Semigroup actions on operator algebras

Evgenios Kakariadis

Newcastle University

Multivariable Operator Theory at the Technion, June 2017

ī.

Kakariadis ETA, On Nica-Pimsner algebras of C*-dynamical systems over \mathbb{Z}_+^n , to apear in International Mathematics Research Notices.

I. Framework

In this talk we focus on encoding:

 $\{ C^*-dynamical systems \} \leftrightarrow \{ Operator algebras \}$

• Origins: Murray, von Neumann (1936, 1940) – Type I, II, and III factors.

• *C*-crossed products*: are constructed based on a given group action $\alpha: G \to Aut(A)$ on a C*-algebra *A* by *-automorphisms.

• We turn our focus to semigroup actions $\alpha \colon P \to \operatorname{End}(A)$ on a C*-algebra A by *-endomorphisms.

• Case example: $P = \mathbb{Z}_+$.

I. Framework

Definition

A *C*-dynamical system* $\alpha : \mathbb{Z}_+ \to \text{End}(A)$ consists of a *-endomorphism $\alpha : A \to A$ of a C*-algebra *A*.

• Use operators to encode the evolution of the system (in discrete time):

 \bullet The key is to introduce an "external" operator V that satisfies the covariance relation

$$a \cdot V = V \cdot \alpha(a)$$
 for all $a \in A$.

• Sometimes we would like to impose that V is an isometry (so that positive points in time are reversed).

I. Framework

Example of a unitary pair

For $A \subseteq \mathscr{B}(H)$ and $\alpha \in \operatorname{Aut}(A)$ we have a pair (π, U) on $\ell^2(H)$:

 $U: \text{ bilateral shift } \pi(a) = \operatorname{diag}\{\alpha^n(a): n \in \mathbb{Z}\} \quad \text{s.t.} \quad \pi(a)U = U\pi\alpha(a).$

Notice that U also "undoes" α : $\pi(a) = U\pi\alpha(a)U^*$.

Gauge Invariant Uniqueness Theorem

Every unitary pair (π', U') that admits a gauge action with π' injective lifts to a faithful representation of $C^*(\pi(A), U)$.

• In other words
$$\mathrm{C}^*(\pi(A),U)\simeq A\rtimes\mathbb{Z}.$$

Question

What is the analogue for $\alpha \in \text{End}(A)$?

Cuntz-Pimsner $\mathcal{O}_{(A,\alpha)}$ (Katsura)

Universal C*-algebra generated by A and V such that $a \cdot V = V \cdot \alpha(a)$, V is an isometry $(V^*V = I)$, and

$$a \cdot (I - VV^*) = 0$$
, for $a \in \ker \alpha^{\perp} := \{ a \in A \mid a \cdot \ker \alpha = (0) \}.$

Remarks

- 1. If $\alpha \in \operatorname{Aut}(A)$ then ker $\alpha^{\perp} = A$. Thus V is unitary and $\mathscr{O}_{(A,\alpha)} \simeq A \rtimes_{\alpha} \mathbb{Z}$.
- 2. When α is injective then $\mathscr{O}(A, \alpha) \simeq A_{\infty} \rtimes_{\alpha_{\infty}} \mathbb{Z}$ for

Cuntz-Pimsner $\mathcal{O}_{(A,\alpha)}$ (Katsura)

Universal C*-algebra generated by A and V such that $a \cdot V = V \cdot \alpha(a)$, V is an isometry $(V^*V = I)$, and

 $a \cdot (I - VV^*) = 0$, for $a \in \ker \alpha^{\perp} := \{a \in A \mid a \cdot \ker \alpha = (0)\}.$

Remarks (Katsura)

- 3. ker α^{\perp} is the largest ideal where the restriction of α is injective.
- 4. Notice that $a = V\alpha(a)V^*$ for all $a \in \ker \alpha^{\perp}$.

5. $A \hookrightarrow \mathscr{O}(A, \alpha)$ (Katsura 2004). In fact $\mathscr{O}(A, \alpha)$ is the smallest for which $aV = V\alpha(a)$, V is an isometry and $A \hookrightarrow \mathscr{O}(A, \alpha)$.

6. $\mathcal{O}(A, \alpha)$ satisfies the GIUT.

Cuntz-Pimsner $\mathcal{O}_{(A,\alpha)}$ (Katsura)

Universal C*-algebra generated by A and V such that $a \cdot V = V \cdot \alpha(a)$, V is an isometry $(V^*V = I)$, and

 $a \cdot (I - VV^*) = 0$, for $a \in \ker \alpha^{\perp} := \{a \in A \mid a \cdot \ker \alpha = (0)\}.$

Remarks (Katsura)

- 7. A is exact if and only if $\mathcal{O}(A, \alpha)$ is exact.
- 8. If A is nuclear then $\mathcal{O}(A, \alpha)$ is nuclear (but not the converse).

9. If $\mathscr{O}(A, \alpha)$ is nuclear then $A / \ker \alpha^{\perp}$ is nuclear and $\ker \alpha^{\perp} \hookrightarrow \mathscr{O}(A, \alpha)^{\beta}$ is nuclear.

Cuntz-Pimsner $\mathcal{O}_{(A,\alpha)}$ (Katsura)

Universal C*-algebra generated by A and V such that $a \cdot V = V \cdot \alpha(a)$, V is an isometry $(V^*V = I)$, and

 $a \cdot (I - VV^*) = 0$, for $a \in \ker \alpha^{\perp} := \{a \in A \mid a \cdot \ker \alpha = (0)\}.$

Remarks (Katsoulis-Kribs)

10. $\mathcal{O}(A, \alpha)$ is the C*-envelope in the sense of Arveson for a natural nonselfadjoint operator algebra. Let's pause for a second and put this result into some context.

Intermission: on the C*-envelope

Operator algebras are subalgebras of $\mathscr{B}(H)$

- 1. Selfadjoint norm-closed subalgebras, i.e. C*-algebras.
- 2. Non-involutive, i.e. nonselfadjoint operator algebras (nsa).

By definition every nsa $\mathscr{A} \subseteq \mathscr{B}(H)$ generates a C*-algebra C*(\mathscr{A}) It may happen that $\iota_1 : \mathscr{A} \to \mathscr{B}(H_1)$ and $\iota_2 : \mathscr{A} \to \mathscr{B}(H_2)$ but $C^*(\iota_1(\mathscr{A})) \not\simeq C^*(\iota_2(\mathscr{A})).$

Example

The disc algebra $\mathbb{A}(\mathbb{D})$ generates the Toeplitz algebra, $C(\overline{\mathbb{D}})$, and $C(\mathbb{T})$. However $C(\mathbb{T})$ is the minimal C*-algebra generated by $\mathbb{A}(\mathbb{D})$, and we call $C(\mathbb{T})$ the C*-envelope of $\mathbb{A}(\mathbb{D})$.

Intermission: on the C*-envelope

Question, Arveson (1969)

Does every nsa have a C*-envelope?

Answer: Yes

 $\exists \iota : \mathscr{A} \to \mathscr{B}(H) \text{ s.t. for any other } \iota' : \mathscr{A} \to \mathscr{B}(K), \exists a *-epimorphism$ $\Phi : C^*(\iota'(\mathscr{A})) \to C^*(\iota(\mathscr{A})) \text{ with } \Phi\iota'(a) = \iota(a), \forall a \in \mathscr{A}.$

The $C^*(\iota(\mathscr{A}))$ is the C*-envelope of \mathscr{A} . We write $C^*_{env}(\mathscr{A}) = C^*(\iota(\mathscr{A}))$. Proofs by:

1. Hamana (1979): $C^*_{env}(\mathscr{A})$ is generated in *the injective envelope*.

2. Dritschel-McCullough (2001): $C^*_{env}(\mathscr{A})$ is generated by a *maximal dilation*.

Arveson's Program on the C*-envelope

Determine¹ and examine² the C*-envelope of a given nsa.

Intermission: on the C*-envelope

Dilations

Let $T \in \mathscr{B}(H)$. A power dilation $U \in \mathscr{B}(K)$ of T is of the form

$$\mathcal{V} = egin{bmatrix} * & 0 & 0 \ * & T & 0 \ * & * & * \end{bmatrix}.$$

A dilation is *maximal* if it has only trivial dilations.

Example

If T is a contraction ($||T|| \le 1$), then the maximal dilation is achieved by a unitary U ($U^*U = UU^* = I$).

Dilations

The idea is that by dilating we obtain "better-behaved" objects.

Going back to $\alpha \in \operatorname{End}(A)$.

Semicrossed product $A \times_{\alpha} \mathbb{Z}_+$

Universal **nonselafdjoint** operator algebra generated by A and V such that $a \cdot V = V \cdot \alpha(a)$ and V is a **contraction**.

Remark

Inititated by Arveson (1967), formally defined by Peters (1984).

Theorem (Muhly-Solel 2006)

The scp $A \times_{\alpha} \mathbb{Z}_+$ coincides with the nsa generated by A and V such that $a \cdot V = V \cdot \alpha(a)$ and V is an isometry.

Theorem (Katsoulis-Kribs 2005)

The C*-envelope of $A \times_{\alpha} \mathbb{Z}_+$ is $\mathscr{O}_{(A,\alpha)}$.

Cuntz-Pimsner $\mathcal{O}_{(A,\alpha)}$ (Katsura)

Universal C*-algebra generated by A and V such that $a \cdot V = V \cdot \alpha(a)$, V is an isometry $(V^*V = I)$, and

 $a \cdot (I - VV^*) = 0$, for $a \in \ker \alpha^{\perp} := \{a \in A \mid a \cdot \ker \alpha = (0)\}.$

Question

Why such complexity?

Remark

1. Let a faithful $\rho: A \to \mathscr{B}(H)$ and an isometry V s.t. $\rho(a)V = V\rho\alpha(a)$.

2. If $\rho(a_0) + \sum_{n>0} V_n \rho(a_s) V_n^* = 0$ then $a_0 \in \ker \alpha^{\perp}$ (Katsura 2004).

3. This happens because such equations transform in $\rho(a_0)(I - VV^*) = 0$.

Question

Can we connect $\mathscr{O}(A, \alpha)$ to a C*-crossed product in any case?

Two-step dilation (K. 2011)

1. Add a tail: From (A, α) construct an injective (B, β) given by

$$\overset{\alpha}{\frown} A \xrightarrow{q} A/\ker \alpha^{\perp} \xrightarrow{id} A/\ker \alpha^{\perp} \xrightarrow{id} \cdots$$

2. Extend by a direct limit: For (B,β) form the minimal automorphic extension $(B_{\infty},\beta_{\infty})$.

Corollary (K. 2011)

Let A = C(X). TFAE:

- 1. (A, α) is minimal and $\alpha^n \neq \alpha^m$ for all $n, m \in \mathbb{Z}_+$;
- 2. $(B_{\infty}, \beta_{\infty})$ is minimal and $\beta_{\infty}^{n} \neq id$ for all $n \in \mathbb{Z}$ (topol. free);
- 3. $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}$ is simple;
- 4. $\mathcal{O}_{(A,\alpha)}$ is simple (has no non-trivial two-sided closed ideals).

III. Program on semigroup actions

Question 2

Is the C*-envelope a Cuntz-type C*-algebra? Can we describe it by *-algebraic relations?

Applications 3

Relate the intrinsic properties of $\alpha \colon P \to \operatorname{End}(A)$ to C*-properties of the obtained object.

III. Program on semigroup actions

- 1. We confirm this when P is \mathbb{Z}_{+}^{n} , \mathbb{F}_{n}^{+} , a spanning cone, an Ore sgrp.
- 2. For $P = \mathbb{Z}_+^n$ we identify the Cuntz-Nica-Pimsner algebra.
- 3. We study the Cuntz-Nica-Pimsner algebras in terms of ideal structure.

K. (2014)

4. We study the Nica-Pimsner algebras in terms of nuclearity, exactness, KMS states.

Notation

We write
$$\mathbf{i} = (0, ..., 0, 1, 0, ..., 0)$$
 for all $i = 1, ..., n$.

Thus $\alpha \colon \mathbb{Z}_+^n \to \operatorname{End}(A)$ is defined by *n* commuting $\alpha_i \in \operatorname{End}(A)$.

Requirements

- 1. *n* contractions V_i such that $a \cdot V_i = V_i \cdot \alpha_i(a)$.
- 2. The V_i commute.

Is this enough?

The aim is to reach a crossed product. For $A = \mathbb{C}$ we would like to dilate the V_i to unitaries. Parrott's counterexample shows that this cannot be done for any n.

3. We focus on doubly commuting V_i , i.e. $V_i V_i^* = V_i^* V_i$ for $i \neq j$.

The Nica-covariant semicrossed product $A \times_{\alpha}^{nc} \mathbb{Z}_{+}^{n}$ (no involution)

Universal nonselafdjoint generated by

```
V_s a, with a \in A, s \in \mathbb{Z}_+^n,
```

for *n* doubly commuting **contractions** V_i with $a \cdot V_i = V_i \cdot \alpha_i(a)$.

Remark

A embeds in $A \times_{\alpha}^{\operatorname{nc}} \mathbb{Z}_{+}^{n}$.

Example

For $A \subseteq H$ let $K = H \otimes \ell^2(\mathbb{Z}^n_+)$ and define

 $S_{\mathbf{i}}(\xi\otimes e_s)=\xi\otimes e_{\mathbf{i}+s}$ and $\pi(a)(\xi\otimes e_s)=lpha_s(a)\xi\otimes e_s$

for all $s \in \mathbb{Z}_+^n$ and $\xi \in H$. Then π is a faithful representation of A.

Question

Why do we call it Nica covariant?

Theorem (Davidson-Fuller-K. 2014)

The Nc-scp $A \times_{\alpha}^{nc} \mathbb{Z}_{+}^{n}$ coincides with the **nsa** generated by doubly commuting **isometries** $V_{\mathbf{i}}$ and A such that $a \cdot V_{\mathbf{i}} = V_{\mathbf{i}} \cdot \alpha_{\mathbf{i}}(a)$.

Remark

Doubly commuting isometries form a representation of \mathbb{Z}_+^n in the sense of Nica.

Corollary

If $C^*_{env}(A \times^{nc}_{\alpha} \mathbb{Z}^n_+)$ is generated by A and V then

 $\mathrm{C}^*_{\mathsf{env}}(A \times^{\mathsf{nc}}_{\alpha} \mathbb{Z}^n_+) \simeq \overline{\operatorname{span}}\{V_s a V^*_t : a \in \mathscr{A} \text{ and } s, t \in \mathbb{Z}^n_+\}.$

III. Reductions

The plan

Dilate a system $\alpha \colon \mathbb{Z}^n_+ \to \operatorname{End}(A)$ to a group action $\beta \colon \mathbb{Z}^n \to \operatorname{Aut}(B)$.

Injective case: ker $\alpha_i = (0)$ for all i = 1, ..., n.

We can then construct the direct limit $\beta_i \in Aut(B)$ s.t.

where $A_s = A$ for all $s \in \mathbb{Z}^2_+$.

Then $C^*_{env}(A \times^{nc}_{\alpha} \mathbb{Z}^n_+) \simeq B \rtimes_{\beta} \mathbb{Z}^n$ (Corollary Davidson-Fuller-K. 2014).

III. Reductions

The (revised) plan

Dilate a system $\alpha : \mathbb{Z}_{+}^{n} \to \operatorname{End}(A)$ where ker $\alpha_{i} \neq (0)$ to a system $\beta : \mathbb{Z}_{+}^{n} \to \operatorname{End}(B)$ such that ker $\beta_{i} = (0)$.

The n = 1 case (K. 2011)

For $I = \ker \alpha^{\perp}$ let $B = A \oplus c_0(A/I)$ and $\beta(a, (x_n)) = (\alpha(a), a+I, (x_n))$.

$$\overset{\alpha}{\frown} A \overset{q_{I}}{\longrightarrow} A/I \overset{\text{id}}{\longrightarrow} A/I \overset{\text{id}}{\longrightarrow} \dots$$

The n = 2 case

Let $\alpha_1, \alpha_2 \in \text{End}(A)$ such that $\alpha_1 \alpha_2 = \alpha_2 \alpha_1$. We want two injective commuting β_1, β_2 on some $B \supseteq A$ that dilate α_1, α_2 .

A first attempt

Let $I_{(1,1)} := (\ker \alpha_1 \cdot \ker \alpha_2)^{\perp}$, $I_1 := \bigcap_n \alpha_2^{-n}(I_{(1,1)})$, $I_2 := \bigcap_n \alpha_1^{-n}(I_{(1,1)})$. Let β_1 be the solid arrows and β_2 the broken arrows:

with $\dot{\alpha}_1 q_2 = q_1 \alpha_2$ and $\dot{q}_1 q_1 = q_{(1,1)}$ (plus the symmetrical ones). Then β is injective and generalises the n = 1 case. However this construction is bound to fail!

How did we end up with $I_{(1,1)} = (\ker \alpha_1 \cdot \ker \alpha_2)^{\perp}$?

1. Let a faithful $\rho: A \to \mathscr{B}(H)$ and doubly commuting isometries V_i such that

$$\rho(a)V_{\mathbf{i}}=V_{\mathbf{i}}\rho\alpha_{\mathbf{i}}(a).$$

2. Because of a gauge action, we will have to deal with equations

$$\rho(a_0) + \sum_{s>\underline{0}} V_s \rho(a_s) V_s^* = 0.$$

3. This transforms into

$$ho(a_0)(I-V_1V_1^*)(I-V_2V_2^*)=0.$$

4. From this we get that $a_0 \perp \ker \alpha_1$, $\ker \alpha_2$.

Why isn't $I_{(1,1)} = (\ker \alpha_1 \cdot \ker \alpha_2)^{\perp}$ enough?

However we will also have equations of the form

$$ho(a_0) + \sum_{n > \underline{0}} V_{(n,0)}
ho(a_n) V^*_{(n,0)} = 0$$

which transform into

$$\rho(a_0)(I - V_1V_1^*) = 0.$$

From this we get that $a_0 \perp \ker \alpha_1$.

From this we also get that $\alpha_{(0,n)}(a_0) \perp \ker \alpha_1$ for all n > 0.

This happens because $\rho \alpha_2(a) = V_2^* \rho(a) V_2$.

So we need the ideal $l_1 = \bigcap_n \alpha_2^{-n}(\ker \alpha_1^{\perp})$ instead of $\bigcap_n \alpha_2^{-n}(I)$. And of course its symmetrical l_2 .

Correct tail

$$\begin{split} I_{(1,1)} &= (\ker \alpha_1 \cdot \ker \alpha_2)^{\perp} \quad I_1 = \cap_n \alpha_2^{-n} (\ker \alpha_1^{\perp}) \quad I_2 = \cap_n \alpha_1^{-n} (\ker \alpha_2^{\perp}). \end{split}$$
Then define β_1 and β_2 by

with $\dot{\alpha}_1 q_2 = q_1 \alpha_2$ and $\dot{q}_2 q_1 = q_{(1,1)}$ (plus the symmetrical ones). Then β_1 and β_2 generalise the n = 1 case. It is not immediate but they are commuting and injective.

III. General construction

For $\underline{x} = (x_1, \dots, x_n) \in \mathbb{Z}_+^n$, define $\operatorname{supp}(\underline{x}) = \{\mathbf{i} : x_i \neq 0\}$ and $\underline{x}^{\perp} = \{\underline{y} \in \mathbb{Z}_+^n : \operatorname{supp}(\underline{y}) \cap \operatorname{supp}(\underline{x}) = \emptyset\}$

and let the ideals

$$I_{\underline{x}} = \bigcap_{\underline{y} \in \underline{x}^{\perp}} \alpha_{\underline{y}}^{-1} \Big(\big(\bigcap_{\mathbf{i} \in \mathsf{supp}(\underline{x})} \ker \alpha_{\mathbf{i}} \big)^{\perp} \Big).$$

Let $B_{\underline{x}} = A/I_{\underline{x}}$ and on the C*-algebra

$$B = \sum_{\underline{x} \in \mathbb{Z}_+^n} B_{\underline{x}}$$

define the *-endomorphisms

$$\beta_{\mathbf{i}}(q_{\underline{x}}(a) \otimes e_{\underline{x}}) = \begin{cases} q_{\underline{x}} \alpha_{\mathbf{i}}(a) \otimes e_{\underline{x}} + q_{\underline{x}+\mathbf{i}}(a) \otimes e_{\underline{x}+\mathbf{i}} & \text{for } \mathbf{i} \in \underline{x}^{\perp}, \\ q_{\underline{x}}(a) \otimes e_{\underline{x}+\mathbf{i}} & \text{for } \mathbf{i} \in \text{supp}(\underline{x}). \end{cases}$$

Then the β_i commute and are injective (this is not trivial).

III. C*-envelope

Theorem (Davidson-Fuller-K. 2014)

Let $\alpha \colon \mathbb{Z}^n_+ \to \operatorname{End}(A)$ be a semigroup action. Apply the constructions:

- 1. dilate (A, α) to the injective (B, β) by adding a tail;
- 2. use the direct limit to extend it to $\beta_{\infty} \colon \mathbb{Z}^n \to \operatorname{Aut}(B_{\infty})$.

Then the C*-envelope of $A \times_{\alpha}^{nc} \mathbb{Z}_{+}^{n}$ is Morita equivalent to $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}^{n}$.

Remarks

1. The C*-envelope is defined by a co-universal property for which

$$\mathrm{C}^*_{\mathsf{env}}(A \times^{\mathsf{nc}}_{\alpha} \mathbb{Z}^n_+) \simeq \overline{\operatorname{span}}\{V_s a V^*_t : a \in \mathscr{A} \text{ and } s, t \in \mathbb{Z}^n_+\}.$$

2. This was one of the challenging points in the proof.

What about the structure of the C*-envelope?

Can we identify the C*-envelope by C*-algebraic relations?

III. Towards a Cuntz algebra

Recall

For n = 2 we arrived to the equalities

1.
$$a(I - V_1V_1^*) = 0;$$

2.
$$a(I - V_2 V_2^*) = 0;$$

3.
$$a(I - V_1V_1^*)(I - V_2V_2^*) = 0;$$

subject to *a*. Then we used the solutions/ideals to produce the tail. This appears to be more than an innocent coincidence.

The Cuntz-Nica-Pimsner algebra for n = 2 case

It is the universal C*-algebra such that: (a) V_i are doubly commuting isometries; (b) $aV_i = V_i\alpha_i(a)$; and (c) we have

c.1
$$a(I - V_1V_1^*) = 0$$
 for all $a \in \bigcap_n \alpha_2^{-n}(\ker \alpha_1^{\perp});$
c.2 $a(I - V_2V_2^*) = 0$ for all $a \in \bigcap_n \alpha_2^{-n}(\ker \alpha_2^{\perp});$

c.3
$$a(I - V_1V_1^*)(I - V_2V_2^*) = 0$$
 for all $a \in (\ker lpha_1 \cdot \ker lpha_2)^{\perp}$

III. The Cuntz-Nica-Pimsner algebra

Definition (Davidson-Fuller-K. 2014)

The Cuntz-Nica-Pimsner algebra $\mathcal{NO}(A, \alpha)$ of $\alpha \colon \mathbb{Z}^n_+ \to \operatorname{End}(A)$ is the universal C*-algebra generated by A and V_i so that:

- 1. V_i are commuting isometries;
- 2. $aV_i = V_i\alpha_i(a)$; and

3.
$$a \cdot \prod_{\mathbf{i} \in \text{supp}(\underline{x})} (I - V_{\mathbf{i}}V_{\mathbf{i}}^*) = 0$$
 for $a \in \bigcap_{\underline{y} \in \underline{x}^{\perp}} \alpha_{\underline{y}}^{-1} \left(\left(\bigcap_{\mathbf{i} \in \text{supp}(\underline{x})} \ker \alpha_{\mathbf{i}} \right)^{\perp} \right)$.

Corollary (Davidson-Fuller-K. 2014)

- 1. The C*-envelope of $A \times_{\alpha}^{\mathsf{nc}} \mathbb{Z}_{+}^{\mathsf{n}}$ is $\mathscr{NO}(A, \alpha)$.
- 2. For $\alpha \colon \mathbb{Z}^n_+ \to \operatorname{End}(A)$ there exists a dilation $\beta_{\infty} \colon \mathbb{Z}^n \to \operatorname{Aut}(B_{\infty})$ such that $\mathscr{NO}(A, \alpha) \stackrel{\mathrm{sMe}}{\sim} B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}^n$.

3. $\mathcal{NO}(A, \alpha)$ satisfies the GIUT with respect to the CNP representations.

III. Simplicity

Theorem (Davidson-Fuller-K. 2014)

Corollary (Davidson-Fuller-K. 2014)

Let A = C(X) and let $\phi_s \colon X \to X$ related to $\alpha_s \colon X \to X$. TFAE:

- 1. (A, α) is minimal and $\{x \in X \mid \phi_s(x) \neq \phi_r(x)\}^o = \emptyset$ for all $s, r \in \mathbb{Z}^n_+$ (top. free);
- 2. $(B_{\infty}, \beta_{\infty})$ is minimal and topologically free;
- 3. $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}$ is simple;
- 4. $\mathcal{NO}_{(A,\alpha)}$ is simple.

III. Exactness/Nuclearity

Theorem (K. 2014)

 $\mathscr{NO}(A, \alpha)$ is exact if and only if A is exact.

Theorem (K. 2014)

Let $\beta_{\infty} \colon \mathbb{Z}^n \to \operatorname{Aut}(B_{\infty})$ be the automorphic dilation of $\alpha \colon \mathbb{Z}^n_+ \to \operatorname{End}(A)$. *TFAE*:

1. the embeddings $A, A/I_s \hookrightarrow B_\infty$ are nuclear for all $s \in \mathbb{Z}_+^n$;

2. B_{∞} is nuclear;

3. $B_{\infty} \rtimes_{\beta_{\infty}} \mathbb{Z}^n$ is nuclear;

4. $\mathcal{NO}(A, \alpha)$ is nuclear.

Proposition (K. 2014)

If A is nuclear or if $A \hookrightarrow C^*(V_{n1}aV_{n1}^* \mid a \in A, n \in \mathbb{Z}_+)$ is nuclear then $\mathcal{NO}(A, \alpha)$ is nuclear. The converse is not true.

IV. Remarks

Remarks on $\mathscr{NT}(A, \alpha)$ (K. 2014)

1. There is a second variant, the Toeplitz-Nica-Pimsner algebra.

2. For this we get A is nuclear (resp. exact) if and only if $\mathcal{NT}(A, \alpha)$ is nuclear (resp. exact).

KMS states (K. 2014)

3. The gauge action implements an action of \mathbb{R} on the Nica-Pimsner algebras. We are able to identify all KMS states at finite temperature: for any $T < \infty$ there is exactly one KMS_{1/T} state.

4. For $T = \infty$ the KMS states are the tracial states and there is no bijection (there might be more than one).

IV. Remarks

Remarks on simplicity

5. Kalantar-Kennedy show that simplicity of the reduced C*-crossed product is equivalent to topological freeness of the group action on a boundary.

6. We are working towards formulating this property for semigroups and showing its stability under the automorphic dilation.

Remarks on product systems

7. Both $\mathscr{NT}(A, \alpha)$ and $\mathscr{NO}(A, \alpha)$ are examples of C*-algebras associated to product systems.

8. A gauge invariance uniqueness theorem for general Toeplitz-Nica-Pimsner algebras is easy to obtain by our methods.

9. We believe that the same is true for the Cuntz-Nica-Pimsner algebras (with Adam Dor-On).

The end.