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Noncommutative polyballs

B(H)n1 ×c · · · ×c B(H)nk denotes the set of all tuples
X = (X1, . . . ,Xk ) with the property that the entries of
Xs := (Xs,1, . . . ,Xs,ns ) are commuting with the entries of
Xt := (Xt ,1, . . . ,Xt ,nt ) for any s, t ∈ {1, . . . , k}, s 6= t .

The open polyball :

Pn(H) := [B(H)n1 ]1 ×c · · · ×c [B(H)nk ]1,

where [B(H)ni ]1 is the open unit ball

{(Xi,1, . . . ,Xi,ni ) ∈ B(H)ni : ‖Xi,1X ∗i,1 + · · ·+ Xi,ni X
∗
i,ni
‖ < 1}.
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Noncommutative regular polyballs

The regular polyball on the Hilbert space H is defined by

Bn(H) := {X ∈ Pn(H) : ∆X(I) > 0} ,

where the defect mapping ∆X : B(H)→ B(H) is given by

∆X :=
(
id − ΦX1

)
◦ · · · ◦

(
id − ΦXk

)
,

and ΦXi : B(H)→ B(H) is the completely positive linear
map defined by

ΦXi (Y ) :=

ni∑
j=1

Xi,jYX ∗i,j , Y ∈ B(H).

(Abstract) regular polyball Bn :=
∐
HBn(H).
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Universal models

Let Hni be an ni -dimensional complex Hilbert space with
orthonormal basis ei

1, . . . ,e
i
ni

. The full Fock space of Hni is
defined by

F 2(Hni ) := C1⊕
⊕
s≥1

H⊗s
ni
.

Let F+
ni

be the unital free semigroup on ni generators
g i

1, . . . ,g
i
ni

and the identity g i
0. Set ei

α := ei
j1
⊗ · · · ⊗ ei

jp if
α = g i

j1
· · · g i

jp ∈ F+
ni

and ei
g i

0
:= 1 ∈ C.

For each i ∈ {1, . . . , k} and j ∈ {1, . . . ,ni}, the left creation
operator Si,j on F 2(Hni ) is defined by setting

Si,jei
α := ei

j ⊗ ei
α, α ∈ F+

ni
.
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Universal models

Definition

The operator Si,j acting on F 2(Hn1)⊗· · ·⊗F 2(Hnk ) is defined by

Si,j := I ⊗ · · · ⊗ I︸ ︷︷ ︸
i − 1 times

⊗Si,j ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
k − i times

.

Similarly, we define the right creation operator
Ri,j : F 2(Hni )→ F 2(Hni ) by setting Ri,jei

α := ei
α ⊗ ei

j and
the corresponding Ri,j .

The noncommutative polyball algebra An (resp Rn ) is the
norm closed non-selfadjoint algebra generated by {Si,j}
(resp. {Ri,j}) and the identity.
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Universal models

The k -tuple S := (S1, . . . ,Sk ), where Si := (Si,1, . . . ,Si,ni ),
is a pure element in the regular polyball Bn(⊗k

i=1F 2(Hni ))−

and plays the role of universal model for the abstract
regular polyball.

Let X = (X1, . . . ,Xk ) ∈ Bn(H) with Xi := (Xi,1, . . . ,Xi,ni ).

Set Xi,αi := Xi,j1 · · ·Xi,jp if αi = g i
j1
· · · g i

jp ∈ F+
ni

and Xi,g i
0

:= I.

If α := (α1, . . . , αk ) ∈ F+
n1
× · · · × F+

nk
, denote

Xα := X1,α1 · · ·Xk ,αk .
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Main results on free pluriharmonic functions

Introduce and characterize the class of k -multi-Toeplitz
operators on F 2(Hn1)⊗ · · · ⊗ F 2(Hnk ).

Characterize the bounded free k -pluriharmonic functions
and solve the Dirichlet extension problem on regular
polyballs.

Give necessary and sufficient conditions for a function to
be the Poisson transform of a completely bounded
(resp. completely positive) map on C∗(S), the C∗-algebra
generated by the universal model of the polyball.

Obtain Herglotz-Riesz representation theorems for free
holomorphic functions with positive real parts on regular
polyballs.
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k -multi-Toeplitz operators

Brown and Halmos (Crelle, 1963) proved :

Theorem

A bounded linear operator T on the Hardy space H2(D) is a
Toeplitz operator if and only if S∗TS = T , where S is the
unilateral shift.

Definition

A bounded linear operator T on F 2(Hn1)⊗ · · · ⊗ F 2(Hnk ) is
called k-multi-Toeplitz operator with respect to the right
universal model R = {Ri,j} if, for each i ∈ {1, . . . , k},

R∗i,sTRi,t = δstT , s, t ∈ {1, . . . ,ni}.
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k -multi-Toeplitz operators

Each k -multi-Toeplitz operator T has a uniquely
determined formal power series in several variables.

One can recapture T from its “Fourier series”.

We characterize the noncommutative formal power series
which are Fourier series of k -multi-Toeplitz operators.

Theorem

The set of all k-multi-Toeplitz operators on
⊗k

i=1 F 2(Hni )
coincides with

Tn := span{A∗nAn}−SOT = span{A∗nAn}−WOT,

where An is the noncommutative polyball algebra.
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Noncommutative Berezin kernels

If X = {Xi,j} ∈ Bn(H)−, define the noncommutative
Berezin kernel

KX : H → (⊗k
i=1F 2(Hni ))⊗∆X(I)1/2(H)

by setting

KXh :=
∑
βi∈F+

ni

e1
β1
⊗ · · · ⊗ ek

βk
⊗∆X(I)1/2X ∗1,β1

· · ·X ∗k ,βk
h,

where the defect operator is given by

∆X(I) := (id − ΦX1) ◦ · · · ◦ (id − ΦXk )(I).
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Noncommutative Berezin transforms

The Berezin transform at X ∈ Bn(H) is the map
BX : B(⊗k

i=1F 2(Hni ))→ B(H) defined by

BX[g] := K∗X(g ⊗ IH)KX, g ∈ B(⊗k
i=1F 2(Hni )).

If g ∈ C∗(S), the C∗-algebra generated by Si,1, . . . ,Si,ni ,
we define the Berezin transform at X ∈ Bn(H)− by

BX[g] := lim
r→1

K∗rX(g ⊗ IH)KrX,

where the limit is in the operator norm topology.
BX is a unital completely positive linear map such that

BX(SαS∗β) = XαX∗β, α,β ∈ F+
n1
× · · · × F+

nk
,

where Sα := S1,α1 · · ·Sk ,αk if α := (α1, . . . , αk ).
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Free k -pluriharmonic functions

Definition
A function F is called free k -pluriharmonic on the polyball Bn if
it has the form

F (X) =
∑

m1∈Z
· · ·

∑
mk∈Z

∑
(α,β)∈Λ

aα,βX1,α1 · · ·Xk ,αk X ∗1,β1
· · ·X ∗k ,βk

,

where (α,β) ∈ Λ iff α = (α1, . . . , αk ) and β = (β1, . . . , βk ), with
αi , βi ∈ F+

ni
, |αi | = m−i , |βi | = m+

i , and the series converge in
the operator norm topology for any X = (X1, . . . ,Xk ) ∈ Bn(H)
and any Hilbert space H.

F is bounded if ‖F‖ := supX∈Bn(H) ||F (X)‖ <∞.
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Free k -pluriharmonic functions

Let PH∞(Bn) be the vector space of all bounded free k -
pluriharmonic functions on Bn.

For each m = 1,2, . . ., define the norm
‖ · ‖m : Mm (PH∞(Bn))→ [0,∞) by setting

‖[Fij ]m‖m := sup ‖[Fij(X)]m‖,

where sup is taken over all X ∈ Bn(H) and any H.

The norms ‖ · ‖m determine an operator space structure on
PH∞(Bn), in the sense of Ruan.
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Bounded free k -pluriharmonic functions

Theorem
If F : Bn(H)→ B(H) is a free k-pluriharmonic function, then
the F is bounded if and only if there exists A ∈ Tn such that

F (X) = BX[A] := K∗X(A⊗ IH)KX, X ∈ Bn(H).

In this case, A = SOT- lim
r→1

F (rS).

Moreover, the map

Φ : PH∞(Bn)→ Tn defined by Φ(F ) := A

is a completely isometric isomorphism of operator spaces.
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Dirichlet extension problem for regular polyballs

Let PHc(Bn) be the set of all free k -pluriharmonic functions
on Bn which have continuous extensions to Bn(H)− (in
norm topology), for any Hilbert space H.

Assume that H is an infinite dimensional Hilbert space.
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Dirichlet extension problem for regular polyballs

Theorem
If F : Bn(H)→ B(H) is a free k-pluriharmonic function, then F
has a continuous extension to the closed polyball Bn(H)− (in
the operator norm) if and only if there exists
A ∈ P := span{f ∗g : f ,g ∈ An}−‖·‖ such that

F (X) = BX[A], X ∈ Bn(H).

In this case, A = lim
r→1

F (rS), where the convergence is in the

operator norm. Moreover, the map

Φ : PHc(Bn)→ P defined by Φ(F ) := A

is a completely isometric isomorphism of operator spaces.
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Noncommutative Poisson transforms of c.b. maps

Consider the operator system

R∗nRn := span{R∗αRβ : α,β ∈ F+
n1
× · · · × F+

nk
},

where R := (R1, . . . ,Rk ) and Ri := (Ri,1, . . . ,Ri,ni ).

If µ : R∗nRn → B(E) is a completely bounded linear map,
then there exists a unique completely bounded linear map

µ̂ := µ⊗ id : R∗nRn
‖·‖ ⊗min B(H)→ B(E)⊗min B(H)

such that

µ̂(A⊗ Y ) = µ(A)⊗ Y , A ∈R∗nRn, Y ∈ B(H).

Moreover, ‖µ̂‖cb = ‖µ‖cb and, if µ is completely positive,
then so is µ̂.
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Noncommutative Poisson transforms of c.b. maps

Define the free pluriharmonic Poisson kernel by setting

P(R,X) :=
∑

(α,β)∈Λ

R∗α̃R
β̃
⊗ XαX∗β, X ∈ Bn(H),

where the convergence is in the operator norm topology,
and (α,β) ∈ Λ iff α = (α1, . . . , αk ) and β = (β1, . . . , βk ),
with αi , βi ∈ F+

ni
, |αi | = m−i , |βi | = m+

i .

We introduce the noncommutative Poisson transform of a
c. b. map µ : R∗nRn → B(E) on the regular polyball to be
the map Pµ : Bn(H)→ B(E)⊗min B(H) defined by

(Pµ)(X) := µ̂[P(R,X)], X ∈ Bn(H).
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Noncommutative Poisson transforms of c.b. maps

Theorem
Let µ : R∗nRn → B(E) be a completely bounded linear map.
The following statements hold.

(i) The map X 7→ P(R,X) is a positive k-pluriharmonic
function on the polyball Bn, with coefficients in
B(⊗k

i=1F 2(Hni )), and has the factorization
P(R,X) = C∗XCX, where

CX := (I⊗∆X(I)1/2)
k∏

i=1

(
I − Ri,1 ⊗ X ∗i,1 − · · · − Ri,ni ⊗ X ∗i,ni

)−1
.

(ii) The noncommutative Poisson transform Pµ is a free
k-pluriharmonic function on the regular polyball Bn.
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Noncommutative Poisson transforms of c.b. maps

(iii) If µ is a completely positive linear map, then Pµ is a
positive free k -pluriharmonic function on Bn.

Let F be a free k -pluriharmonic function on the polyball Bn,
with operator-valued coefficients in B(E), and with
representation

F (X) =
∑

m1∈Z
· · ·

∑
mk∈Z

∑
(α,β)∈Λ

Aα,β ⊗ XαX∗β.

We associate with F and each r ∈ [0,1) the linear map
νFr : R∗nRn → B(E) by setting

νFr (R
∗
α̃R

β̃
) := r |α|+|β|Aα,β, (α,β) ∈ Λ.
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Noncommutative Poisson transforms of c.b. maps

Theorem
Let F : Bn(H)→ B(E)⊗min B(H) be a free k-pluriharmonic
function. Then the following statements are equivalent :

(i) there exists a completely bounded linear map
µ : C∗(R)→ B(E) such that F = Pµ;

(ii) the linear maps {νFr }r∈[0,1) associate with F are
completely bounded and sup

0≤r<1
‖νFr ‖cb <∞ ;

GELU POPESCU Hyperbolic Geometry on Noncommutative Polyballs



Multi-Topeplitz operators and free pluriharmonic functions
Noncommutative Poisson transforms of c.b. maps

Hyperbolic geometry on polyballs
Herglotz-Riesz representations

Noncommutative Poisson transforms of c.b. maps
Noncommutative Poisson transforms of c.p. maps

Noncommutative Poisson transforms of c.b. maps

(iii) there exists a k -tuple V = (V1, . . . ,Vk ) of doubly
commuting row isometries acting on K and bounded linear
operators W1,W2 : E → K such that

F (X) = (W ∗
1 ⊗ I) [CX(V)∗CX(V)] (W2 ⊗ I),

where

CX(V) := (I⊗∆X(I)1/2)
k∏

i=1

(I−Vi,1⊗X ∗i,1−· · ·−Vi,ni⊗X ∗i,ni
)−1.

Moreover, in this case we can choose µ such that

‖µ‖cb = sup
0≤r<1

‖νFr ‖cb.
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Noncommutative Poisson transforms of c.p. maps

Corollary

Let F : Bn(H)→ B(E)⊗min B(H) be a free k-pluriharmonic
function. Then the following statements are equivalent :

(i) there exists a completely positive linear map
µ : C∗(R)→ B(E) such that F = Pµ;

(ii) the linear maps {νFr }r∈[0,1) associate with F are
completely positive ;

(iii) there exists a k-tuple V = (V1, . . . ,Vk ) of doubly
commuting row isometries acting on a Hilbert space K ⊃ E
and a bounded operator W : E → K such that

F (X) = (W ∗ ⊗ I) [CX(V)∗CX(V)] (W ⊗ I).
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Noncommutative Poisson transforms of c.p. maps

Classical result : A map u : Dk → C is a positive
k -harmonic function if and only if there is a finite positive
Borel measure on Tk such that

u(z) =

∫
Tk

P(z, ζ)dµ(ζ), z ∈ Dk ,

where P(z, ζ) is the Poisson kernel for the polydisk.

Open question : Is any positive free k -pluriharmonic
function on the regular polyball Bn the noncommutative
Poisson transform of a completely positive linear map
µ : C∗(R)→ B(E) ?
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Noncommutative Poisson transforms of c.p. maps

The answer is positive for the unit ball [B(H)n]1 (when
k = 1) (P., Adv. Math., 2009) and for the regular polydisk
Dk (H) (when n1 = · · · = nk = 1).

Theorem

A map f : Dk (H)→ B(E)⊗min B(H) is a positive free
k-pluriharmonic function on the regular polydisk if and only if
there exists a completely positive linear map
µ : C∗(Mz1 , . . . ,Mzk )→ B(E) such that F = Pµ, where
Mz1 , . . . ,Mzk are the multiplication operators on H2(Dk ).
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Poincaré distance on the open unit disc

• The hyperbolic (Poincaré) distance on the open unit disc
D := {z ∈ C : |z| < 1} is defined by

δP(z,w) :=
1
2

ln
1 + |ϕz(w)|
1− |ϕz(w)|

, z,w ∈ D,

where ϕz is the automorphism of D given by ϕz(w) = w−z
1−z̄w .
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Poincaré distance on the open unit disc

• Basic properties of the Poincaré distance :

1 the Poincaré distance is invariant under the conformal
automorphisms of D, i.e.,

δP(ϕ(z), ϕ(w)) = δP(z,w), z,w ∈ D,

for all ϕ ∈ Aut(D) ;
2 the δP-topology induced on the open disc is the usual

planar topology ;
3 (D, δP) is a complete metric space ;
4 any analytic function f : D→ D is distance-decreasing, i.e.,

δP(f (z), f (w)) ≤ δP(z,w), z,w ∈ D.
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Extensions of Poincaré distance

• Bergman introduced an analogue of the Poincaré distance for
the open unit ball of Cn,

Bn := {z = (z1, . . . , zn) ∈ Cn : ‖z‖2 < 1},

defined by

βn(z,w) =
1
2

ln
1 + ‖ψz(w)‖2
1− ‖ψz(w)‖2

, z,w ∈ Bn,

where ψz is the involutive automorphism of Bn that
interchanges 0 and z. The Poincaré-Bergman distance has
properties similar to those of δP .
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Extensions of Poincaré distance

• There are several extensions of the Poincaré-Bergman
distance to more general domains.

1 The work of R.S. Phillips and L. Harris on
infinite-dimensional Cartan domains.

2 The work of Suciu, Foiaş, and Andô-Suciu-Timotin on
Harnack type distances between two contractions.

3 The work of P. on hyperbolic geometry on [B(H)n]1.
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Harnack domination

Preorder relation
H
≺ on the closed ball Bn(H)−.

Definition
If A and B are in Bn(H)−, we say that A is Harnack dominated

by B, and denote A
H
≺ B, if there exists c > 0 such that

F (rA) ≤ c2F (rB)

for any positive free k -pluriharmonic function F with operator
valued coefficients and any r ∈ [0,1). When we want to

emphasize the constant c, we write A
H
≺
c

B.
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Harnack equivalence

Definition
If A,B ∈ Bn(H)−, we say that A and B are Harnack equivalent
(and denote A H∼ B) if there exists c > 1 such that

1
c2 F (rB) ≤ F (rA) ≤ c2F (rB), r ∈ [0,1),

for any positive free k -pluriharmonic function
F : Bn(H)→ B(E)⊗min B(H), where E is a separable Hilbert
space. In this case, we write AH∼

c
B.

The equivalence classes with respect to the equivalence
relation H∼ are called Harnack parts of Bn(H)−.

GELU POPESCU Hyperbolic Geometry on Noncommutative Polyballs



Multi-Topeplitz operators and free pluriharmonic functions
Noncommutative Poisson transforms of c.b. maps

Hyperbolic geometry on polyballs
Herglotz-Riesz representations

Hyperbolic metric on Harnack parts of the polyball
A metric on Poisson parts of the polyball
Hyperbolic metric on the regular polydisk

Poisson domination

Recall the free pluriharmonic Poisson kernel :

P(R,X) :=
∑

(α,β)∈Λ

R∗α̃R
β̃
⊗ XαX∗β

for any X ∈ Bn(H), where the convergence is in the
operator norm topology.

If A and B are in Bn(H)−, we say that A is Poisson

dominated by B, and denote A
P
≺ B, if there exists c > 0

such that
P(R, rA) ≤ c2P(R, rB)

for any r ∈ [0,1). When we want to emphasize the

constant c, we write A
P
≺
c

B.
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Poisson equivalence

Definition
If A,B ∈ Bn(H)−, we say that A and B are Poisson equivalent
(we denote A P∼ B) if and only if there exists c ≥ 1 such that

1
c2P(R, rB) ≤ P(R, rA) ≤ c2P(R, rB)

for any r ∈ [0,1).

We also use the notation AP∼
c

B if A
P
≺
c

B and B
P
≺
c

A.
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Harnack inequality

Theorem
Let F be a positive free k-pluriharmonic function on the regular
polyball Bn, with operator coefficients in B(E) and let 0 ≤ r < 1.
Then

F (0)

(
1− r
1 + r

)k

≤ F (X) ≤ F (0)

(
1 + r
1− r

)k

for any X ∈ rBn(H)−.
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Harnack and Poisson equivalence class containing 0

Theorem
Let A = (A1, . . . ,Ak ) ∈ Bn(H)−. Then the following statements
are equivalent.

1 A H∼ 0 ;
2 r(Ai) < 1 for any i ∈ {1, . . . , k} and there exists a > 0 such

that
P(R, rA) ≥ aI, r ∈ [0,1);

3 A ∈ Bn(H) ;

4 A P∼ 0.
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Hyperbolic metric on Harnack parts

Given A,B ∈ Bn(H)− in the same Harnack part, i.e.
A H∼ B, we introduce

ωH(A,B) := inf
{

c > 1 : A H∼
c

B
}
.

Theorem
Let ∆ be a Harnack part of Bn(H)− and define
δH : ∆×∆→ R+ by setting

δH(A,B) := lnωH(A,B), A,B ∈ ∆.

Then δH is a metric on ∆.
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Hyperbolic metric on Harnack parts

Schwarz-Pick lemma for free holomorphic functions on the
regular polyball Bn with operator-valued coefficients, with
respect to the hyperbolic metric.

Theorem

Let Φ = (Φ1, . . . ,Φm) : Bn(H)→ [B(H)m]−1 be a free
holomorphic function on the regular polyball. If X,Y ∈ Bn(H),
then Φ(X)

H∼Φ(Y) and

δH(Φ(X),Φ(Y)) ≤ δH(X,Y),

where δH is the hyperbolic metric defined on the Harnack parts
of [B(H)m]−1 and on the polyball Bn(H), respectively.
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Hyperbolic metric on Harnack parts

The hyperbolic metric is invariant under the group Aut(Bn)
of all free holomorphic automorphisms of Bn.

Theorem

Let A and B be in Bn(H)− such that A H∼ B. Then

δH(A,B) = δH(Ψ(A),Ψ(B)), Ψ ∈ Aut(Bn).
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Metric on Poisson parts of the polyball

Given A,B ∈ Bn(H)− in the same Poisson part, i.e.
A P∼ B, we introduce

ωP(A,B) := inf
{

c > 1 : A P∼
c

B
}
.

Theorem
Let ∆ be a Poisson part of Bn(H)− and define the function
δP : ∆×∆→ R+ by setting

δP(A,B) := lnωP(A,B), A,B ∈ ∆.

Then δP is a metric on ∆.
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Metric on Poisson parts of the polyball

Theorem
If A and B are in the open ball Bn(H), then

δP(A,B) = ln max
{∥∥∥CA(R)CB(R)−1

∥∥∥ , ∥∥∥CB(R)CA(R)−1
∥∥∥} ,

where

CX(R) := (I ⊗∆X(I)1/2)
k∏

i=1

(I −Ri,1 ⊗ X ∗i,1 − · · · −Ri,ni ⊗ X ∗i,ni
)−1

for any X = (X1, . . . ,Xk ) ∈ Bn(H) with Xi = (Xi,1, . . . ,Xi,ni ).
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Metric on Poisson parts of the polyball

Set

Bn(H)−0 :=

{
X ∈ Bn(H)− : X

P
≺ 0

}
and recall that Bn(H) ⊂ Bn(H)−0 .

Theorem

Let ∆ be a Poisson part of Bn(H)−0 . Then the following
properties hold :

(i) δP is a complete metric on ∆.
(ii) the δP -topology and the operator norm topology coincide

on the open polyball Bn(H).
(iii) the δH -topology is stronger that the δP -topology on Bn(H).
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Positive k -harmonic functions on the regular polydisk

Theorem

Let F : Dk (H)→ B(E)⊗min B(H) be a free k-pluriharmonic
function. Then the following statements are equivalent :

(i) F is positive ;
(ii) there exists a completely positive linear map

µ : C∗(R)→ B(E) such that F = Pµ ;
(iii) there exists a k-tuple U = (U1, . . . ,Uk ) of commuting

unitaries acting on a Hilbert space K ⊃ E and a bounded
operator W : E → K such that

F (X) = (W ∗ ⊗ I) [CX(U)∗CX(U)] (W ⊗ I),
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Positive k -harmonic functions on the regular polydisk

where

CX(U) := (I ⊗∆X(I)1/2)
k∏

i=1

(I − Ui ⊗ X ∗i )

for any X = (X1, . . . ,Xk ) ∈ Dk (H).

The Kobayashi distance for the polydisc Dk is given by

KDk (z,w) =
1
2

ln
1 + ‖ψz(w)‖∞
1− ‖ψz(w)‖∞

,

where ψz is the involutive automorphisms of Dk given by

ψz =

(
w1 − z1

1− z̄1w1
, . . . ,

wk − zk

1− z̄kwk

)
for any z = (z1, . . . , zk ) and w = (w1, . . . ,wk ) in Dk .
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Hyperbolic metric on the regular polydisk

Theorem

Let Dk (H) be the regular polydisk. The following statements
hold.

(i) If A,B ∈ Dk (H)−, then A H∼ B if and only if A P∼ B.
(ii) The metrics δH and δP coincide on the Harnack parts of

Dk (H)−.

(iii) If A and B are in Dk (H)− and A H∼ B, then

δH(A,B) = δH(Ψ(A),Ψ(B)), Ψ ∈ Aut(Dk ).
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Hyperbolic metric on the regular polydisk

(iv) If A and B are in Dk (H), then

δH(A,B) = ln max
{∥∥∥CA(R)CB(R)−1

∥∥∥ , ∥∥∥CB(R)CA(R)−1
∥∥∥} ,

where

CX(R) := (I ⊗∆X(I)1/2)
k∏

i=1

(I − Ri ⊗ X ∗i )

for any X = (X1, . . . ,Xk ) ∈ Dk (H).

GELU POPESCU Hyperbolic Geometry on Noncommutative Polyballs



Multi-Topeplitz operators and free pluriharmonic functions
Noncommutative Poisson transforms of c.b. maps

Hyperbolic geometry on polyballs
Herglotz-Riesz representations

Hyperbolic metric on Harnack parts of the polyball
A metric on Poisson parts of the polyball
Hyperbolic metric on the regular polydisk

Hyperbolic metric on the regular polydisk

(v) δH |Dk×Dk is equivalent to the Kobayashi distance on the
polydisk Dk and

δH(z,w) =
1
2

ln
∏k

i=1 (1 + |ψzi (wi)|)∏k
i=1 (1− |ψzi (wi)|)

for any z = (z1, . . . , zk ) and w = (w1, . . . ,wk ) in Dk , where
ψz := (ψz1 , . . . , ψzn ) is the involutive automorphisms of Dk

such that ψzi (0) = zi and ψzi (zi) = 0.
(vi) The hyperbolic metric δH is complete on the Harnack parts

of Dk (H)−0 .
(vii) The δH -topology coincides with the operator norm topology

on the regular polydisk Dk (H).
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Hyperbolic metric on the regular polydisk

Corollary

Let f = (f1, . . . , fm) : Dk (H)→ [B(H)m]1 be a free holomorphic
function on the regular polydisk. If X,Y ∈ Dk (H), then

δH(f (X), f (Y)) ≤ δH(X,Y),

where δH is the hyperbolic metric. In particular, if f (0) = 0, then

1 + ‖f (z)‖2
1− ‖f (z)‖2

≤
k∏

i=1

1 + |zi |
1− |zi |

for any z = (z1, . . . , zk ) in Dk .
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Herglotz-Riesz representations

Define the space

RH(Bn) := span {<f : f ∈ HolE(Bn)} ,

where HolE(Bn) is the set of all free holomorphic functions
in the polyball Bn, with coefficients in B(E).

If ϕ ∈ RH(Bn), we consider the family {νϕr }r∈[0,1) of linear
maps νϕr : R∗nRn → B(E). Note that νϕr (R∗αRβ) = 0 if
R∗αRβ is different from Rγ or R∗γ for some γ ∈ F+

n .
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Herglotz-Riesz representations

Let µ : R∗nRn → B(E) be a completely positive linear map.
The noncommutative Herglotz-Riesz transform of µ on the
regular polyball is the map Hµ : Bn(H)→ B(E)⊗min B(H)
defined by

(Hµ)(X) := µ̂

[
2

k∏
i=1

(I − R∗i,1 ⊗ Xi,1 − · · · − R∗i,ni
⊗ Xi,ni )

−1 − I

]

for X := (X1, . . . ,Xk ) ∈ Bn(H).
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Herglotz-Riesz representations

Herglotz-Riesz representations

Theorem
Let f be a free holomophic function from the polyball Bn(H) to
B(E)⊗min B(H). Then the following statements are equivalent.

(i) f is a free holomorphic function with <f ≥ 0 and the linear
maps {ν<fr }r∈[0,1) associated with <f are completely
positive.

(ii) The function f admits a Herglotz-Riesz representation

f (X) = (Hµ)(X) + i=f (0),

where µ : C∗(R)→ B(E) is a completely positive linear
map with the property that µ(R∗αRβ) = 0 if R∗αRβ is not
equal to Rγ or R∗γ for some γ ∈ F+

n .

GELU POPESCU Hyperbolic Geometry on Noncommutative Polyballs



Multi-Topeplitz operators and free pluriharmonic functions
Noncommutative Poisson transforms of c.b. maps

Hyperbolic geometry on polyballs
Herglotz-Riesz representations

Herglotz-Riesz representations

Herglotz-Riesz representations

(iii) There exist a k -tuple V = (V1, . . . ,Vk ) of doubly
commuting row isometries on a Hilbert space K, and a
bounded linear operator W : E → K, such that

f (X) = (W ∗ ⊗ I)

[
2

k∏
i=1

(I − V ∗i,1 ⊗ Xi,1 − · · · − V ∗i,ni
⊗ Xi,ni )

−1 − I

]
× (W ⊗ I) + i=f (0)

and W ∗V∗αVβW = 0 if R∗αRβ is not equal to Rγ or R∗γ for
some γ ∈ F+

n .
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Herglotz-Riesz representations

When n1 = · · · = nk = 1, we obtain an operator-valued
extension of Korányi-Pukánszky integral representation.

Theorem
If n1 = · · · = nk = 1, then the statements in the theorem above
are equivalent to
(iv) The map f : Dk (H)→ B(E)⊗min B(H) is a free

holomorphic function on the regular polydisk and <f ≥ 0.
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Herglotz-Riesz representations

Korányi-Pukánzky result :

Theorem

A function f : Dk → C is holomorphic and <f ≥ 0 if and only if it
admits a representation

f (z) = i=f (0) +

∫
Tk

2
k∏

j=1

1
1− zj ζ̄j

− 1

dµ(ζ)

where µ is a positive measure on Tk such that, unless mj ≥ 0
for any j ∈ {1, . . . , k} or mk ≤ 0 for any j ∈ {1, . . . , k},∫

Tk
ζm1

1 · · · ζ
mk
k dµ(ζ) = 0.
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THANK YOU
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Naimark dilations

We provide a Naimark type dilation theorem for direct
products F+

n1
× · · · × F+

nk
of unital free semigroups and

characterize the positive free k -pluriharmonic functions.
Let F+

n := F+
n1
× · · · × F+

nk
be the unital semigroup with

neutral element g := (g1
0 , . . . ,g

k
0 ).

Let ω = (ω1, . . . , ωk ), γ = (γ1, . . . , γk ), α := (α1, . . . , αk ),
and β := (β1, . . . , βk ) be in F+

n .

Definition

We say that K : F+
n × F+

n → B(E) is a left k-multi-Toeplitz kernel
if K (g,g) = IE and

K (σ,ω) =

{
K (α,β) if S∗σSω = S∗αSβ
0 if S∗σSω = 0.
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Naimark dilations

We say that Γ : F+
n × F+

n → B(E) is a right k-multi-Toeplitz
kernel if Γ(σ̃, ω̃) = K (σ,ω), where σ̃ = (σ̃1, . . . , σ̃k ) and
σ̃i := g i

jm · · · g
i
j1

is the reverse of σi := g i
j1
· · · g i

jm .

Definition

A map K : F+
n × F+

n → B(E) has a Naimark dilation if there
exists a k -tuple of commuting row isometries V = (V1, . . . ,Vk ),
Vi = (Vi,1, . . . ,Vi,ni ), on a Hilbert space K ⊃ E , i.e. the
non-selfadjoint algebra Alg(Vi) commutes with Alg(Vs) for any
i , s ∈ {1, . . . , k} with i 6= s, such that

K (σ,ω) = PEV∗σVω|E , σ,ω ∈ F+
n .

The dilation is called minimal if K =
∨
ω∈F+

n
VωE .
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Naimark dilations

Theorem

A map K : F+
n × F+

n → B(H) is a positive semi-definite left
k-multi-Toeplitz kernel on F+

n if and only if it admits a Naimark
dilation. In this case, there is a minimal dilation which is
uniquely determined up to an isomorphism.

Theorem

A map Γ : F+
n × F+

n → B(H) is a positive semi-definite right
k-multi-Toeplitz kernel on F+

n if and only if it admits a Naimark
dilation. In this case, there is a minimal dilation which is
uniquely determined up to an isomorphism.
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Schur type results

If F is a free k -pluriharmonic function on the polyball Bn
with operator-valued coefficients in B(E), one can
associate a right k -multi-Toeplitz kernel ΓF on F+

n in terms
of the coefficients of F .

Schur type result for positive k -pluriharmonic functions in
polyballs.

Theorem
Let F be a k-pluriharmonic function on the regular polyball Bn,
with coefficients in B(E). Then F is positive on Bn if and only if
the kernel ΓFr is positive semi-definite for any r ∈ [0,1), where
Fr stands for the mapping X 7→ F (rX).
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Herglotz-Riesz representations

Schur type results

Definition
A free holomorphic function on the polyball Bn and with
operator-valued coefficients in B(E) has the form

f (X) =
∑

m1∈N
· · ·

∑
mk∈N

∑
αi∈F+

ni
,i∈{1,...,k}

|αi |=mi

A(α1,...,αk ) ⊗ X1,α1 · · ·Xk ,αk ,

where X = (X1, . . . ,Xk ) ∈ Bn(H) and the series converge in the
operator norm topology.
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Schur type results

Corollary

Let f : Bn(H)→ B(E)⊗min B(H) be a free holomorphic
function. Then the following statements are equivalent.

(i) <f ≥ 0 on the polyball Bn ;
(ii) <f (rS) ≥ 0 for any r ∈ [0,1) ;
(iii) the right k-multi Toeplitz kernel Γ<fr is positive semidefinite

for any r ∈ [0,1).
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Positive k -pluriharmonic functions

Theorem
A map F : Bn(H)→ B(E)⊗min B(H), with F (0) = I, is a positive
free k-pluriharmonic function on the regular polyball if and only
if it has the form

F (X) =
∑

(α,β)∈Λ

PEV∗α̃V
β̃
|E ⊗ XαX∗β,

where V = (V1, . . . ,Vk ) is a k-tuple of commuting row
isometries on a space K ⊃ E such that∑

(α,β)∈Λ

PEV∗α̃V
β̃
|E ⊗ r |α|+|β|SαS∗β ≥ 0, r ∈ [0,1),

and the series is convergent in the operator topology.
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Positive k -pluriharmonic functions

Definition
A k -tuple V = (V1, . . . ,Vk ) of commuting row isometries
Vi = (Vi,1, . . . ,Vi,ni ) is called pluriharmonic if the free
k -pluriharmonic Poisson kernel

P(V, rS) :=
∑

(α,β)∈Λ

V∗α̃V
β̃
⊗ r |α|+|β|SαS∗β

is a positive operator for any r ∈ [0,1).

Example : V := R = (R1, . . . ,Rk ).
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Positive k -pluriharmonic functions

Proposition

Let V = (V1, . . . ,Vk ), Vi = (Vi,1, . . . ,Vi,ni ), be a k-tuple of
commuting row isometries. Then V is pluriharmonic in each of
the following particular cases :

(i) if k = 1 and n1 ∈ N ;
(ii) if V is doubly commuting, i.e. the C∗-algebra C∗(Vi)

commutes with C∗(Vs) if i , s ∈ {1, . . . , k} with i 6= s ;
(iii) if n1 = · · · = nk = 1.

GELU POPESCU Hyperbolic Geometry on Noncommutative Polyballs



Multi-Topeplitz operators and free pluriharmonic functions
Noncommutative Poisson transforms of c.b. maps

Hyperbolic geometry on polyballs
Herglotz-Riesz representations

Herglotz-Riesz representations

Positive k -pluriharmonic functions

Proposition

Let V = (V1, . . . ,Vk ) be a pluriharmonic tuple of commuting row
isometries on a Hilbert space K and let E ⊂ K be a subspace.
Then the map

F (X) := (PE ⊗ I)P (V,X) |E⊗H, X ∈ Bn(H)

is a positive free k-pluriharmonic function on the polyball Bn
with operator-valued coefficients in B(E), and F (0) = I.
Moreover, in the particular cases when : k = 1 (P., Adv. Math.,
2009), or when n1 = · · · = nk = 1, each positive free
k-pluriharmonic function F with F (0) = I has the form above.
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Positive k -pluriharmonic functions

In particular, we obtain a structure theorem for the positive
k -harmonic functions on the regular polydisk Dk (H), which
extends the corresponding classical result on scalar
polydisks.

Corollary

A map F : Dk (H)→ B(E)⊗min B(H) is positive free
k-pluriharmonic function with F (0) = I if and only if there is a
k-tuple of doubly commuting isometries V = (V1, . . . ,Vk ) on a
Hilbert space K ⊃ E such that

F (X) := (PE ⊗ I)P (V,X) |E⊗H, X ∈ Bn(H).
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