Bergman inner functions and wandering subspaces

Jörg Eschmeier

Saarland University

Multivariable Operator Theory at the Technion On the occasion of Baruch Solel's 65th birthday

June 18-22, 2017

Contractions

Let $T \in L(H)^{n}$ be a commuting tuple
T is a row contraction if $H^{n} \xrightarrow{\left(T_{1}, \ldots, T_{n}\right)} H$ is a contraction

$$
\Leftrightarrow 1_{H}-T T^{*}=1_{H}-\sum_{i=1}^{n} T_{i} T_{i}^{*} \geq 0
$$

or equivalently, if

$$
\Leftrightarrow\left(I-\sigma_{T}\right)\left(1_{H}\right) \geq 0,
$$

where $\sigma_{T}: L(H) \rightarrow L(H), X \mapsto \sum_{i=1}^{n} T_{i} X T_{i}^{*}$.
Standard example: M_{z} on the functional Hibert space $H(\mathbb{B})$ with kernel

Contractions

Let $T \in L(H)^{n}$ be a commuting tuple
T is a row contraction if $H^{n} \xrightarrow{\left(T_{1}, \ldots, T_{n}\right)} H$ is a contraction

$$
\Leftrightarrow 1_{H}-T T^{*}=1_{H}-\sum_{i=1}^{n} T_{i} T_{i}^{*} \geq 0
$$

or equivalently, if

$$
\Leftrightarrow\left(I-\sigma_{T}\right)\left(1_{H}\right) \geq 0,
$$

where $\sigma_{T}: L(H) \rightarrow L(H), X \mapsto \sum_{i=1}^{n} T_{i} X T_{i}^{*}$.
Standard example: M_{z} on the functional Hilbert space $H(\mathbb{B})$ with kernel

$$
K: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{C}, K(z, w)=\frac{1}{1-\langle z, w\rangle}
$$

Dilations

For a row contraction $T \in L(H)^{n}$, define

$$
D_{T^{*}}=\left(1_{H}-T T^{*}\right)^{1 / 2}, \mathcal{D}=\overline{D_{T^{*}} H}
$$

Theorem (Müller-Vasilescu, Arveson)

$T \in L(H)^{n}$ is a row contraction iff

$$
\left.T \cong P_{M^{\perp}}\left(M_{z} \oplus U\right)\right|_{M \perp}
$$

with $M \in \operatorname{Lat}\left(M_{z} \oplus U, H(\mathbb{B}, \mathcal{D}) \oplus K\right)$ and $U \in L(K)$ is a spherical unitary.

The unitary part $U \in L(K)^{n}$ does not occur iff T is pure ($\Leftrightarrow C .0$), that is, if
where again $\sigma_{T}(X)=\sum_{i=1}^{n} T_{i} X T_{i}^{*}$

Dilations

For a row contraction $T \in L(H)^{n}$, define

$$
D_{T^{*}}=\left(1_{H}-T T^{*}\right)^{1 / 2}, \mathcal{D}=\overline{D_{T^{*}} H}
$$

Theorem (Müller-Vasilescu, Arveson)

$T \in L(H)^{n}$ is a row contraction iff

$$
\left.T \cong P_{M^{\perp}}\left(M_{z} \oplus U\right)\right|_{M \perp}
$$

with $M \in \operatorname{Lat}\left(M_{z} \oplus U, H(\mathbb{B}, \mathcal{D}) \oplus K\right)$ and $U \in L(K)$ is a spherical unitary.

The unitary part $U \in L(K)^{n}$ does not occur iff T is pure ($\Leftrightarrow C_{\text {. }}$), that is, if

$$
\mathrm{SOT}-\lim _{k \rightarrow \infty} \sigma_{T}^{k}\left(1_{H}\right)=0,
$$

where again $\sigma_{T}(X)=\sum_{i=1}^{n} T_{i} X T_{i}^{*}$.

m-hypercontractions

What happens if $H(\mathbb{B})$ is replaced by the functional Hilbert space $H_{m}(\mathbb{B})$ with kernel

$$
K_{m}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{C}, K_{m}(z, w)=\frac{1}{(1-\langle z, w\rangle)^{m}} ?
$$

Then even all defect operators

$$
\Delta_{M_{z}}^{(k)}=\left(1-\sigma_{M_{z}}\right)^{k}\left(1 H_{m}(B)\right) \geq 0 \quad(k=0, \ldots, m)
$$

are positive.

Definition

$T \in L(H)^{n}$ is called an m-hypercontraction if

m-hypercontractions

What happens if $H(\mathbb{B})$ is replaced by the functional Hilbert space $H_{m}(\mathbb{B})$ with kernel

$$
K_{m}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{C}, K_{m}(z, w)=\frac{1}{(1-\langle z, w\rangle)^{m}} ?
$$

Then even all defect operators

$$
\Delta_{M_{z}}^{(k)}=\left(I-\sigma_{M_{z}}\right)^{k}\left(1_{H_{m}(\mathbb{B})}\right) \geq 0 \quad(k=0, \ldots, m)
$$

are positive.

Definition

$T \in L(H)^{n}$ is called an m-hypercontraction if

m-hypercontractions

What happens if $H(\mathbb{B})$ is replaced by the functional Hilbert space $H_{m}(\mathbb{B})$ with kernel

$$
K_{m}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{C}, K_{m}(z, w)=\frac{1}{(1-\langle z, w\rangle)^{m}} ?
$$

Then even all defect operators

$$
\Delta_{M_{z}}^{(k)}=\left(I-\sigma_{M_{z}}\right)^{k}\left(1_{H_{m}(\mathbb{B})}\right) \geq 0 \quad(k=0, \ldots, m)
$$

are positive.

Definition

$T \in L(H)^{n}$ is called an m-hypercontraction if

$$
\Delta_{T}^{(k)}=\left(I-\sigma_{T}\right)^{k}\left(1_{H}\right) \geq 0 \quad(k=0, \ldots, m)
$$

Dilations

For an m-hypercontraction, $T \in L(H)^{n}$ define $C=\left(\Delta_{T}^{(m)}\right)^{1 / 2}$ and $\mathcal{D}=\overline{C H}$.

Theorem (Müller-Vasilescu'93)
$T \in L(H)^{n}$ is an m-hypercontraction iff

$$
\left.T \cong P_{M^{\perp}}\left(M_{z} \oplus U\right)\right|_{M^{\perp}}
$$

with $M \in \operatorname{Lat}\left(M_{z} \oplus U, H_{m}(\mathbb{B}, \mathcal{D}) \oplus K\right)$ and a spherical unitary U.

The unitary part $U \in L(K)^{n}$ does not occur iff T is pure ($\Leftrightarrow C_{.0}$), that is,

In this case: $\quad j_{T}:\left(H, T^{*}\right) \rightarrow\left(H_{m}(\mathbb{B}, \mathcal{D}), M_{z}^{*}\right)$,

Dilations

For an m-hypercontraction, $T \in L(H)^{n}$ define $C=\left(\Delta_{T}^{(m)}\right)^{1 / 2}$ and $\mathcal{D}=\overline{C H}$.

Theorem (Müller-Vasilescu'93)

$T \in L(H)^{n}$ is an m-hypercontraction iff

$$
\left.T \cong P_{M^{\perp}}\left(M_{z} \oplus U\right)\right|_{M^{\perp}}
$$

with $M \in \operatorname{Lat}\left(M_{z} \oplus U, H_{m}(\mathbb{B}, \mathcal{D}) \oplus K\right)$ and a spherical unitary U.

The unitary part $U \in L(K)^{n}$ does not occur iff T is pure ($\Leftrightarrow C_{0}$), that is,

$$
\mathrm{SOT}-\lim _{k \rightarrow \infty} \sigma_{T}^{k}\left(1_{H}\right)=0
$$

In this case: $j_{T}:\left(H, T^{*}\right) \rightarrow\left(H_{m}(\mathbb{B}, \mathcal{D}), M_{z}^{*}\right)$,

Dilations

For an m-hypercontraction, $T \in L(H)^{n}$ define $C=\left(\Delta_{T}^{(m)}\right)^{1 / 2}$ and $\mathcal{D}=\overline{C H}$.

Theorem (Müller-Vasilescu'93)

$T \in L(H)^{n}$ is an m-hypercontraction iff

$$
\left.T \cong P_{M^{\perp}}\left(M_{z} \oplus U\right)\right|_{M^{\perp}}
$$

with $M \in \operatorname{Lat}\left(M_{z} \oplus U, H_{m}(\mathbb{B}, \mathcal{D}) \oplus K\right)$ and a spherical unitary U.

The unitary part $U \in L(K)^{n}$ does not occur iff T is pure ($\Leftrightarrow C_{0}$), that is,

$$
\mathrm{SOT}-\lim _{k \rightarrow \infty} \sigma_{T}^{k}\left(1_{H}\right)=0
$$

In this case: $\quad j_{T}:\left(H, T^{*}\right) \rightarrow\left(H_{m}(\mathbb{B}, \mathcal{D}), M_{z}^{*}\right)$,

$$
j_{T} x=C\left(1_{H}-Z T^{*}\right)^{-m} X \quad \text { is an isometric intertwiner }
$$

Wandering subspaces

A closed subspace $\mathcal{W} \subset H$ is wandering for $T \in L(H)_{\text {com }}^{n}$ if \quad (Halmos 1961: $\mathrm{n}=1$)

$$
\mathcal{W} \perp T^{\alpha} \mathcal{W} \quad \forall \alpha \in \mathbb{N}^{n} \backslash\{0\}
$$

Basic properties:

(1) $M \in \operatorname{Lat}(T) \Rightarrow W_{T}(M)=M \ominus \sum_{i=1}^{n} T_{i} M \in \operatorname{Wand}(T)$
(2) $M=V T^{\alpha}\left\{x_{1}, \ldots, x_{1}\right\} \Rightarrow \operatorname{dim} W_{T}(M) \leq 1$
(8) If $\mathcal{W} \in \operatorname{Wand}(T), M=V T^{\alpha} \mathcal{W} \Rightarrow \mathcal{W}=W_{T}(M)$ and
$\left.T\right|_{M}$ is N-cyclic if $N=\operatorname{dim} \mathcal{W}<\infty$.

Theorem (Beurling's theorem)

If $M \in \operatorname{Lat}\left(M_{Z}, H D(\mathbb{D})\right)$, then
(i) $W_{M_{z}}(M)=\mathbb{C} \theta$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$
(ii) $M=V_{k} M_{z}^{k} W_{M_{z}}(M)=\theta H^{2}(\mathbb{D}) \quad$ (Wandering subspace property)

Wandering subspaces

A closed subspace $\mathcal{W} \subset H$ is wandering for $T \in L(H)_{\text {com }}^{n}$ if (Halmos 1961: $\mathrm{n}=1$)

$$
\mathcal{W} \perp T^{\alpha} \mathcal{W} \quad \forall \alpha \in \mathbb{N}^{n} \backslash\{0\}
$$

Basic properties:
(1) $M \in \operatorname{Lat}(T) \Rightarrow W_{T}(M)=M \ominus \sum_{i=1}^{n} T_{i} M \in \operatorname{Wand}(T)$
(2) $M=\bigvee T^{\alpha}\left\{x_{1}, \ldots, x_{l}\right\} \Rightarrow \operatorname{dim} W_{T}(M) \leq 1$
(3) If $\mathcal{W} \in \operatorname{Wand}(T), M=\bigvee T^{\alpha} \mathcal{W} \Rightarrow \mathcal{W}=W_{T}(M)$ and

$$
\left.T\right|_{M} \text { is } N \text {-cyclic if } N=\operatorname{dim} \mathcal{W}<\infty .
$$

Theorem (Beurling's theorem)

If $M \in \operatorname{Iat}\left(M M_{z} H^{2}(\mathbb{T})\right)$), then
(i) $W_{M_{z}}(M)=\mathbb{C} \theta$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$
(ii) $M=V_{k} M_{z}^{k} W_{M_{z}}(M)=\theta H^{2}(\mathbb{D}) \quad$ (Wandering subspace property)

Wandering subspaces

A closed subspace $\mathcal{W} \subset H$ is wandering for $T \in L(H)_{\text {com }}^{n}$ if (Halmos 1961: $\mathrm{n}=1$)

$$
\mathcal{W} \perp T^{\alpha} \mathcal{W} \quad \forall \alpha \in \mathbb{N}^{n} \backslash\{0\}
$$

Basic properties:
(1) $M \in \operatorname{Lat}(T) \Rightarrow W_{T}(M)=M \ominus \sum_{i=1}^{n} T_{i} M \in \operatorname{Wand}(T)$
(2) $M=\bigvee T^{\alpha}\left\{x_{1}, \ldots, x_{l}\right\} \Rightarrow \operatorname{dim} W_{T}(M) \leq 1$
(3) If $\mathcal{W} \in \operatorname{Wand}(T), M=\bigvee T^{\alpha} \mathcal{W} \Rightarrow \mathcal{W}=W_{T}(M)$ and

$$
\left.T\right|_{M} \text { is } N \text {-cyclic if } N=\operatorname{dim} \mathcal{W}<\infty .
$$

Theorem (Beurling's theorem)

If $M \in \operatorname{Lat}\left(M_{z}, H^{2}(\mathbb{D})\right)$, then
(i) $W_{M_{z}}(M)=\mathbb{C} \theta$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$
(ii) $M=\bigvee_{k} M_{z}^{k} W_{M_{z}}(M)=\theta H^{2}(\mathbb{D}) \quad$ (Wandering subspace property)

Generalized Bergman spaces

$$
\begin{aligned}
H_{m}(\mathbb{B}, \mathcal{D}) & =H\left(\frac{1_{\mathcal{D}}}{(1-\langle z, w\rangle)^{m}}\right) \\
& =\left\{f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} z^{\alpha} \in \mathcal{O}(\mathbb{B}, \mathcal{D}) ;\|f\|^{2}=\sum_{\alpha \in \mathbb{N}^{n}} \frac{\left\|f_{\alpha}\right\|^{2}}{\rho_{m}(\alpha)}<\infty\right\}
\end{aligned}
$$

Particular cases:

$$
\begin{gathered}
H_{1}(\mathbb{B}, \mathcal{D})=\text { Drury-Arveson space } \stackrel{n=1}{=} H^{2}(\mathbb{D}, \mathcal{D}) \\
H_{n}(\mathbb{B}, \mathcal{D})=\left\{f \in \mathcal{O}(\mathbb{B}, \mathcal{D}) ;\|f\|^{2}=\sup _{0<r<1} \int_{S}\|f(r \xi)\|^{2} d \xi<\infty\right\} \text { Hardy space } \\
H_{n+1}(\mathbb{B}, \mathcal{D})=L_{a}^{2}(\mathbb{B}, \mathcal{D})=\left\{f \in \mathcal{O}(\mathbb{B}, \mathcal{D}) ; \int_{\mathbb{B}}\|f\|^{2} d z<\infty\right\} \text { Bergman space } \\
H_{n+k}(\mathbb{B}, \mathcal{D})=\left\{f \in \mathcal{O}(\mathbb{B}, \mathcal{D}) ; \int_{\mathbb{B}}\|f\|^{2}\left(1-|z|^{2}\right)^{k} d z<\infty\right\}
\end{gathered}
$$

Wandering subspace property and index

The index of $M \in \operatorname{Lat}(T)$ is defined as

$$
\operatorname{ind}(M)=\operatorname{dim} W_{T}(M)=\operatorname{dim} M \ominus\left(\sum_{i=1}^{n} T_{i} M\right)
$$

	Wandering subspace property	$\operatorname{ind}(M)<\infty \forall M \in \operatorname{Lat}\left(M_{z}\right)$
$H^{2}(\mathbb{D})$	Yes: Beurling	Yes: Beurling
$L_{a}^{2}(\mathbb{D})$	Yes: Aleman-Richter-Sundberg	No: Scott Brown, Hedenmalm
$H_{m}(\mathbb{D})$	Yes $(1 \leq m \leq 3):$ Hedenmalm, Shimorin	No!
	No $(m \geq 6):$ Hedenmalm	

What happens in the multivariable case $n \geq 2$?

Candidate for best possible results: $H_{1}(\mathbb{B})=H\left(\frac{1}{1-\langle z, w\rangle}\right)$

- Beurling-Lax-Halmos thm.: McCullough-Trent
- Nevanlinna-Pick interpolation: Ball-Bolotnikov, E.-Putinar
- Dilation theory: Müller-Vasilescu, Arveson, Davidson
- Non-commutative (Fock space) versions: Popescu

However:

- $\exists M \in \operatorname{Lat}\left(M_{z}, H_{1}(\mathbb{B})\right)$ with ind $(M)=\infty$ (Green-Richter-Sundberg)
- $M_{a}=\left\{f \in H_{1}(\mathbb{B}) ; f(a)=0\right\} \Rightarrow W_{M_{z}}\left(M_{a}\right)=\mathbb{C} \theta_{a}$ for $a \neq 0$ $\Rightarrow Z\left(M_{a}\right)=\{a\} \neq Z\left(\theta_{a}\right)=Z\left(\left[W_{M_{z}}\left(M_{a}\right)\right]\right)$

What happens in the multivariable case $n \geq 2$?

Candidate for best possible results: $H_{1}(\mathbb{B})=H\left(\frac{1}{1-\langle z, w\rangle}\right)$

- Beurling-Lax-Halmos thm.: McCullough-Trent
- Nevanlinna-Pick interpolation: Ball-Bolotnikov, E.-Putinar
- Dilation theory: Müller-Vasilescu, Arveson, Davidson
- Non-commutative (Fock space) versions: Popescu

However:

- $\exists M \in \operatorname{Lat}\left(M_{z}, H_{1}(\mathbb{B})\right)$ with $\operatorname{ind}(M)=\infty$ (Green-Richter-Sundberg)
- $M_{a}=\left\{f \in H_{1}(\mathbb{B}) ; f(a)=0\right\} \Rightarrow W_{M_{z}}\left(M_{a}\right)=\mathbb{C} \theta_{a}$ for $a \neq 0$

$$
\Rightarrow Z\left(M_{a}\right)=\{a\} \neq Z\left(\theta_{a}\right)=Z\left(\left[W_{M_{z}}\left(M_{a}\right)\right]\right) .
$$

Homogeneous wandering subspace property

Suppose that H has an orthogonal decomposition

$$
H=\oplus_{k=0}^{\infty} H_{k}
$$

and that $T \in L(H)_{\text {com }}^{n}$ is homogeneous, that is,

$$
T_{i} H_{k} \subset H_{k+1} \quad(i=1, \ldots, n, k \geq 0)
$$

A closed subspace $M \subset H$ is called homogeneous if

T has the homogeneous wandering subspace property if

Homogeneous wandering subspace property

Suppose that H has an orthogonal decomposition

$$
H=\oplus_{k=0}^{\infty} H_{k}
$$

and that $T \in L(H)_{\mathrm{com}}^{n}$ is homogeneous, that is,

$$
T_{i} H_{k} \subset H_{k+1} \quad(i=1, \ldots, n, k \geq 0)
$$

A closed subspace $M \subset H$ is called homogeneous if

$$
M=\bigvee_{k \geq 0} M \cap H_{k} \quad\left(\Leftrightarrow P_{H_{k}} M \subset M \forall k\right)
$$

T has the homogeneous wandering subspace property if

Homogeneous wandering subspace property

Suppose that H has an orthogonal decomposition

$$
H=\oplus_{k=0}^{\infty} H_{k}
$$

and that $T \in L(H)_{\text {com }}^{n}$ is homogeneous, that is,

$$
T_{i} H_{k} \subset H_{k+1} \quad(i=1, \ldots, n, k \geq 0)
$$

A closed subspace $M \subset H$ is called homogeneous if

$$
M=\bigvee_{k \geq 0} M \cap H_{k} \quad\left(\Leftrightarrow P_{H_{k}} M \subset M \forall k\right)
$$

T has the homogeneous wandering subspace property if

$$
M=\bigvee_{\alpha \in \mathbb{N}^{n}} T^{\alpha} W_{T}(M) \quad \forall M \in \operatorname{Lat}_{\mathrm{hom}}(T)
$$

The homogeneous world is OK

Let $T \in L(H)^{n}$ be homogeneous.

Theorem

T has the homogeneous wandering subspace property and

$$
\begin{gathered}
\operatorname{Wand}_{\text {hom }}(T) \rightarrow \operatorname{Lat}_{\text {hom }}(T), \mathcal{W} \mapsto \bigvee_{\alpha \in \mathbb{N}^{n}} T^{\alpha} \mathcal{W} \\
\operatorname{Lat}_{\text {hom }}(T) \rightarrow \operatorname{Wand}_{\text {hom }}(T), M \mapsto W_{T}(M)=M \ominus\left(\sum_{i=1}^{n} T_{i} M\right)
\end{gathered}
$$

are bijections that are inverse to each other.

Main Ideas: Show that $W_{T}(H)$ is homogeneous with components

and show by induction that $H_{k} \subset\left[W_{T}(H)\right]$ using

The homogeneous world is OK

Let $T \in L(H)^{n}$ be homogeneous.

Theorem

T has the homogeneous wandering subspace property and

$$
\begin{gathered}
\operatorname{Wand}_{\text {hom }}(T) \rightarrow \operatorname{Lat}_{\text {hom }}(T), \mathcal{W} \mapsto \bigvee_{\alpha \in \mathbb{N}^{n}} T^{\alpha} \mathcal{W} \\
\operatorname{Lat}_{\text {hom }}(T) \rightarrow \operatorname{Wand}_{\text {hom }}(T), M \mapsto W_{T}(M)=M \ominus\left(\sum_{i=1}^{n} T_{i} M\right)
\end{gathered}
$$

are bijections that are inverse to each other.

Main Ideas: Show that $W_{T}(H)$ is homogeneous with components

$$
W_{T}(H) \cap H_{k}=H_{k} \ominus\left(\sum_{i=1}^{n} T_{i} H_{k-1}\right)
$$

and show by induction that $H_{k} \subset\left[W_{T}(H)\right]$ using

$$
H_{k}=\left(W_{T}(H) \cap H_{k}\right) \oplus \overline{\left(\sum_{i=1}^{n} T_{i} H_{k-1}\right)} \subset W_{T}(H)+\left[H_{k-1}\right]
$$

What about the index

Suppose in addition that

$$
\operatorname{dim} H_{0}<\infty \text { and } H=\bigvee\left(T^{\alpha} H_{0} ; \alpha \in \mathbb{N}^{n}\right)
$$

Then
(1) $H_{k}=\sum_{|\alpha|=k} T^{\alpha} H_{0} \quad(k \geq 0)$
(2) $\tilde{H}=\oplus_{k} \geq 0 H_{k}$ is a finitely generated $\mathbb{C}[z]$-module $(p x=p(T) x)$.

Corollary ($\mathcal{W} \in$ Wandhom $_{\text {h }}(T), M \in \operatorname{Lathom}(T)$)

- $\operatorname{dim} \mathcal{W}<\infty$
- $M=\left[W_{T}(M)\right], N:=\operatorname{ind}(M)=\operatorname{dim} W_{T}(M)<\left.\infty T\right|_{M} N$-cyclic
- each basis of $W_{T}(M)$ generates \tilde{M} as a $\mathbb{C}[z]$-module.

Proof. $\tilde{M}=\oplus_{k} \geq 0 M_{k}$ is finitely generated as a $\mathbb{C}[z]$-submodule $\tilde{M} \subset \tilde{H}$ and

What about the index

Suppose in addition that

$$
\operatorname{dim} H_{0}<\infty \text { and } H=\bigvee\left(T^{\alpha} H_{0} ; \alpha \in \mathbb{N}^{n}\right)
$$

Then
(1) $H_{k}=\sum_{|\alpha|=k} T^{\alpha} H_{0} \quad(k \geq 0)$
(2) $\tilde{H}=\oplus_{k \geq 0} H_{k}$ is a finitely generated $\mathbb{C}[z]$-module $(p x=p(T) x)$.

Corollary $\left(\mathcal{W} \in \operatorname{Wand}_{\text {hom }}(T), M \in \operatorname{Lathom}(T)\right)$

- $\operatorname{dim} \mathcal{W}<\infty$
- $M=\left[W_{T}(M)\right], N:=\operatorname{ind}(M)=\operatorname{dim} W_{T}(M)<\left.\infty T\right|_{M} N$-cyclic
- each basis of $W_{T}(M)$ generates \tilde{M} as a $\mathbb{C}[z]$-module.

Proof. $\tilde{M}=\oplus_{k \geq 0} M_{k}$ is finitely generated as a $\mathbb{C}[z]$-submodule $\tilde{M} \subset \tilde{H}$ and

$$
M=\bigvee_{\alpha \in \mathbb{N}^{n}} T^{\alpha}\left\{x_{1}, \ldots, x_{\ell}\right\} \text { for any set of generators }\left(\Rightarrow \operatorname{dim} W_{T}(M) \leq \ell\right)
$$

Applications

Corollary

Let $M \in \operatorname{Lat}_{\text {hom }}(T), N=\operatorname{dim} W_{T}(M)$
(a) $\rho: \tilde{M} / \sum_{i=1}^{n} T_{i} \tilde{M} \rightarrow M / \overline{\sum_{i=1}^{n} T_{i} M} \cong W_{T}(M),[x] \mapsto[x]$ is an isomorphism.
(b) $x_{i} \in M_{k_{i}}(1 \leq i \leq N)$ generators for $\tilde{M} \Rightarrow \forall k \in \mathbb{N}$

$$
\rho\left(\left\{\left[x_{i}\right] ; k_{i}=k\right\}\right) \text { is a basis of } W_{T}(M) \cap H_{k} .
$$

Corollary

$I \subset \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ homogeneous ideal, $M=\bar{I} \subset H_{m}(\mathbb{B})$
(a) $\mathcal{W}=M \ominus\left(\sum_{i=1}^{n} z_{i} M\right)=I \ominus \sum_{i=1}^{n} z_{i} I \subset I$
(b) each basis of \mathcal{W} is a mínimal set of generators for I
(c) homogeneous generators of degree $k \hat{=}$ basis of $\mathcal{W} \cap \mathbb{H}_{k} \forall k$.

K_{m}-inner functions

Hedenmalm'91: $\quad f \in L_{a}^{2}(\mathbb{D})$ is Bergman inner if

$$
\text { (*) } \int_{\mathbb{D}}\left(|f(z)|^{2}-1\right) z^{k} d z=0 \quad \forall k \geq 0
$$

Theorem (Hedenmalm '91, Zhu '96)

If f is Bergman inner, then
(a) $H^{2}(\mathbb{D}) \rightarrow L_{a}^{2}(\mathbb{D}), g \mapsto f g$ is a contractive multiplier
(b) $|f(z)|^{2} \leq 1 /\left(1-|z|^{2}\right) \quad \forall z \in \mathbb{D}$

$(*) \quad \Leftrightarrow \quad W_{f}: \mathbb{D} \rightarrow L(\mathbb{C}) \cong \mathbb{C}, z \mapsto M_{f(z)}$ satisfies

(i) $\mathbb{C} \rightarrow L_{a}^{2}(\mathbb{D}), \alpha \mapsto W_{f} \alpha$ is an isometry
(ii) $W_{f} \mathbb{C} \perp z^{k}\left(W_{f} \mathbb{C}\right) \forall k \geq 1$

K_{m}-inner functions

Hedenmalm'91: $\quad f \in L_{a}^{2}(\mathbb{D})$ is Bergman inner if

$$
\text { (*) } \int_{\mathbb{D}}\left(|f(z)|^{2}-1\right) z^{k} d z=0 \quad \forall k \geq 0
$$

Theorem (Hedenmalm '91, Zhu '96)

If f is Bergman inner, then
(a) $H^{2}(\mathbb{D}) \rightarrow L_{a}^{2}(\mathbb{D}), g \mapsto f g$ is a contractive multiplier
(b) $|f(z)|^{2} \leq 1 /\left(1-|z|^{2}\right) \quad \forall z \in \mathbb{D}$
$(*) \quad \Leftrightarrow \quad W_{f}: \mathbb{D} \rightarrow L(\mathbb{C}) \cong \mathbb{C}, z \mapsto M_{f(z)}$ satisfies
(i) $\mathbb{C} \rightarrow L_{a}^{2}(\mathbb{D}), \alpha \mapsto W_{f} \alpha$ is an isometry
(ii) $W_{f} \mathbb{C} \perp z^{k}\left(W_{f} \mathbb{C}\right) \forall k \geq 1$

Parametrization of wandering subspaces

Let $\mathcal{E}_{*}, \mathcal{E}$ be Hilbert spaces, $H(K) \subset \mathcal{O}(\mathbb{B})$ a functional Hilbert space such that $M_{z} \in L(H(K))^{n}$ is a row contraction.

A function $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right)$ is called K-inner if
(i) $\mathcal{E}_{*} \rightarrow H(K, \mathcal{E}), x \mapsto W x$ is an isometry,
(ii) $\left(W \mathcal{E}_{*}\right) \perp M_{z}^{\alpha}\left(W \mathcal{E}_{*}\right) \forall \alpha \in \mathbb{N}^{n} \backslash\{0\}$.

Theorem (Bhattacharjee, Keshari, Sarkar, E.)

(i) W K-inner $\Rightarrow M_{M \prime}: H_{1}\left(\mathbb{B}, \mathcal{E}_{*}\right) \rightarrow H(K, \mathcal{E})$ contractive multiplier
(ii) Wand $\left(M_{z}, H(K, \mathcal{E})\right)=\left\{W \mathcal{E}_{*} ; W\right.$-inner for some $\left.\mathcal{E}_{*}\right\}$

Idea for (ii): For $\mathcal{W} \in \operatorname{Wand}\left(M_{z}\right)$, choose a partially isometric multiplier (Sarkar, Ball)
$M_{0}: H(\mathbb{D}, \mathcal{D}) \rightarrow H(K, \mathcal{E})$ with $\operatorname{ran} M_{0}=[M 1]$
Define $\mathcal{E}_{*}=\mathcal{D} \cap\left(\operatorname{ker} M_{\theta}\right)^{\perp}$ and $W(z)=\left.\theta(z)\right|_{\mathcal{E}_{*}}$. Then $\mathcal{W}=W\left(\mathcal{E}_{*}\right)$.

Parametrization of wandering subspaces

Let $\mathcal{E}_{*}, \mathcal{E}$ be Hilbert spaces, $H(K) \subset \mathcal{O}(\mathbb{B})$ a functional Hilbert space such that $M_{z} \in L(H(K))^{n}$ is a row contraction.

A function $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right)$ is called K-inner if
(i) $\mathcal{E}_{*} \rightarrow H(K, \mathcal{E}), x \mapsto W x$ is an isometry,
(ii) $\left(W \mathcal{E}_{*}\right) \perp M_{z}^{\alpha}\left(W \mathcal{E}_{*}\right) \forall \alpha \in \mathbb{N}^{n} \backslash\{0\}$.

Theorem (Bhattacharjee, Keshari, Sarkar, E.)

(i) $W K$-inner $\Rightarrow M_{W}: H_{1}\left(\mathbb{B}, \mathcal{E}_{*}\right) \rightarrow H(K, \mathcal{E})$ contractive multiplier
(ii) $\operatorname{Wand}\left(M_{z}, H(K, \mathcal{E})\right)=\left\{W \mathcal{E}_{*} ; W\right.$-inner for some $\left.\mathcal{E}_{*}\right\}$.

Idea for (ii): For $\mathcal{W} \in$ Wand $\left(M_{z}\right)$, choose a partially isometric multiplier (Sarkar, Ball) $M_{\theta}: H_{1}(\mathbb{B}, \mathcal{D}) \rightarrow H(K, \mathcal{E})$ with $\operatorname{ran} M_{\theta}=[\mathcal{Y}]$.

Define $\mathcal{E}_{*}=\mathcal{D} \cap\left(\operatorname{ker} M_{\theta}\right)^{\perp}$ and $W(z)=\left.\theta(z)\right|_{\varepsilon_{*}}$. Then $\mathcal{W}=W\left(\mathcal{E}_{*}\right)$.

Parametrization of wandering subspaces

Let $\mathcal{E}_{*}, \mathcal{E}$ be Hilbert spaces, $H(K) \subset \mathcal{O}(\mathbb{B})$ a functional Hilbert space such that $M_{z} \in L(H(K))^{n}$ is a row contraction.

A function $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right)$ is called K-inner if
(i) $\mathcal{E}_{*} \rightarrow H(K, \mathcal{E}), x \mapsto W x$ is an isometry,
(ii) $\left(W \mathcal{E}_{*}\right) \perp M_{z}^{\alpha}\left(W \mathcal{E}_{*}\right) \forall \alpha \in \mathbb{N}^{n} \backslash\{0\}$.

Theorem (Bhattacharjee, Keshari, Sarkar, E.)

(i) $W K$-inner $\Rightarrow M_{W}: H_{1}\left(\mathbb{B}, \mathcal{E}_{*}\right) \rightarrow H(K, \mathcal{E})$ contractive multiplier
(ii) $\operatorname{Wand}\left(M_{z}, H(K, \mathcal{E})\right)=\left\{W \mathcal{E}_{*} ; W\right.$-inner for some $\left.\mathcal{E}_{*}\right\}$.

Idea for (ii): For $\mathcal{W} \in \operatorname{Wand}\left(M_{z}\right)$, choose a partially isometric multiplier (Sarkar, Ball)

$$
M_{\theta}: H_{1}(\mathbb{B}, \mathcal{D}) \rightarrow H(K, \mathcal{E}) \text { with ran } M_{\theta}=[\mathcal{W}]
$$

Define $\mathcal{E}_{*}=\mathcal{D} \cap\left(\operatorname{ker} M_{\theta}\right)^{\perp}$ and $W(z)=\left.\theta(z)\right|_{\mathcal{E}_{*}}$. Then $\mathcal{W}=W\left(\mathcal{E}_{*}\right)$.

K_{m}-inner functions as transfer functions: $n=1$

Theorem (Olofsson '06/'07)

A function $W: \mathbb{D} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right)$ is K_{m}-inner iff
there exist a pure m-hypercontraction $T \in L(H)$ and a matrix operator

$$
\left(\begin{array}{c|c}
T^{*} & B \\
\hline C & D
\end{array}\right) \in L\left(H \oplus \mathcal{E}_{*}, H \oplus \mathcal{E}\right)
$$

with $W(z)=D+z C\left(\sum_{k=1}^{m}\left(1_{H}-z T^{*}\right)^{-k}\right) B$ and
(i) $C^{*} C=\Delta_{T}^{(m)}$
(ii) $D^{*} C+B^{*}\left(\sum_{k=0}^{m-1} \Delta_{T}^{(k)}\right) B=0$
(iii) $D^{*} D+B^{*}\left(\sum_{k=0}^{m-1} \Delta_{T}^{(k)}\right) B=1_{\mathcal{E}_{*}}$.

Here $\Delta_{T}^{(k)}=\left(1-\sigma_{T}\right)^{k}\left(1_{H}\right) \geq 0$ are the k th order defect operators of T.

K_{m}-inner functions as transfer functions: $n \geq 1$

Theorem (E.)

A function $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right)$ is K_{m}-inner iff there exist a pure m-hypercontraction $T \in L(H)^{n}$ and a matrix operator

$$
\left(\begin{array}{c|c}
T^{*} & B \\
\hline C & D
\end{array}\right) \in L\left(H \oplus \mathcal{E}_{*}, H^{n} \oplus \mathcal{E}\right)
$$

with $W(z)=D+C\left(\sum_{k=1}^{m}\left(1_{H}-Z T^{*}\right)^{-k}\right) Z B$ and (i)-(iii) as well as
(iv) $\operatorname{Im}(\oplus j) B \subset M_{z}^{*} H_{m}(\mathbb{B}, \mathcal{E})$.

Corollary

$M \in \operatorname{Lat}\left(M_{z}, H_{m}(B)\right) \Rightarrow \forall f \in W_{M_{z}}(M)=M \ominus \sum_{i=1}^{Z_{i}} z_{i} M$

K_{m}-inner functions as transfer functions: $n \geq 1$

Theorem (E.)

A function $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right)$ is K_{m}-inner iff there exist a pure m-hypercontraction $T \in L(H)^{n}$ and a matrix operator

$$
\left(\begin{array}{c|c}
T^{*} & B \\
\hline C & D
\end{array}\right) \in L\left(H \oplus \mathcal{E}_{*}, H^{n} \oplus \mathcal{E}\right)
$$

with $W(z)=D+C\left(\sum_{k=1}^{m}\left(1_{H}-Z T^{*}\right)^{-k}\right) Z B$ and (i)-(iii) as well as
(iv) $\operatorname{Im}(\oplus j) B \subset M_{z}^{*} H_{m}(\mathbb{B}, \mathcal{E})$.

Corollary

$M \in \operatorname{Lat}\left(M_{z}, H_{m}(\mathbb{B})\right) \Rightarrow \forall f \in W_{M_{z}}(M)=M \ominus \sum_{i=1}^{n} z_{i} M$

$$
|f(z)|^{2} \leq\|f\|_{H_{m}(\mathbb{B})}^{2}\left(\frac{1}{\left(1-|z|^{2}\right)^{m-1}}-\left(1-|z|^{2}\right) K_{M^{\perp}}(z, z)\right) .
$$

K_{m}-inner function W_{T} of an m-hypercontraction

(1) If T is a pure m-hypercontraction, then $j_{T}:\left(H, T^{*}\right) \rightarrow\left(H_{m}(\mathbb{B}, \mathcal{D}), M_{z}^{*}\right)$,

$$
\begin{gathered}
j_{T}(x)=C\left(1_{H}-Z T^{*}\right)^{-m_{X}} \quad \text { is an isometric intertwiner, } \\
M=\left(\operatorname{ran} j_{T}\right)^{\perp} \in \operatorname{Lat}\left(M_{z}, H_{m}(\mathbb{B}, \mathcal{D})\right) .
\end{gathered}
$$

Construct a K_{m}-inner function W_{T} with $W_{T} \mathcal{E}_{*}=W_{T}(M)$ of the right form.
(2) For $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right) K_{m}$-inner, apply (1) to

$$
T=\left.P_{[\mathcal{W}]^{\perp}} M_{z}\right|_{[\mathcal{W}]^{\perp}}, \quad \mathcal{W}=W \mathcal{E}_{*} \in \operatorname{Wand}\left(M_{z}\right),
$$

and show that $W \cong W_{T}$.
One of the problems: For $n=1$ the operator $L=\left(M_{z}^{*} M_{z}\right)^{-1} M_{z}^{*} \quad$ solves Gleason's problem $M_{z} L f=f-f(0)$.

Find a suitable multidimensional replacement.

K_{m}-inner function W_{T} of an m-hypercontraction

(1) If T is a pure m-hypercontraction, then $j_{T}:\left(H, T^{*}\right) \rightarrow\left(H_{m}(\mathbb{B}, \mathcal{D}), M_{z}^{*}\right)$,

$$
\begin{gathered}
j_{T}(x)=C\left(1_{H}-Z T^{*}\right)^{-m_{X}} \quad \text { is an isometric intertwiner, } \\
M=\left(\operatorname{ran} j_{T}\right)^{\perp} \in \operatorname{Lat}\left(M_{z}, H_{m}(\mathbb{B}, \mathcal{D})\right) .
\end{gathered}
$$

Construct a K_{m}-inner function W_{T} with $W_{T} \mathcal{E}_{*}=W_{T}(M)$ of the right form.
(2) For $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right) K_{m}$-inner, apply (1) to

$$
T=\left.P_{[\mathcal{W}]^{\perp}} M_{z}\right|_{[\mathcal{W}]^{\perp}}, \quad \mathcal{W}=W \mathcal{E}_{*} \in \operatorname{Wand}\left(M_{z}\right)
$$

and show that $W \cong W_{T}$.
One of the problems: For $n=1$ the operator $L=\left(M_{z}^{*} M_{z}\right)^{-1} M_{z}^{*} \quad$ solves Gleason's problem $M_{z} L f=f-f(0)$.

Find a suitable multidimensional replacement.

K_{m}-inner function W_{T} of an m-hypercontraction

(1) If T is a pure m-hypercontraction, then $j_{T}:\left(H, T^{*}\right) \rightarrow\left(H_{m}(\mathbb{B}, \mathcal{D}), M_{z}^{*}\right)$,

$$
\begin{gathered}
j_{T}(x)=C\left(1_{H}-Z T^{*}\right)^{-m_{X}} \quad \text { is an isometric intertwiner, } \\
M=\left(\operatorname{ran} j_{T}\right)^{\perp} \in \operatorname{Lat}\left(M_{z}, H_{m}(\mathbb{B}, \mathcal{D})\right) .
\end{gathered}
$$

Construct a K_{m}-inner function W_{T} with $W_{T} \mathcal{E}_{*}=W_{T}(M)$ of the right form.
(2) For $W: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{E}\right) K_{m}$-inner, apply (1) to

$$
T=\left.P_{[\mathcal{W}]^{\perp}} M_{z}\right|_{[\mathcal{W}]^{\perp}}, \quad \mathcal{W}=W \mathcal{E}_{*} \in \operatorname{Wand}\left(M_{z}\right)
$$

and show that $W \cong W_{T}$.
One of the problems: For $n=1$ the operator

$$
L=\left(M_{z}^{*} M_{z}\right)^{-1} M_{z}^{*} \quad \text { solves Gleason's problem } M_{z} L f=f-f(0) .
$$

Find a suitable multidimensional replacement.

Characteristic functions

For a single pure contraction $T \in L(H)$ (i.e. $m=1=n$), the function

$$
W_{T}: \mathbb{D} \rightarrow L\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right), W_{T}(z)=D+C\left(1_{H}-Z T^{*}\right)^{-1} Z B
$$

coincides with the Sz.-Nagy-Foias characteristic function θ_{T} of T.

For a pure row contraction $T \in L(H)^{n}$ (i.e. $m=1$), the function

$$
w_{T}: \mathbb{W} \rightarrow L(\mathcal{C}, \mathcal{D}), w_{T}^{\prime}(z)=D+C\left(1 H-Z T^{*}\right)-1 Z B
$$

is simply a restriction $W_{T}(z)=\theta_{T}(z) \mid \mathcal{E}_{*}$ of the characteristic function θ_{T} of T.

Can one define a characteristic function θ_{T} for m-hypercontractions?

Characteristic functions

For a single pure contraction $T \in L(H)$ (i.e. $m=1=n$), the function

$$
W_{T}: \mathbb{D} \rightarrow L\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right), W_{T}(z)=D+C\left(1_{H}-Z T^{*}\right)^{-1} Z B
$$

coincides with the Sz.-Nagy-Foias characteristic function θ_{T} of T.

For a pure row contraction $T \in L(H)^{n}$ (i.e. $m=1$), the function

$$
W_{T}: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{D}\right), W_{T}(z)=D+C\left(1_{H}-Z T^{*}\right)^{-1} Z B
$$

is simply a restriction $W_{T}(z)=\theta_{T}(z) \mid \mathcal{E}_{*}$ of the characteristic function θ_{T} of T.

Can one define a characteristic function θ_{T} for m-hypercontractions?

Characteristic functions

For a single pure contraction $T \in L(H)$ (i.e. $m=1=n$), the function

$$
W_{T}: \mathbb{D} \rightarrow L\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right), W_{T}(z)=D+C\left(1_{H}-Z T^{*}\right)^{-1} Z B
$$

coincides with the Sz.-Nagy-Foias characteristic function θ_{T} of T.

For a pure row contraction $T \in L(H)^{n}$ (i.e. $m=1$), the function

$$
W_{T}: \mathbb{B} \rightarrow L\left(\mathcal{E}_{*}, \mathcal{D}\right), W_{T}(z)=D+C\left(1_{H}-Z T^{*}\right)^{-1} Z B
$$

is simply a restriction $W_{T}(z)=\theta_{T}(z) \mid \mathcal{E}_{*}$ of the characteristic function θ_{T} of T.

Can one define a characteristic function θ_{T} for m-hypercontractions?

Characteristic function: An idea

One can define a purely contractive analytic function $\theta_{T}: \mathbb{B} \rightarrow L\left(\mathcal{D}_{T} \oplus M, \mathcal{D}\right)$

$$
\theta_{T}(z)=-\Delta_{1}(z)\left(T \oplus 1_{M}\right)+\Delta_{0}\left(1_{H}-Z T^{*}\right)^{-m} Z\left(D_{T}, 0_{M}\right)
$$

such that θ_{T} induces a partially isometric multiplier

- $M_{\theta_{T}}: H_{1}\left(\mathbb{B}, \mathcal{D}_{T} \oplus M\right) \rightarrow H_{m}(\mathbb{B}, \mathcal{D})$ with
- $M_{\theta_{T}} M_{\theta_{T}}^{*}+j_{T} j_{T}^{*}=1_{H_{m}(\mathbb{B}, \mathcal{D})}$
- For $m=1: \quad M=\{0\}, \Delta_{1}(z)=1_{\mathcal{D}_{T}}=\Delta_{0}$.

By abstract results there is an isometry $V: \mathcal{E}_{*} \rightarrow \mathcal{D}_{T} \oplus M$ such that $A_{T}(z) V=1 / N_{T}(z) \quad(z \in \mathbb{R})$.

Describe V explicitly, or give a better definition of a characteristic function.

Characteristic function: An idea

One can define a purely contractive analytic function $\theta_{T}: \mathbb{B} \rightarrow L\left(\mathcal{D}_{T} \oplus M, \mathcal{D}\right)$

$$
\theta_{T}(z)=-\Delta_{1}(z)\left(T \oplus 1_{M}\right)+\Delta_{0}\left(1_{H}-Z T^{*}\right)^{-m} Z\left(D_{T}, 0_{M}\right)
$$

such that θ_{T} induces a partially isometric multiplier

- $M_{\theta_{T}}: H_{1}\left(\mathbb{B}, \mathcal{D}_{T} \oplus M\right) \rightarrow H_{m}(\mathbb{B}, \mathcal{D})$ with
- $M_{\theta_{T}} M_{\theta_{T}}^{*}+j_{T} j_{T}^{*}=1_{H_{m}(\mathbb{B}, \mathcal{D})}$
- For $m=1: \quad M=\{0\}, \Delta_{1}(z)=1_{\mathcal{D}_{T}}=\Delta_{0}$.

By abstract results there is an isometry $V: \mathcal{E}_{*} \rightarrow \mathcal{D}_{T} \oplus M$ such that

Characteristic function: An idea

One can define a purely contractive analytic function $\theta_{T}: \mathbb{B} \rightarrow L\left(\mathcal{D}_{T} \oplus M, \mathcal{D}\right)$

$$
\theta_{T}(z)=-\Delta_{1}(z)\left(T \oplus 1_{M}\right)+\Delta_{0}\left(1_{H}-Z T^{*}\right)^{-m} Z\left(D_{T}, 0_{M}\right)
$$

such that θ_{T} induces a partially isometric multiplier

- $M_{\theta_{T}}: H_{1}\left(\mathbb{B}, \mathcal{D}_{T} \oplus M\right) \rightarrow H_{m}(\mathbb{B}, \mathcal{D})$ with
- $M_{\theta_{T}} M_{\theta_{T}}^{*}+j_{T} j_{T}^{*}=1_{H_{m}(\mathbb{B}, \mathcal{D})}$
- For $m=1: \quad M=\{0\}, \Delta_{1}(z)=1_{\mathcal{D}_{T}}=\Delta_{0}$.

By abstract results there is an isometry $V: \mathcal{E}_{*} \rightarrow \mathcal{D}_{T} \oplus M$ such that

$$
\theta_{T}(z) V=W_{T}(z) \quad(z \in \mathbb{B})
$$

Describe V explicitly, or give a better definition of a characteristic function.

Thank you!

Many happy returns of the day, Baruch!

Thank you!

Many happy returns of the day, Baruch!

