV ∗) = 0, for a ∈ ker α⊥ := {a ∈ A | a ·ker α = (0)}.

Remarks (Katsura)

7. A is exact if and only if O(A,α) is exact.

8. If A is nuclear then O(A,α) is nuclear (but not the converse).

9. If O(A,α) is nuclear then A/ker α⊥ is nuclear and ker α⊥ ↪→O(A,α)β

is nuclear.



II. Operator algebras over α : Z+→ End(A)

Cuntz-Pimsner O(A,α) (Katsura)

Universal C*-algebra generated by A and V such that a ·V = V ·α(a), V
is an isometry (V ∗V = I ), and

a · (I −VV ∗) = 0, for a ∈ ker α⊥ := {a ∈ A | a ·ker α = (0)}.

Remarks (Katsoulis-Kribs)

10. O(A,α) is the C*-envelope in the sense of Arveson for a natural
nonselfadjoint operator algebra. Let’s pause for a second and put this
result into some context.



Intermission: on the C*-envelope

Operator algebras are subalgebras of B(H)

1. Selfadjoint norm-closed subalgebras, i.e. C*-algebras.

2. Non-involutive, i.e. nonselfadjoint operator algebras (nsa).

By definition every nsa A ⊆B(H) generates a C*-algebra C∗(A )

It may happen that ι1 : A →B(H1) and ι2 : A →B(H2) but

C∗(ι1(A )) 6' C∗(ι2(A )).

Example

The disc algebra A(D) generates the Toeplitz algebra, C (D), and C (T).
However C (T) is the minimal C*-algebra generated by A(D), and we call
C (T) the C*-envelope of A(D).



Intermission: on the C*-envelope

Question, Arveson (1969)

Does every nsa have a C*-envelope?

Answer: Yes

∃ ι : A →B(H) s.t. for any other ι ′ : A →B(K ), ∃ a ∗-epimorphism
Φ: C∗(ι ′(A ))→ C∗(ι(A )) with Φι ′(a) = ι(a), ∀a ∈A .

The C∗(ι(A )) is the C*-envelope of A . We write C∗env(A ) = C∗(ι(A )).

Proofs by:

1. Hamana (1979): C∗env(A ) is generated in the injective envelope.

2. Dritschel-McCullough (2001): C∗env(A ) is generated by a maximal
dilation.

Arveson’s Program on the C*-envelope

Determine1 and examine2 the C*-envelope of a given nsa.



Intermission: on the C*-envelope

Dilations

Let T ∈B(H). A power dilation U ∈B(K ) of T is of the form

U =

∗ 0 0
∗ T 0
∗ ∗ ∗

 .
A dilation is maximal if it has only trivial dilations.

Example

If T is a contraction (‖T‖ ≤ 1), then the maximal dilation is achieved by
a unitary U (U∗U = UU∗ = I ).

Dilations

The idea is that by dilating we obtain “better-behaved” objects.



II. Operator algebras over α : Z+→ End(A)

Going back to α ∈ End(A).

Semicrossed product A×α Z+

Universal nonselafdjoint operator algebra generated by A and V such that
a ·V = V ·α(a) and V is a contraction.

Remark

Inititated by Arveson (1967), formally defined by Peters (1984).

Theorem (Muhly-Solel 2006)

The scp A×α Z+ coincides with the nsa generated by A and V such that
a ·V = V ·α(a) and V is an isometry.

Theorem (Katsoulis-Kribs 2005)

The C*-envelope of A×α Z+ is O(A,α).



II. Operator algebras over α : Z+→ End(A)

Cuntz-Pimsner O(A,α) (Katsura)

Universal C*-algebra generated by A and V such that a ·V = V ·α(a), V
is an isometry (V ∗V = I ), and

a · (I −VV ∗) = 0, for a ∈ ker α⊥ := {a ∈ A | a ·ker α = (0)}.

Question

Why such complexity?

Remark

1. Let a faithful ρ : A→B(H) and an isometry V s.t. ρ(a)V = Vρα(a).

2. If ρ(a0) + ∑n>0Vnρ(as)V ∗n = 0 then a0 ∈ ker α⊥ (Katsura 2004).

3. This happens because such equations transform in ρ(a0)(I −VV ∗) = 0.



II. Operator algebras over α : Z+→ End(A)

Question

Can we connect O(A,α) to a C*-crossed product in any case?

Two-step dilation (K. 2011)

1. Add a tail: From (A,α) construct an injective (B,β ) given by

A

α

�� q ..
A/ker α⊥

id --
A/ker α⊥

id
++ · · ·

2. Extend by a direct limit: For (B,β ) form the minimal automorphic
extension (B∞,β∞).



II. Operator algebras over α : Z+→ End(A)

Theorem (K. 2011)

α : Z+→ End(A)

dilation
��

// O(A,α)

strong Morita equivalent

β∞ : Z→ Aut(B∞) // O(B∞,β∞) ' B∞ oβ∞
Z

Corollary (K. 2011)

Let A = C (X ). TFAE:

1. (A,α) is minimal and αn 6= αm for all n,m ∈ Z+;

2. (B∞,β∞) is minimal and β n
∞ 6= id for all n ∈ Z (topol. free);

3. B∞ oβ∞
Z is simple;

4. O(A,α) is simple (has no non-trivial two-sided closed ideals).



III. Program on semigroup actions

Question 1

α : P → End(A)

dilation
��

// C*-envelope of a scp

strong Morita equivalent ?

β : G → Aut(B) // C*-crossed product

Question 2

Is the C*-envelope a Cuntz-type C*-algebra? Can we describe it by
∗-algebraic relations?

Applications 3

Relate the intrinsic properties of α : P → End(A) to C*-properties of the
obtained object.



III. Program on semigroup actions

Davidson-Fuller-K. (2014)

α : P → End(A)

dilation
��

// C*-envelope of a sem. prod.

strong Morita equivalent

β : G → Aut(B) // C*-crossed product

1. We confirm this when P is Zn
+, F+

n , a spanning cone, an Ore sgrp.

2. For P = Zn
+ we identify the Cuntz-Nica-Pimsner algebra.

3. We study the Cuntz-Nica-Pimsner algebras in terms of ideal structure.

K. (2014)

4. We study the Nica-Pimsner algebras in terms of nuclearity, exactness,
KMS states.



III. Operator algebras over α : Zn
+→ End(A)

Notation

We write i = (0, . . . ,0,1,0, . . . ,0) for all i = 1, . . . ,n.

Thus α : Zn
+→ End(A) is defined by n commuting αi ∈ End(A).

Requirements

1. n contractions Vi such that a ·Vi = Vi ·αi(a).

2. The Vi commute.

Is this enough?

The aim is to reach a crossed product. For A = C we would like to dilate
the Vi to unitaries. Parrott’s counterexample shows that this cannot be
done for any n.

3. We focus on doubly commuting Vi, i.e. ViV
∗
j = V ∗j Vi for i 6= j .



III. Operator algebras over α : Zn
+→ End(A)

The Nica-covariant semicrossed product A×nc
α Zn

+ (no involution)

Universal nonselafdjoint generated by

Vsa, with a ∈ A, s ∈ Zn
+,

for n doubly commuting contractions Vi with a ·Vi = Vi ·αi(a).

Remark

A embeds in A×nc
α Zn

+.

Example

For A⊆ H let K = H⊗ `2(Zn
+) and define

Si(ξ ⊗ es) = ξ ⊗ ei+s and π(a)(ξ ⊗ es) = αs(a)ξ ⊗ es

for all s ∈ Zn
+ and ξ ∈ H. Then π is a faithful representation of A.



III. Operator algebras over α : Zn
+→ End(A)

Question

Why do we call it Nica covariant?

Theorem (Davidson-Fuller-K. 2014)

The Nc-scp A×nc
α Zn

+ coincides with the nsa generated by doubly com-
muting isometries Vi and A such that a ·Vi = Vi ·αi(a).

Remark

Doubly commuting isometries form a representation of Zn
+ in the sense of

Nica.

Corollary

If C∗env(A×nc
α Zn

+) is generated by A and V then

C∗env(A×nc
α Zn

+) ' span{VsaV
∗
t : a ∈A and s, t ∈ Zn

+}.



III. Reductions

The plan

Dilate a system α : Zn
+→ End(A) to a group action β : Zn→ Aut(B).

Injective case: ker αi = (0) for all i = 1, . . . ,n.

We can then construct the direct limit βi ∈ Aut(B) s.t.

As
αt //

αi

��

As+t

αi

��

// B

βi

��
As

αt // As+t
// B

where As = A for all s ∈ Z2
+.

Then C∗env(A×nc
α Zn

+)' Boβ Zn (Corollary Davidson-Fuller-K. 2014).



III. Reductions

The (revised) plan

Dilate a system α : Zn
+→ End(A) where ker αi 6= (0) to a system β : Zn

+→
End(B) such that ker βi = (0).

The n = 1 case (K. 2011)

For I = ker α⊥ let B = A⊕ c0(A/I ) and β (a,(xn)) = (α(a),a+ I ,(xn)).

A

α

�� qI ++
A/I

id ++
A/I

id ** · · ·

The n = 2 case

Let α1,α2 ∈ End(A) such that α1α2 = α2α1. We want two injective
commuting β1,β2 on some B ⊇ A that dilate α1,α2.



III. Non-injective case

A first attempt

Let I(1,1) := (ker α1 ·ker α2)⊥, I1 := ∩nα
−n
2 (I(1,1)) , I2 := ∩nα

−n
1 (I(1,1)).

Let β1 be the solid arrows and β2 the broken arrows:

A/I2

α̇1 && id

OO

q̇1 // A/I(1,1)
id //

id

OO

· · ·

A
α1 ##

α2

NN

q2

OO

q1 // A/I1

α̇2

MM
id //

q̇2

OO

· · ·

with α̇1q2 = q1α2 and q̇1q1 = q(1,1) (plus the symmetrical ones).

Then β is injective and generalises the n = 1 case.

However this construction is bound to fail!



III. Non-injective case

How did we end up with I(1,1) = (ker α1 ·ker α2)⊥?

1. Let a faithful ρ : A→B(H) and doubly commuting isometries Vi such
that

ρ(a)Vi = Viραi(a).

2. Because of a gauge action, we will have to deal with equations

ρ(a0) + ∑s>0Vsρ(as)V ∗s = 0.

3. This transforms into

ρ(a0)(I −V1V
∗
1 )(I −V2V

∗
2 ) = 0.

4. From this we get that a0 ⊥ ker α1,ker α2.



III. Non-injective case

Why isn’t I(1,1) = (ker α1 ·ker α2)⊥ enough?

However we will also have equations of the form

ρ(a0) + ∑n>0V(n,0)ρ(an)V ∗(n,0) = 0

which transform into

ρ(a0)(I −V1V
∗
1 ) = 0.

From this we get that a0 ⊥ ker α1.

From this we also get that α(0,n)(a0)⊥ ker α1 for all n > 0.

This happens because ρα2(a) = V ∗2 ρ(a)V2.

So we need the ideal I1 = ∩nα
−n
2 (ker α⊥1 ) instead of ∩nα

−n
2 (I ).

And of course its symmetrical I2.



III. Non-injective case

Correct tail

I(1,1) = (ker α1 ·ker α2)⊥ I1 = ∩nα
−n
2 (ker α⊥1 ) I2 = ∩nα

−n
1 (ker α⊥2 ).

Then define β1 and β2 by

A/I2

α̇1 && id

OO

q̇1 // A/I(1,1)
id //

id

OO

· · ·

A
α1 ##

α2

NN

q2

OO

q1 // A/I1

α̇2

MM
id //

q̇2

OO

· · ·

with α̇1q2 = q1α2 and q̇2q1 = q(1,1) (plus the symmetrical ones).

Then β1 and β2 generalise the n = 1 case.

It is not immediate but they are commuting and injective.



III. General construction

For x = (x1, . . . ,xn) ∈ Zn
+, define

supp(x) = {i : xi 6= 0} and x⊥ = {y ∈ Zn
+ : supp(y)∩ supp(x) = /0}

and let the ideals

Ix =
⋂

y∈x⊥ α−1y

((⋂
i∈supp(x) ker αi

)⊥)
.

Let Bx = A/Ix and on the C*-algebra

B = ∑x∈Zn
+

⊕Bx

define the ∗-endomorphisms

βi(qx(a)⊗ ex) =

{
qxαi(a)⊗ ex +qx+i(a)⊗ ex+i for i ∈ x⊥,

qx(a)⊗ ex+i for i ∈ supp(x).

Then the βi commute and are injective (this is not trivial).



III. C*-envelope

Theorem (Davidson-Fuller-K. 2014)

Let α : Zn
+→ End(A) be a semigroup action. Apply the constructions:

1. dilate (A,α) to the injective (B,β ) by adding a tail;

2. use the direct limit to extend it to β∞ : Zn→ Aut(B∞).

Then the C*-envelope of A×nc
α Zn

+ is Morita equivalent to B∞ oβ∞
Zn.

Remarks

1. The C*-envelope is defined by a co-universal property for which

C∗env(A×nc
α Zn

+) ' span{VsaV
∗
t : a ∈A and s, t ∈ Zn

+}.

2. This was one of the challenging points in the proof.

What about the structure of the C*-envelope?

Can we identify the C*-envelope by C*-algebraic relations?



III. Towards a Cuntz algebra

Recall

For n = 2 we arrived to the equalities

1. a(I −V1V
∗
1 ) = 0;

2. a(I −V2V
∗
2 ) = 0;

3. a(I −V1V
∗
1 )(I −V2V

∗
2 ) = 0;

subject to a. Then we used the solutions/ideals to produce the tail. This
appears to be more than an innocent coincidence.

The Cuntz-Nica-Pimsner algebra for n = 2 case

It is the universal C*-algebra such that: (a) Vi are doubly commuting
isometries; (b) aVi = Viαi(a); and (c) we have

c.1 a(I −V1V
∗
1 ) = 0 for all a ∈ ∩nα

−n
2 (ker α⊥1 );

c.2 a(I −V2V
∗
2 ) = 0 for all a ∈ ∩nα

−n
1 (ker α⊥2 );

c.3 a(I −V1V
∗
1 )(I −V2V

∗
2 ) = 0 for all a ∈ (ker α1 ·ker α2)⊥.



III. The Cuntz-Nica-Pimsner algebra

Definition (Davidson-Fuller-K. 2014)

The Cuntz-Nica-Pimsner algebra N O(A,α) of α : Zn
+ → End(A) is the

universal C*-algebra generated by A and Vi so that:

1. Vi are commuting isometries;

2. aVi = Viαi(a); and

3. a ·∏i∈supp(x)(I −ViV
∗
i ) = 0 for a ∈

⋂
y∈x⊥ α−1y

((⋂
i∈supp(x) ker αi

)⊥)
.

Corollary (Davidson-Fuller-K. 2014)

1. The C*-envelope of A×nc
α Zn

+ is N O(A,α).

2. For α : Zn
+ → End(A) there exists a dilation β∞ : Zn → Aut(B∞) such

that N O(A,α)
sMe∼ B∞ oβ∞

Zn.

3. N O(A,α) satisfies the GIUT with respect to the CNP representations.



III. Simplicity

Theorem (Davidson-Fuller-K. 2014)

α : Zn
+→ End(A)

dilation
��

// N O(A,α)' C∗env(A×nc
α Zn

+)

strong Morita equivalent

β∞ : Zn→ Aut(B∞) // B∞ oβ∞
Zn

Corollary (Davidson-Fuller-K. 2014)

Let A = C (X ) and let φs : X → X related to αs : X → X. TFAE:

1. (A,α) is minimal and {x ∈ X | φs(x) 6= φr (x)}o = /0 for all s, r ∈ Zn
+

(top. free);

2. (B∞,β∞) is minimal and topologically free;

3. B∞ oβ∞
Z is simple;

4. N O(A,α) is simple.



III. Exactness/Nuclearity

Theorem (K. 2014)

N O(A,α) is exact if and only if A is exact.

Theorem (K. 2014)

Let β∞ : Zn→ Aut(B∞) be the automorphic dilation of α : Zn
+→ End(A).

TFAE:

1. the embeddings A,A/Is ↪→ B∞ are nuclear for all s ∈ Zn
+;

2. B∞ is nuclear;

3. B∞ oβ∞
Zn is nuclear;

4. N O(A,α) is nuclear.

Proposition (K. 2014)

If A is nuclear or if A ↪→ C∗(Vn1aV
∗
n1 | a ∈ A,n ∈ Z+) is nuclear then

N O(A,α) is nuclear. The converse is not true.



IV. Remarks

Remarks on N T (A,α) (K. 2014)

1. There is a second variant, the Toeplitz-Nica-Pimsner algebra.

2. For this we get A is nuclear (resp. exact) if and only if N T (A,α) is
nuclear (resp. exact).

KMS states (K. 2014)

3. The gauge action implements an action of R on the Nica-Pimsner
algebras. We are able to identify all KMS states at finite temperature:
for any T < ∞ there is exactly one KMS1/T state.

4. For T = ∞ the KMS states are the tracial states and there is no
bijection (there might be more than one).



IV. Remarks

Remarks on simplicity

5. Kalantar-Kennedy show that simplicity of the reduced C*-crossed
product is equivalent to topological freeness of the group action on a
boundary.

6. We are working towards formulating this property for semigroups and
showing its stability under the automorphic dilation.

Remarks on product systems

7. Both N T (A,α) and N O(A,α) are examples of C*-algebras
associated to product systems.

8. A gauge invariance uniqueness theorem for general
Toeplitz-Nica-Pimsner algebras is easy to obtain by our methods.

9. We believe that the same is true for the Cuntz-Nica-Pimsner algebras
(with Adam Dor-On).

The end.


