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Noncommutative polyballs

@ B(H)™M x¢--- x¢c B(H)"™ denotes the set of all tuples
X =(Xj,..., Xx) with the property that the entries of
Xs :=(Xs,1,...,Xsn) are commuting with the entries of
Xt = (Xt1,...,Xtn,) forany s,t € {1,... k}, s#t.

@ The open polyball -
Pn(H) == [B(H)"]1 xc -+ xc [B(H)™]4,
where [B(H)"]4 is the open unit ball

{(Xia,. o Xin) € B(H)™ ¢ [ X1 Xy + -+ Xin Xin || < 1}
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Noncommutative regular polyballs

@ The regular polyball on the Hilbert space H is defined by
Bn() := {X € Pn(H) : Ax(l) >0},
where the defect mapping Ay : B(H) — B(H) is given by
Ay = (id — dx,) oo (id— Py, ),
and &y : B(H) — B(H) is the completely positive linear
map defined by

n;
Ox(Y) =D Xi;YX, Y eBH).
j=1

@ (Abstract) regular polyball Bp :=11,, Bn(H).
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Universal models

@ Let H,, be an n;-dimensional complex Hilbert space with
orthonormal basis eq' ey e;',i. The full Fock space of Hy, is
defined by

F?(Hp) := C1 & @D H5®.

s>1

o Let IF+ be the unital free semigroup on n; generators
g1,...,g,, and the identity gg. Set €/, := €} © - ®e’ if

— i
a_gj1 gijFm and egé- =1¢eC.

@ Foreachie {1,...,k}andj € {1,...,n;}, the left creation
operator Sj; on F2(Hp,) is defined by setting

Sijel =€ @6, a €Tl
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Universal models

Definition
The operator S; ; acting on F2(Hy,) ® - - - ® F2(Hp,) is defined by

S;j =19 0I185;9I/®---aI.

i— 1 times k — i times

@ Similarly, we define the right creation operator .
Rij : F?(Hp) — F?(Hp,) by setting R; €/, := e}, @ e and
the corresponding R; ;.

@ The noncommutative polyball algebra An (resp Rn ) is the
norm closed non-selfadjoint algebra generated by {S; ;}
(resp. {R;;}) and the identity.
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Universal models

@ The k-tuple S := (S4,...,Sk), where S§; :=(S;1,...,S; ),
is a pure element in the regular polyball Ba(®%_, F2(Hp,))~
and plays the role of universal model for the abstract
regular polyball.

o LetX = (Xi,...,X) € Bn(H) With X; := (Xi1, ..., Xip).
® Set Xq, := Xjj, -+~ Xij,if o =gj -~ g/ € Fy and X; == I.

o

o lfa:=(ay,...,ak) € Fy x --- x F},, denote
XO( = X1,a1 "'Xk,ak-
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Main results on free pluriharmonic functions

@ Introduce and characterize the class of k-multi-Toeplitz
operators on F2(Hp,) ® - -~ ® F2(Hp,).

@ Characterize the bounded free k-pluriharmonic functions
and solve the Dirichlet extension problem on regular
polyballs.

@ Give necessary and sufficient conditions for a function to
be the Poisson transform of a completely bounded
(resp. completely positive) map on C*(S), the C*-algebra
generated by the universal model of the polyball.

@ Obtain Herglotz-Riesz representation theorems for free
holomorphic functions with positive real parts on regular
polyballs.
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Multi-Topeplitz operators and free pluriharmonic functions

k-multi-Toeplitz operators

@ Brown and Halmos (Crelle, 1963) proved :

Theorem

A bounded linear operator T on the Hardy space H?>(D) is a
Toeplitz operator if and only if S*TS = T, where S is the

unilateral shift.

Definition

A bounded linear operator T on F2(Hp,) ® --- ® F2(Hp, ) is
called k-multi-Toeplitz operator with respect to the right
universal model R = {R;;} if, foreach i ¢ {1,... k},

RisTR =0T, s;te{l,....n}.

GELU PoPEscU Hyperbolic Geometry on Noncommutative Polyballs




Multi-Topeplitz operators and free pluriharmonic functions Noncommutative regular polyballs and universal models
k-multi-Toeplitz operators
Free k-pluriharmonic functions
Dirichlet extension problem for regular polyballs

k-multi-Toeplitz operators

@ Each k-multi-Toeplitz operator T has a uniquely
determined formal power series in several variables.

@ One can recapture T from its “Fourier series”.
@ We characterize the noncommutative formal power series
which are Fourier series of k-multi-Toeplitz operators.

Theorem

The set of all k-multi-Toeplitz operators on @', F2(Hp,)
coincides with

T 1= span{AjAn} 5T = span{ A A}V,

where A, is the noncommutative polyball algebra.

v
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Noncommutative Berezin kernels

o If X = {X;} € Ba(H)™, define the noncommutative
Berezin kernel

Kx : # = (9[<1 F?(Hn)) © Bx(1)/2(H)
by setting

Kxh:= > el @ @ef, @ Bx(N2X 5 - X h,
Bi€Fy,

where the defect operator is given by

Ax (1) = (id — by ) oo (id — by, )(1).
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Noncommutative Berezin transforms

@ The Berezin transform at X € Ba(H) is the map
Bx : B(®!_F?(Hy,)) — B(H) defined by

Bxlg] = Kx(g ® h)Kx, g € B(®f1F?(Hp)).

@ If g € C*(S), the C*-algebra generated by S; 1,...,S; ,
we define the Berezin transform at X € By(H)~ by

Bxlg] = r"j} Kix(9 ® h)Kex,

where the limit is in the operator norm topology.
@ By is a unital completely positive linear map such that

Bx(SaS5) = XaXj,  a,BEF) x - xF},

where S, := 81 4, -+ - Skq, If = (a1, ..., ak).
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Free k-pluriharmonic functions

Definition
A function F is called free k-pluriharmonic on the polyball By, if
it has the form

F(X) = Z Z Z 808Xt 0y Xk Xt g, X g

meZ  meZ (a,B)eN

where (o, B) € ANiff a = (aq,...,ak) and B8 = (B4, ..., Bk), with
i, Bi € Fh, |ai| = m;7, |Bj| = m, and the series converge in
the operator norm topology for any X = (Xj, ..., Xk) € Bn(#)
and any Hilbert space H.

@ Fis bounded if [[F|| := supxcp, () |[F(X)|| < oo.
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Free k-pluriharmonic functions

@ Let PH>(By) be the vector space of all bounded free k-
pluriharmonic functions on Bp,.

@ Foreachm=1,2,..., define the norm
| llm : Mm (PH>®(By)) — [0, c0) by setting

IFilmllm := sup [[[F(X)]ml|,

where sup is taken over all X € Bn(#) and any H.

@ The norms | - ||m determine an operator space structure on
PH>°(By,), in the sense of Ruan.
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Bounded free k-pluriharmonic functions

Theorem

If F: Bn(H) — B(#) is a free k-pluriharmonic function, then
the F is bounded if and only if there exists A € Ty such that

F(X) = Bx[A] .= Ki(A® h)Kx, X € Bn(H).

In this case, A = SOT- Iirq F(rS).
r—
Moreover, the map

®:PH®(B,) — Tn definedby o(F) := A

is a completely isometric isomorphism of operator spaces.

GELU PoPEscU Hyperbolic Geometry on Noncommutative Polyballs



Multi-Topeplitz operators and free pluriharmonic functions Noncommutative regular polyballs and universal models
k-multi-Toeplitz operators
Free k-pluriharmonic functions

Dirichlet extension problem for regular polyballs

Dirichlet extension problem for regular polyballs

@ Let PH(By) be the set of all free k-pluriharmonic functions
on B, which have continuous extensions to Bn(#)~ (in
norm topology), for any Hilbert space H.

@ Assume that H is an infinite dimensional Hilbert space.
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Dirichlet extension problem for regular polyballs

Theorem

If F: Bn(H) — B(H) is a free k-pluriharmonic function, then F
has a continuous extension to the closed polyball Bn(H)~ (in
the operator norm) if and only if there exists

Ac P :=span{f‘g: f,gc An} 'l such that

F(X) = Bx[Al, X & Bn(H).

In this case, A = Iirq F(rS), where the convergence is in the
r—
operator norm. Moreover, the map

®:PH(Bn) — P definedby &(F):=A

is a completely isometric isomorphism of operator spaces.
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Noncommutative Poisson transforms of c.b. maps

@ Consider the operator system
RiRn :=span{R,Rg: a,BcF; x - xF}},
where R := (Ry,...,Rx) and R := (R;+,...,R; ).

@ If u: RyRn — B(E) is a completely bounded linear map,
then there exists a unique completely bounded linear map

ii=p@id: RaRa| @min B(H) — B(E) ©min B(H)

such that
HARY)=puA Y, A€ RiRn, Y € B(H).

Moreover, ||i|lco = ||12]lcp @nd, if  is completely positive,
then so is .
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Noncommutative Poisson transforms of c.b. maps

@ Define the free pluriharmonic Poisson kernel by setting
P(R.X):= )  RiR;®X.Xj5 X Bg(H),
(a,3)EN

where the convergence is in the operator norm topology,
and (a,,@) eNiffa = (a1,...,ak) and 3 = (61,...,5;(),
with o, 8 € F;’,_I., lai| = m;, |ﬁ,’ = m,*

@ We introduce the noncommutative Poisson transform of a
c.b.map p: RyRn — B(E) on the regular polyball to be
the map Pu: Bn(H) — B(E) @min B(H) defined by

(Pu)(X) = u[P(R,X)], X & Ba(H).
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Noncommutative Poisson transforms of c.b. maps

Let 1n: RyRn — B(E) be a completely bounded linear map.
The following statements hold.

(i) The map X — P(R, X) is a positive k-pluriharmonic
function on the polyball By, with coefficients in
B(®%_,F2(Hp,)), and has the factorization
P(R, X) = CxCx, where

k
Cx = (198x()A) J[ (1~ Ris @ Xy — -+~ Rin © Xp) ™'
i=1

(i) The noncommutative Poisson transform P is a free
k-pluriharmonic function on the regular polyball By,.
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Noncommutative Poisson transforms of c.b. maps

(iii) If u is a completely positive linear map, then Pu is a
positive free k-pluriharmonic function on By,.

@ Let F be a free k-pluriharmonic function on the polyball By,
with operator-valued coefficients in B(£), and with
representation

FX) =D ) ) Aap @XaXp.

myEZ MkEZ (ex,3)EN

@ We associate with F and each r € [0, 1) the linear map
VE, : RaRn — B(€) by setting

ve,(R5Rg) = r®PlA, 5 (a,B) €N
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Noncommutative Poisson transforms of c.b. maps

Let F: Bn(H) — B(E) ®@min B(H) be a free k-pluriharmonic
function. Then the following statements are equivalent :
(i) there exists a completely bounded linear map
u: C*(R) — B(€) such that F = Py;
(ii) the linear maps {vr,}rc[0,1) associate with F are

completely bounded and sup ||vg||cp < 00
0<r<1
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Noncommutative Poisson transforms of c.b. maps

(iii) there exists a k-tuple V = (V4, ..., Vi) of doubly
commuting row isometries acting on K and bounded linear
operators Wi, Ws» : £ — K such that

F(X) = (Wy @ ) [Cx(V)" Cx(V)] (W2 @ ),

where

k
Cx(V) = (loBx(N2) [ U= Via@Xiy— = Vin@X,) .
i=1

Moreover, in this case we can choose p such that

[ellew = sup [|ve [lco-
0<r<«1
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Noncommutative Poisson transforms of c.p. maps

Corollary

Let F : Bn(H) — B(E) ®@min B(H) be a free k-pluriharmonic
function. Then the following statements are equivalent :
(i) there exists a completely positive linear map

u: C*(R) — B(€) such that F = Py;

(i) the linear maps {vF,}rc[0,1) associate with F are
completely positive ;

(iii) there exists a k-tupleV = (V4, ..., Vi) of doubly
commuting row isometries acting on a Hilbert space K O £
and a bounded operator W : £ — K such that

F(X) = (W* @ 1) [Cx (V)" Cx(V)] (W & ).
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Noncommutative Poisson transforms of c.p. maps

@ Classical result : A map u : DX — C is a positive
k-harmonic function if and only if there is a finite positive
Borel measure on T* such that

u@) = [, P@.0)du(c). zeD"
Tk
where P(z,() is the Poisson kernel for the polydisk.
@ Open question : Is any positive free k-pluriharmonic
function on the regular polyball B, the noncommutative

Poisson transform of a completely positive linear map
w:C*(R)— B(&)?
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Noncommutative Poisson transforms of c.p. maps

@ The answer is positive for the unit ball [B(#)"]1 (when

k = 1) (P, Adv. Math., 2009) and for the regular polydisk
DK(H) (whenny =---=ng =1).

Theorem

A map f: DK(H) — B(E) @min B(H) is a positive free
k-pluriharmonic function on the regular polydisk if and only if
there exists a completely positive linear map
p:C*(My,,...,M;) — B(E) such that F = P, where
Ms,,,..., M, are the multiplication operators on H?(DD¥).
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Poincaré distance on the open unit disc

e The hyperbolic (Poincaré) distance on the open unit disc
D:={zeC: |z| < 1} is defined by

_ 1 1T lez(w)
dp(z,w) = 5 In T (W)’

where ¢ is the automorphism of D given by ¢.(w) = #5%.

z,weD,
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Poincaré distance on the open unit disc

e Basic properties of the Poincaré distance :
@ the Poincaré distance is invariant under the conformal
automorphisms of D, i.e.,

op(p(2), (W) = 0p(z,w), z,weD,

for all ¢ € Aut(D);

@ the Jp-topology induced on the open disc is the usual
planar topology ;

©Q (D, dp) is a complete metric space;
© any analytic function f : D — D is distance-decreasing, i.e.,

op(f(z2),f(w)) < dp(z,w), z,weD.
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Extensions of Poincaré distance

e Bergman introduced an analogue of the Poincaré distance for
the open unit ball of C",

By i={z = (21.....20) € C": |lz]}2 < 1},
defined by

1+ [[¢z(w)ll2
1= [lgz(wW)ll2’

where 1, is the involutive automorphism of B, that
interchanges 0 and z. The Poincaré-Bergman distance has
properties similar to those of dp.

1
Bn(z,w) = > In zZ,w e By,
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Extensions of Poincaré distance

e There are several extensions of the Poincaré-Bergman
distance to more general domains.

@ The work of R.S. Phillips and L. Harris on
infinite-dimensional Cartan domains.

@ The work of Suciu, Foias, and Ando-Suciu-Timotin on
Harnack type distances between two contractions.

© The work of P. on hyperbolic geometry on [B(H)"]1.
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Hyperbolic geometry on polyballs

Harnack domination

H
@ Preorder relation < on the closed ball Ba(#H) ™.

Definition

If A and B are in Bh(#)~, we say that A is Harnack dominated
H

by B, and denote A < B, if there exists ¢ > 0 such that

F(rA) < c?F(rB)

for any positive free k-pluriharmonic function F with operator
valued coefficients and any r € [0,1). When we want to

H
emphasize the constant ¢, we write A< B.
c
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Harnack equivalence

If A,B € Bn(H)~, we say that A and B are Harnack equivalent
(and denote A 5 B) if there exists ¢ > 1 such that

1
2 F(rB) < F(rA) < c?F(rB),  re]o,1),
for any positive free k-pluriharmonic function

F : Bn(#H) — B(E) ®min B(H), where € is a separable Hilbert
c c H
space. In this case, we write Arg B.

@ The equivalence classes with respect to the equivalence
relation £ are called Harnack parts of Bp(H) ™.
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Poisson domination

@ Recall the free pluriharmonic Poisson kernel :
P(RX):= > RiR;®XaXj
(e B)EN
for any X € Bn(*), where the convergence is in the
operator norm topology.
e If Aand B are in Bn(H)~, we say that A is Poisson

P
dominated by B, and denote A < B, if there exists ¢ > 0
such that
P(R,rA) < c*P(R, rB)

forany r € [0,1). When we want to emphasize the
P

constant ¢, we write A< B.
c
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Poisson equivalence

Definition
If A,B € Bn(H)~, we say that A and B are Poisson equivalent
(we denote A 2 B) if and only if there exists ¢ > 1 such that

’
—2P(R.rB) <P(R,rA) < c*P(R, rB)

forany r € [0,1).
P P
We also use the notation Ai; B if Aj B and Bj A.
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Hyperbolic geometry on polyballs

Harnack inequality

Theorem

Let F be a positive free k-pluriharmonic function on the regular
polyball By, with operator coefficients in B(€) and let0 < r < 1.

hen 1-r\* 14r\"
FO) (157) <FO0<FO (175)

forany X € rBn(H)~.
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Harnack and Poisson equivalence class containing 0

(Theoem .

Let A = (Ay,...,Ax) € Ba(H)™. Then the following statements
are equivalent.

@Afo;
Q r(A) <1 foranyiec {1,...,k} and there exists a > 0 such

that
P(R,rA) > al, rel0,1);

Q AcBnh(H);
oAafo
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Hyperbolic metric on Harnack parts

@ Given A,B € By(#)~ in the same Harnack part, i.e.
A X B, we introduce

wi(A,B) == inf{c> 1: A%B}.

Let A be a Harnack part of Bo(#H)~ and define
oy : A x A — RT by setting

S4(A,B) := Inwy(A,B), A,BcA.

Then 6y is a metric on A.
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Hyperbolic metric on Harnack parts

Hyperbolic geometry on polyballs

@ Schwarz-Pick lemma for free holomorphic functions on the
regular polyball B, with operator-valued coefficients, with
respect to the hyperbolic metric.

Theorem

Let® = (®4,...,Pm) : Ba(H) — [B(H)™]; be a free
holomorphic function on the regular polyball. If X, Y € Bn(H),
then ®(X) g o(Y) and

IH(®(X), (Y)) < H(X,Y),

where iy is the hyperbolic metric defined on the Harnack parts
of [B(H)™]; and on the polyball By (H), respectively.
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Hyperbolic geometry on polyballs

Hyperbolic metric on Harnack parts

@ The hyperbolic metric is invariant under the group Aut(Bn)
of all free holomorphic automorphisms of By,.

Let A and B be in Ba(H)~ such that A X B. Then

SH(A,B) = 6p(W(A), W(B)), W e Aut(Bp).
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Metric on Poisson parts of the polyball

@ Given A B € Bn(H)~ in the same Poisson part, i.e.
P .
A ~ B, we introduce

wp(A,B) = inf{c> 1 Ags}.

Let A be a Poisson part of Bn(H)~ and define the function
dp : A x A — RT by setting

5p(A,B) :=Inwp(A,B), A,BEcA.

Then ép is a metric on A.
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Metric on Poisson parts of the polyball

If A and B are in the open ball Bn(#), then

57(A, B) = Inmax { || Ca(R) Ca(R) "

Ca(R)Ca(R)™' |}

)

where

k
Cx(R) = (& Ax(NA) [TU-Ris @ Xy = = Rip @ X7,) "
i=1

forany X = (Xi,..., Xk) € Ba(H) with X; = (Xi1,..., Xin,)-
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Metric on Poisson parts of the polyball

@ Set
Bn(H); = {x € Ba(H) : X % o}

and recall that Bn(H) C Bn(#), -

Let A be a Poisson part of Bn(H), . Then the following
properties hold :

(i) op is a complete metric on A.

(ii) the dp-topology and the operator norm topology coincide
on the open polyball Bn(H).

(iii) the dy-topology is stronger that the ép-topology on Bn(H).
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Positive k-harmonic functions on the regular polydisk

Let F : DX(H) — B(E) @min B(H) be a free k-pluriharmonic
function. Then the following statements are equivalent :
(i) F is positive;
(ii) there exists a completely positive linear map
w: C*(R) — B(€) such that F = Ppu;
(i) there exists a k-tuple U = (Uy, ..., Ux) of commuting
unitaries acting on a Hilbert space K > £ and a bounded
operator W : £ — K such that

F(X) = (W & 1) [Cx(U)* Cx(U)| (W & 1),
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Positive k-harmonic functions on the regular polydisk

where

k
Cx(U) := (@ Ax(N'?) [[( - Ui® X7)
=1

forany X = (Xi,..., Xx) € DX(H).

@ The Kobayashi distance for the polydisc DX is given by

1A (W)
Ko, W) = 5 N T w) o

where 1, is the involutive automorphlsms of DK given by
1/1 . Wy — Z4 Wi — Zk
N =Ziw T = Zew

forany z = (z1,...,2x) and W = (wy, ..., wi)in DX
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Hyperbolic metric on the regular polydisk

Let DX(#) be the regular polydisk. The following statements
hold.

(i) IfA,B e DX(H)", thenA X B ifand only ifA £ B.

(iiy The metrics 0y and ép coincide on the Harnack parts of
DX(H)~.

(iii) If A and B are in D¥(H)~ and A % B, then

5n(A,B) = o(W(A),w(B)), W e Aut(D).
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Hyperbolic metric on the regular polydisk

(iv) If A and B are in DX(#), then

54(A, B) = Inmax { H ca(R)Cs(R)~'||, | Ca(R)CA(R)~" H} ,

)

where

K
Cx(R) = (1o x(N') [ [~ Ri@ X7)
i=1

forany X = (Xi,..., Xx) € DX(H).
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Hyperbolic metric on the regular polydisk

(V) dnlpkxpk is equivalent to the Kobayashi distance on the
polydisk DX and

forany z = (zq,...,2) and W = (wy, ..., wx) in DX, where
Yz = (Y2, ...,z is the involutive automorphisms of Dk
such that ¢;,(0) = z; and v;(z;) = 0.

(vi) The hyperbolic metric ¢ is complete on the Harnack parts
of DK(H), -

(vii) The dy-topology coincides with the operator norm topology
on the regular polydisk D*(#).
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Hyperbolic metric on the regular polydisk

Corollary

Letf=(f,...,fn) : DX(H) — [B(H)™]s be a free holomorphic
function on the regular polydisk. If X,Y € DX(H), then

IH(F(X), f(Y)) < Sn(X,Y),

where 6y is the hyperbolic metric. In particular, if f(0) = 0, then

k
1+ 1@l _ 71+
T @)z = 1

foranyz = (z,...,zx) inDX.
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Herglotz-Riesz representations

@ Define the space
RH(Bp) :=span {Rf: f € Holg(Bn)},

where Holg(Bn) is the set of all free holomorphic functions
in the polyball By, with coefficients in B(E).

@ If ¢ € RH(By), we consider the family {v,, }¢[0,1) Of linear

maps vy, : RaRn — B(£). Note that v, (R;,Rg) = 0 if
R, R is different from R, or Rz, for some v € Fy.
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Herglotz-Riesz representations

@ Let u: RyRn — B(E) be a completely positive linear map.
The noncommutative Herglotz-Riesz transform of u on the
regular polyball is the map Hy : Bn(#H) — B(E) @min B(H)
defined by

k
(Hu)(X) = 7t {2 ] J( — Riy @ X — - = Rip @ Xin) ™" =/
i=1

for X:= (Xi,..., Xk) € Bn(H).
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Herglotz-Riesz representations

Let f be a free holomophic function from the polyball Ba(#) to
B(E) ®min B(H). Then the following statements are equivalent.
(i) fis a free holomorphic function with ®f > 0 and the linear
maps {vyr. }refo,1) associated with Rf are completely
positive.

(i) The function f admits a Herglotz-Riesz representation

f(X) = (Hp)(X) + i3£(0),

where 1 : C*(R) — B(E) is a completely positive linear
map with the property that 1(R;,Rg) = 0 if R},Rg is not
equal to Ry or R, for some v € Fy.
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Herglotz-Riesz representations

(iii) There exist a k-tuple V = (V4, ..., Vi) of doubly
commuting row isometries on a Hilbert space K, and a
bounded linear operator W : £ — K, such that

Kk

fX) =W e i) 2] [ = Viy @ Xiq = = Vi © Xin) " 11
i=1

x (W )+ iSf(0)

and WV, VgW = 0if R;Rg is not equal to Ry or R, for
some v € Fii.
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Herglotz-Riesz representations

@ When ny =--.- = ng = 1, we obtain an operator-valued
extension of Koranyi-Pukanszky integral representation.

Ifny =--- = nx =1, then the statements in the theorem above

are equivalent to

(iv) The map f: DK(H) — B(E) @min B(H) is a free
holomorphic function on the regular polydisk and ®f > 0.
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Herglotz-Riesz representations

@ Koranyi-Pukanzky result :

A function f : DK — C is holomorphic and ®f > 0 if and only if it
admits a representation

N ASE
f(z) = /df(0)+/Tk [2/]1 T2 1] du(¢)

where 1. is a positive measure on TX such that, unless m; >0
foranyje{1,... k} ormy <0 foranyje{1,... k},

Lemegrauo) =0
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THANK YOU
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Naimark dilations

@ We provide a Naimark type dilation theorem for direct
products F}}. x --- x F, of unital free semigroups and
characterize the positive free k-pluriharmonic functions.

o LetFy :=F; x--- xF} be the unital semigroup with
neutral element g := (g¢, ..., g¥).

o Letw = (wi,..ywk)y, ¥y =15+ -57%), @ = (a1, ..., k),
and B := (B1,...,B) bein F}.

We say that K : Fi x Fi — B(€) is a left k-multi-Toeplitz kernel
if K(g,9) = Is and

7)o if S£S,, = 0.
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Naimark dilations

@ We say that T : Ff x Fy — B(&) is a right k-multi-Toeplitz
kernelif (o, w) = K(o,w), where o = (o7, ..., 0x) and
oj = g]’-m . --g;1 is the reverse of o := g;1 ~-g/!m.

Definition

A map K : Ff x Ff — B(&) has a Naimark dilation if there
exists a k-tuple of commuting row isometries V = (V4, ..., Vk),
Vi=(Vi1,...,Vin), on aHibert space £ O &, i.e. the
non-selfadjoint algebra Alg(V;) commutes with Alg(Vs) for any
i,se{1,...,k} with i # s, such that

K(o,w) = PV Ve, o,weF;.

The dilation is called minimal if K =V g+ Vol.
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Naimark dilations

Amap K : F x Fi — B(H) is a positive semi-definite left
k-multi-Toeplitz kernel on F if and only if it admits a Naimark
dilation. In this case, there is a minimal dilation which is
uniquely determined up to an isomorphism.

AmapT : Fy x Fi — B(H) is a positive semi-definite right
k-multi-Toeplitz kernel on F if and only if it admits a Naimark
dilation. In this case, there is a minimal dilation which is
uniquely determined up to an isomorphism.
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Schur type results

@ If F is a free k-pluriharmonic function on the polyball By
with operator-valued coefficients in B(£), one can
associate a right k-multi-Toeplitz kernel 'r on F;} in terms
of the coefficients of F.

@ Schur type result for positive k-pluriharmonic functions in
polyballs.

Let F be a k-pluriharmonic function on the regular polyball By,
with coefficients in B(E). Then F is positive on By, if and only if
the kernel T g, is positive semi-definite for any r € [0, 1), where
F, stands for the mapping X — F(rX).
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Schur type results

A free holomorphic function on the polyball B,, and with
operator-valued coefficients in B(£) has the form

f(X) = Z e Z Z A(a1,...,ak) ® X1 o T Xk,aka

myeN mgeN aiewﬁi,/eg ..... kY

|oj|=m;

where X = (X1, ..., Xk) € Bn(#) and the series converge in the
operator norm topology.
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Schur type results

Corollary

Letf:Bn(H) — B(E) ®@min B(H) be a free holomorphic
function. Then the following statements are equivalent.

(i) Rf > 0 on the polyball By, ;
(i) Rf(rS) >0 foranyr e [0,1);
(iii) the right k-multi Toeplitz kernel T'sy. is positive semidefinite
forany r € [0,1).
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Positive k-pluriharmonic functions

Theorem

Amap F : Bn(H) — B(E) @min B(H), with F(0) = 1, is a positive
free k-pluriharmonic function on the regular polyball if and only
if it has the form

FX)= > PeViV5le @ Xa X5,
(a,B)EN

whereV = (V4,..., V) is a k-tuple of commuting row
isometries on a space K O & such that

> PeViVgleorleltiPls,sp >0, refo,1),
(a,B)EN

and the series is convergent in the operator topology.




Herglotz-Riesz representations

Herglotz-Riesz representations

Positive k-pluriharmonic functions

Definition

A k-tuple V = (V4, ..., Vi) of commuting row isometries
Vi=(Vi1,..., Vip) is called pluriharmonic if the free
k-pluriharmonic Poisson kernel

P(V,rS):= Y ViVzertils,sy
(a,B)EN

is a positive operator for any r € [0, 1).

@ Example : V:=R = (Ry,...,Rk).
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Positive k-pluriharmonic functions

Proposition

LetV=(Vq,...,Vk), Vi=(Vi1,..., Vip), be a k-tuple of
commuting row isometries. ThenV is pluriharmonic in each of
the following particular cases :

() ifk=1andn; € N;
(i) ifV is doubly commuting, i.e. the C*-algebra C*( V)
commutes with C*(Vs) if i,s e {1,....k} withi#s;

(i) ifny =---= g =1.
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Positive k-pluriharmonic functions

Proposition

LetV = (V4,..., Vk) be a pluriharmonic tuple of commuting row
isometries on a Hilbert space K and let £ C K be a subspace.
Then the map

F(X) := (P @ NP (V,X) |eonu, X € Bn(#H)

is a positive free k-pluriharmonic function on the polyball By
with operator-valued coefficients in B(E), and F(0) = 1.
Moreover, in the particular cases when : k =1 (P, Adv. Math.,
2009), or when ny = --- = n, = 1, each positive free
k-pluriharmonic function F with F(0) = | has the form above.
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Positive k-pluriharmonic functions

@ In particular, we obtain a structure theorem for the positive
k-harmonic functions on the regular polydisk DX(#), which
extends the corresponding classical result on scalar
polydisks.

Corollary

Amap F : DX(H) — B(E) ®min B(H) is positive free
k-pluriharmonic function with F(0) = I if and only if there is a
k-tuple of doubly commuting isometriesV = (V4,..., V) on a
Hilbert space K O £ such that

F(X) := (P @ )P (V,X) |ean, X e Bn(H).

v
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