▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bergman inner functions and wandering subspaces

Jörg Eschmeier

Saarland University

Multivariable Operator Theory at the Technion On the occasion of Baruch Solel's 65th birthday June 18-22, 2017

Contractions

Let $T \in L(H)^n$ be a commuting tuple

T is a row contraction if $H^n \xrightarrow{(T_1,...,T_n)} H$ is a contraction

$$\Leftrightarrow \mathbf{1}_H - TT^* = \mathbf{1}_H - \sum_{i=1}^n T_i T_i^* \ge \mathbf{0},$$

or equivalently, if

$$\Leftrightarrow (I - \sigma_T) (1_H) \ge 0,$$

where $\sigma_T : L(H) \to L(H), \ X \mapsto \sum_{i=1}^n T_i X T_i^*.$

Standard example: M_z on the functional Hilbert space $H(\mathbb{B})$ with kernel

$$K: \mathbb{B} \times \mathbb{B} \to \mathbb{C}, K(z, w) = \frac{1}{1 - \langle z, w \rangle}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Contractions

Let $T \in L(H)^n$ be a commuting tuple

T is a row contraction if $H^n \xrightarrow{(T_1,...,T_n)} H$ is a contraction

$$\Leftrightarrow \mathbf{1}_H - TT^* = \mathbf{1}_H - \sum_{i=1}^n T_i T_i^* \ge \mathbf{0},$$

or equivalently, if

$$\Leftrightarrow (I - \sigma_T) (\mathbf{1}_H) \geq \mathbf{0},$$

where $\sigma_T : L(H) \to L(H), X \mapsto \sum_{i=1}^n T_i X T_i^*$.

Standard example: M_z on the functional Hilbert space $H(\mathbb{B})$ with kernel

$$K: \mathbb{B} \times \mathbb{B} \to \mathbb{C}, K(z, w) = \frac{1}{1 - \langle z, w \rangle}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

For a row contraction $T \in L(H)^n$, define

$$D_{T^*} = (\mathbf{1}_H - TT^*)^{1/2}, \mathcal{D} = \overline{D_{T^*}H}$$

Theorem (Müller-Vasilescu, Arveson)

 $T \in L(H)^n$ is a row contraction iff

$$T \cong P_{M^{\perp}}(M_z \oplus U)|_{M^{\perp}}$$

with $M \in \text{Lat}(M_z \oplus U, H(\mathbb{B}, \mathcal{D}) \oplus K)$ and $U \in L(K)$ is a spherical unitary.

The unitary part $U \in L(K)^n$ does not occur iff T is pure ($\Leftrightarrow C_{.0}$), that is, if

$$\text{SOT} - \lim_{k \to \infty} \sigma_T^k(\mathbf{1}_H) = \mathbf{0},$$

where again $\sigma_T(X) = \sum_{i=1}^n T_i X T_i^*$.

For a row contraction $T \in L(H)^n$, define

$$D_{T^*} = (\mathbf{1}_H - TT^*)^{1/2}, \mathcal{D} = \overline{D_{T^*}H}$$

Theorem (Müller-Vasilescu, Arveson)

 $T \in L(H)^n$ is a row contraction iff

$$T \cong P_{M^{\perp}}(M_z \oplus U)|_{M^{\perp}}$$

with $M \in \text{Lat}(M_z \oplus U, H(\mathbb{B}, \mathcal{D}) \oplus K)$ and $U \in L(K)$ is a spherical unitary.

The unitary part $U \in L(K)^n$ does not occur iff T is pure ($\Leftrightarrow C_{.0}$), that is, if

$$\text{SOT} - \lim_{k \to \infty} \sigma_T^k(\mathbf{1}_H) = \mathbf{0},$$

where again $\sigma_T(X) = \sum_{i=1}^n T_i X T_i^*$.

m-hypercontractions

What happens if $H(\mathbb{B})$ is replaced by the functional Hilbert space $H_m(\mathbb{B})$ with kernel

$$\mathcal{K}_m: \mathbb{B} \times \mathbb{B} \to \mathbb{C}, \mathcal{K}_m(z, w) = \frac{1}{(1 - \langle z, w \rangle)^m}?$$

Then even all defect operators

$$\Delta_{M_z}^{(k)} = (I - \sigma_{M_z})^k (\mathbf{1}_{H_m(\mathbb{B})}) \ge 0 \quad (k = 0, \dots, m)$$

are positive.

Definition

 $T \in L(H)^n$ is called an *m*-hypercontraction if

$$\Delta_T^{(k)} = (I - \sigma_T)^k (\mathbf{1}_H) \ge 0 \quad (k = 0, \dots, m).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

m-hypercontractions

What happens if $H(\mathbb{B})$ is replaced by the functional Hilbert space $H_m(\mathbb{B})$ with kernel

$$\mathcal{K}_m: \mathbb{B} \times \mathbb{B} \to \mathbb{C}, \mathcal{K}_m(z, w) = \frac{1}{(1 - \langle z, w \rangle)^m}?$$

Then even all defect operators

$$\Delta_{M_z}^{(k)} = (I - \sigma_{M_z})^k (\mathbf{1}_{H_m(\mathbb{B})}) \ge 0 \quad (k = 0, \dots, m)$$

are positive.

Definition

 $T \in L(H)^n$ is called an *m*-hypercontraction if

$$\Delta_T^{(k)} = (I - \sigma_T)^k (\mathbf{1}_H) \ge 0 \quad (k = 0, \dots, m).$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

m-hypercontractions

What happens if $H(\mathbb{B})$ is replaced by the functional Hilbert space $H_m(\mathbb{B})$ with kernel

$$\mathcal{K}_m: \mathbb{B} \times \mathbb{B} \to \mathbb{C}, \mathcal{K}_m(z, w) = \frac{1}{(1 - \langle z, w \rangle)^m}?$$

Then even all defect operators

$$\Delta_{M_z}^{(k)} = (I - \sigma_{M_z})^k (1_{H_m(\mathbb{B})}) \ge 0 \quad (k = 0, \dots, m)$$

are positive.

Definition

 $T \in L(H)^n$ is called an *m*-hypercontraction if

$$\Delta_T^{(k)} = (I - \sigma_T)^k (\mathbf{1}_H) \ge 0 \quad (k = 0, \dots, m).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For an *m*-hypercontraction, $T \in L(H)^n$ define $C = (\Delta_T^{(m)})^{1/2}$ and $\mathcal{D} = \overline{CH}$.

Theorem (Müller-Vasilescu'93)

 $T \in L(H)^n$ is an *m*-hypercontraction iff

 $T\cong P_{M^{\perp}}(M_z\oplus U)|_{M^{\perp}}$

with $M \in \text{Lat}(M_z \oplus U, H_m(\mathbb{B}, \mathcal{D}) \oplus K)$ and a spherical unitary U.

The unitary part $U \in L(K)^n$ does not occur iff T is pure ($\Leftrightarrow C_{.0}$), that is,

$$\text{SOT} - \lim_{k \to \infty} \sigma_T^k(\mathbf{1}_H) = \mathbf{0}.$$

In this case: $j_T : (H, T^*) \to (H_m(\mathbb{B}, \mathcal{D}), M_z^*),$

 $j_T x = C(1_H - ZT^*)^{-m} x$ is an isometric intertwiner

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For an *m*-hypercontraction,
$$T \in L(H)^n$$
 define $C = (\Delta_T^{(m)})^{1/2}$ and $\mathcal{D} = \overline{CH}$.

Theorem (Müller-Vasilescu'93)

 $T \in L(H)^n$ is an *m*-hypercontraction iff

 $T \cong P_{M^{\perp}}(M_z \oplus U)|_{M^{\perp}}$

with $M \in \text{Lat}(M_z \oplus U, H_m(\mathbb{B}, \mathcal{D}) \oplus K)$ and a spherical unitary U.

The unitary part $U \in L(K)^n$ does not occur iff T is pure ($\Leftrightarrow C_{\cdot 0}$), that is,

$$\text{SOT}-\lim_{k\to\infty}\sigma_T^k(\mathbf{1}_H)=\mathbf{0}.$$

In this case: $j_T : (H, T^*) \to (H_m(\mathbb{B}, \mathcal{D}), M_Z^*),$

 $j_T x = C(1_H - ZT^*)^{-m} x$ is an isometric intertwiner

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For an *m*-hypercontraction,
$$T \in L(H)^n$$
 define $C = (\Delta_T^{(m)})^{1/2}$ and $\mathcal{D} = \overline{CH}$.

Theorem (Müller-Vasilescu'93)

 $T \in L(H)^n$ is an *m*-hypercontraction iff

$$T \cong P_{M^{\perp}}(M_z \oplus U)|_{M^{\perp}}$$

with $M \in \text{Lat}(M_z \oplus U, H_m(\mathbb{B}, \mathcal{D}) \oplus K)$ and a spherical unitary U.

The unitary part $U \in L(K)^n$ does not occur iff T is pure ($\Leftrightarrow C_{\cdot 0}$), that is,

$$\text{SOT} - \lim_{k \to \infty} \sigma_T^k(\mathbf{1}_H) = \mathbf{0}.$$

In this case: $j_T : (H, T^*) \to (H_m(\mathbb{B}, \mathcal{D}), M_z^*),$

 $j_T x = C(1_H - ZT^*)^{-m} x$ is an isometric intertwiner

▲□▶▲□▶▲□▶▲□▶ □ のへで

Wandering subspaces

A closed subspace $\mathcal{W} \subset H$ is wandering for $T \in L(H)^n_{com}$ if (Halmos 1961: n = 1) $\mathcal{W} \perp T^{\alpha}\mathcal{W} \quad \forall \alpha \in \mathbb{N}^n \setminus \{0\}.$

Basic properties:

 $M \in \operatorname{Lat}(T) \Rightarrow W_T(M) = M \ominus \sum_{i=1}^n T_i M \in \operatorname{Wand}(T)$

$$M = \bigvee T^{\alpha}\{x_1, \ldots, x_l\} \Rightarrow \dim W_T(M) \le l$$

③ If \mathcal{W} ∈ Wand(*T*), $M = \bigvee T^{\alpha}\mathcal{W} \Rightarrow \mathcal{W} = W_T(M)$ and

 $T|_M$ is *N*-cyclic if $N = \dim \mathcal{W} < \infty$.

Theorem (Beurling's theorem)

If $M \in Lat(M_z, H^2(\mathbb{D}))$, then (i) $W_{M_z}(M) = \mathbb{C}\theta$ for some inner function $\theta \in H^\infty(\mathbb{D})$ (ii) $M = M_z(M) = 0H^2(\mathbb{D})$ (Mondering subspace preperty)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Wandering subspaces

A closed subspace $W \subset H$ is wandering for $T \in L(H)_{com}^n$ if (Halmos 1961: n = 1)

$$\mathcal{W} \perp T^{\alpha} \mathcal{W} \quad \forall \alpha \in \mathbb{N}^n \setminus \{\mathbf{0}\}.$$

Basic properties:

Theorem (Beurling's theorem)

If $M \in Lat(M_z, H^2(\mathbb{D}))$, then (i) $W_{M_z}(M) = \mathbb{C}\theta$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$ (ii) $M = \bigvee_k M_k^k W_{M_z}(M) = \theta H^2(\mathbb{D})$ (Wandering subspace property)

Wandering subspaces

A closed subspace $W \subset H$ is wandering for $T \in L(H)_{com}^n$ if (Halmos 1961: n = 1)

```
\mathcal{W} \perp T^{\alpha} \mathcal{W} \quad \forall \alpha \in \mathbb{N}^n \setminus \{\mathbf{0}\}.
```

Basic properties:

Theorem (Beurling's theorem)

If $M \in \text{Lat}(M_z, H^2(\mathbb{D}))$, then

(i) $W_{M_z}(M) = \mathbb{C}\theta$ for some inner function $\theta \in H^{\infty}(\mathbb{D})$

(ii) $M = \bigvee_k M_z^k W_{M_z}(M) = \theta H^2(\mathbb{D})$ (Wandering subspace property)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Generalized Bergman spaces

$$\begin{aligned} H_m(\mathbb{B},\mathcal{D}) &= H(\frac{1_{\mathcal{D}}}{(1-\langle z,w\rangle)^m}) \\ &= \{f = \sum_{\alpha \in \mathbb{N}^n} f_\alpha z^\alpha \in \mathcal{O}(\mathbb{B},\mathcal{D}); \|f\|^2 = \sum_{\alpha \in \mathbb{N}^n} \frac{\|f_\alpha\|^2}{\rho_m(\alpha)} < \infty \} \end{aligned}$$

Particular cases:

$$H_1(\mathbb{B}, \mathcal{D}) = \text{Drury-Arveson space} \stackrel{n=1}{=} H^2(\mathbb{D}, \mathcal{D})$$

$$H_n(\mathbb{B}, \mathcal{D}) = \{ f \in \mathcal{O}(\mathbb{B}, \mathcal{D}); \|f\|^2 = \sup_{0 < r < 1} \int_{S} \|f(r\xi)\|^2 d\xi < \infty \} \text{ Hardy space}$$

$$H_{n+1}(\mathbb{B}, \mathcal{D}) = L^2_a(\mathbb{B}, \mathcal{D}) = \{ f \in \mathcal{O}(\mathbb{B}, \mathcal{D}); \int_{\mathbb{B}} \|f\|^2 dz < \infty \} \text{ Bergman space}$$

$$H_{n+k}(\mathbb{B},\mathcal{D}) = \{f \in \mathcal{O}(\mathbb{B},\mathcal{D}); \int_{\mathbb{B}} ||f||^2 (1-|z|^2)^k dz < \infty\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Wandering subspace property and index

The index of $M \in \text{Lat}(T)$ is defined as

$$\operatorname{ind}(M) = \dim W_T(M) = \dim M \ominus (\sum_{i=1}^n T_i M)$$

	Wandering subspace property	$\operatorname{ind}(M) < \infty \forall M \in \operatorname{Lat}(M_z)$
<i>H</i> ² (ⅅ)	Yes: Beurling	Yes: Beurling
$L^2_a(\mathbb{D})$	Yes: Aleman-Richter-Sundberg	No: Scott Brown, Hedenmalm
$H_m(\mathbb{D})$	Yes ($1 \le m \le 3$) : Hedenmalm, Shimorin	No!
	No $(m \ge 6)$: Hedenmalm	

(日) (日) (日) (日) (日) (日) (日)

What happens in the multivariable case $n \ge 2$?

Candidate for best possible results: $H_1(\mathbb{B}) = H\left(\frac{1}{1-\langle z,w\rangle}\right)$

- Beurling-Lax-Halmos thm.: McCullough-Trent
- Nevanlinna-Pick interpolation: Ball-Bolotnikov, E.-Putinar
- Dilation theory: Müller-Vasilescu, Arveson, Davidson
- Non-commutative (Fock space) versions: Popescu

However:

- $\exists M \in \text{Lat}(M_z, H_1(\mathbb{B}))$ with $\text{ind}(M) = \infty$ (Green-Richter-Sundberg)
- $M_a = \{ f \in H_1(\mathbb{B}); f(a) = 0 \} \Rightarrow W_{M_z}(M_a) = \mathbb{C}\theta_a \text{ for } a \neq 0$

$$\Rightarrow Z(M_a) = \{a\} \neq Z(\theta_a) = Z([W_{M_z}(M_a)]).$$

What happens in the multivariable case $n \ge 2$?

Candidate for best possible results: $H_1(\mathbb{B}) = H\left(\frac{1}{1-\langle z,w\rangle}\right)$

- Beurling-Lax-Halmos thm.: McCullough-Trent
- Nevanlinna-Pick interpolation: Ball-Bolotnikov, E.-Putinar
- Dilation theory: Müller-Vasilescu, Arveson, Davidson
- Non-commutative (Fock space) versions: Popescu

However:

- $\exists M \in \text{Lat}(M_z, H_1(\mathbb{B}))$ with $\text{ind}(M) = \infty$ (Green-Richter-Sundberg)
- $M_a = \{ f \in H_1(\mathbb{B}); f(a) = 0 \} \Rightarrow W_{M_z}(M_a) = \mathbb{C}\theta_a \text{ for } a \neq 0$

$$\Rightarrow Z(M_a) = \{a\} \neq Z(\theta_a) = Z([W_{M_z}(M_a)]).$$

Homogeneous wandering subspace property

Suppose that *H* has an orthogonal decomposition

$$H = \bigoplus_{k=0}^{\infty} H_k$$

and that $T \in L(H)_{com}^n$ is homogeneous, that is,

$$T_iH_k \subset H_{k+1}$$
 $(i = 1, \ldots, n, k \ge 0).$

A closed subspace $M \subset H$ is called homogeneous if

$$M = \bigvee_{k \ge 0} M \cap H_k \quad (\Leftrightarrow P_{H_k} M \subset M \; \forall k)$$

T has the homogeneous wandering subspace property if

$$M = \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} W_T(M) \quad \forall M \in \operatorname{Lat}_{\operatorname{hom}}(T)$$

- ロ > ・ 個 > ・ ミ > ・ ミ > ・ ミ ・ つ へ ()

Homogeneous wandering subspace property

Suppose that *H* has an orthogonal decomposition

$$H = \bigoplus_{k=0}^{\infty} H_k$$

and that $T \in L(H)_{com}^n$ is homogeneous, that is,

$$T_iH_k \subset H_{k+1}$$
 $(i=1,\ldots,n,k\geq 0).$

A closed subspace $M \subset H$ is called homogeneous if

$$M = \bigvee_{k \ge 0} M \cap H_k \quad (\Leftrightarrow P_{H_k} M \subset M \forall k)$$

T has the homogeneous wandering subspace property if

$$M = \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} W_T(M) \quad \forall M \in \operatorname{Lat}_{\operatorname{hom}}(T)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Homogeneous wandering subspace property

Suppose that *H* has an orthogonal decomposition

$$H = \bigoplus_{k=0}^{\infty} H_k$$

and that $T \in L(H)_{com}^n$ is homogeneous, that is,

$$T_iH_k \subset H_{k+1}$$
 $(i=1,\ldots,n,k\geq 0).$

A closed subspace $M \subset H$ is called homogeneous if

$$M = \bigvee_{k \ge 0} M \cap H_k \quad (\Leftrightarrow P_{H_k} M \subset M \forall k)$$

T has the homogeneous wandering subspace property if

$$M = \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} W_T(M) \quad \forall M \in \operatorname{Lat}_{\operatorname{hom}}(T)$$

The homogeneous world is OK

Let $T \in L(H)^n$ be homogeneous.

Theorem

T has the homogeneous wandering subspace property and

$$\operatorname{Wand}_{\operatorname{hom}}(T) \to \operatorname{Lat}_{\operatorname{hom}}(T), \mathcal{W} \mapsto \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} \mathcal{W},$$

$$\operatorname{Lat}_{\operatorname{hom}}(T) \to \operatorname{Wand}_{\operatorname{hom}}(T), M \mapsto W_T(M) = M \ominus (\sum_{i=1}^n T_i M)$$

are bijections that are inverse to each other.

Main Ideas: Show that $W_T(H)$ is homogeneous with components

$$W_T(H) \cap H_k = H_k \ominus (\sum_{i=1}^n T_i H_{k-1})$$

and show by induction that $H_k \subset [W_T(H)]$ using

$$H_k = (W_T(H) \cap H_k) \oplus (\sum_{i=1}^n T_i H_{k-1}) \subset W_T(H) + [H_{k-1}].$$

The homogeneous world is OK

Let $T \in L(H)^n$ be homogeneous.

Theorem

T has the homogeneous wandering subspace property and

$$\operatorname{Wand}_{\operatorname{hom}}(T) \to \operatorname{Lat}_{\operatorname{hom}}(T), \mathcal{W} \mapsto \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} \mathcal{W},$$

$$\operatorname{Lat}_{\operatorname{hom}}(T) \to \operatorname{Wand}_{\operatorname{hom}}(T), M \mapsto W_T(M) = M \ominus (\sum_{i=1}^n T_i M)$$

are bijections that are inverse to each other.

Main Ideas: Show that $W_T(H)$ is homogeneous with components

$$W_T(H) \cap H_k = H_k \ominus (\sum_{i=1}^n T_i H_{k-1})$$

and show by induction that $H_k \subset [W_T(H)]$ using

$$H_{k} = (W_{T}(H) \cap H_{k}) \oplus (\sum_{i=1}^{n} T_{i}H_{k-1}) \subset W_{T}(H) + [H_{k-1}].$$

What about the index

Suppose in addition that

dim
$$H_0 < \infty$$
 and $H = \bigvee (T^{\alpha} H_0; \alpha \in \mathbb{N}^n)$.

Then

• $H_k = \sum_{|\alpha|=k} T^{\alpha} H_0$ $(k \ge 0)$ • $\tilde{H} = \bigoplus_{k\ge 0} H_k$ is a finitely generated $\mathbb{C}[z]$ -module (px = p(T)x).

Corollary ($\mathcal{W} \in Wand_{hom}(T), M \in Lat_{hom}(T)$)

 $\bullet \ \dim \mathcal{W} < \infty$

•
$$M = [W_T(M)], N := ind(M) = \dim W_T(M) < \infty T|_M N$$
-cyclic

• each basis of $W_T(M)$ generates \tilde{M} as a $\mathbb{C}[z]$ -module.

Proof. $\tilde{M} = \bigoplus_{k>0} M_k$ is finitely generated as a $\mathbb{C}[z]$ -submodule $\tilde{M} \subset \tilde{H}$ and

$$M = \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} \{x_1, \dots, x_{\ell}\}$$
 for any set of generators $(\Rightarrow \dim W_T(M) \leq \ell)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

What about the index

Suppose in addition that

dim
$$H_0 < \infty$$
 and $H = \bigvee (T^{\alpha} H_0; \alpha \in \mathbb{N}^n)$.

Then

• $H_k = \sum_{|\alpha|=k} T^{\alpha} H_0$ $(k \ge 0)$ • $\tilde{H} = \bigoplus_{k\ge 0} H_k$ is a finitely generated $\mathbb{C}[z]$ -module $(\rho x = \rho(T)x)$.

Corollary ($\mathcal{W} \in Wand_{hom}(T), M \in Lat_{hom}(T)$)

- dim $\mathcal{W} < \infty$
- $M = [W_T(M)], N := ind(M) = \dim W_T(M) < \infty T|_M N$ -cyclic
- each basis of $W_T(M)$ generates \tilde{M} as a $\mathbb{C}[z]$ -module.

Proof. $\tilde{M} = \bigoplus_{k \ge 0} M_k$ is finitely generated as a $\mathbb{C}[z]$ -submodule $\tilde{M} \subset \tilde{H}$ and

$$M = \bigvee_{\alpha \in \mathbb{N}^n} T^{\alpha} \{x_1, \dots, x_\ell\}$$
 for any set of generators ($\Rightarrow \dim W_T(M) \leq \ell$).

・ロト・西下・日下・日下・日下

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Applications

Corollary

Let $M \in \text{Lat}_{hom}(T)$, $N = \dim W_T(M)$ (a) $\rho : \tilde{M} / \sum_{i=1}^n T_i \tilde{M} \to M / \overline{\sum_{i=1}^n T_i M} \cong W_T(M)$, $[x] \mapsto [x]$ is an isomorphism. (b) $x_i \in M_{k_i} (1 \le i \le N)$ generators for $\tilde{M} \Rightarrow \forall k \in \mathbb{N}$ $\rho(\{[x_i]; k_i = k\})$ is a basis of $W_T(M) \cap H_k$.

Corollary

- $I \subset \mathbb{C}[z_1, \ldots, z_n]$ homogeneous ideal, $M = \overline{I} \subset H_m(\mathbb{B})$
- (a) $\mathcal{W} = M \ominus \left(\sum_{i=1}^{n} z_i M\right) = I \ominus \sum_{i=1}^{n} z_i I \subset I$
- (b) each basis of W is a minimal set of generators for I
- (c) homogeneous generators of degree $k \triangleq$ basis of $\mathcal{W} \cap \mathbb{H}_k \ \forall \ k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

K_m-inner functions

Hedenmalm'91: $f \in L^2_a(\mathbb{D})$ is Bergman inner if

$$(*) \quad \int\limits_{\mathbb{D}} (|f(z)|^2 - 1) z^k \ dz = 0 \quad \forall \ k \ge 0.$$

Theorem (Hedenmalm '91, Zhu '96)

 $\begin{array}{l} \text{If f is Bergman inner, then} \\ (a) \quad H^2(\mathbb{D}) \to L^2_a(\mathbb{D}), \ g \mapsto fg \ is \ a \ contractive \ multiplier} \\ (b) \quad |f(z)|^2 \leq 1/(1-|z|^2) \quad \forall \ z \in \mathbb{D} \end{array}$

$$(*) \quad \Leftrightarrow \quad W_f: \mathbb{D} \to L(\mathbb{C}) \cong \mathbb{C}, \; z \mapsto M_{f(z)} \; ext{satisfies}$$

(i) C → L²_a(D), α ↦ W_fα is an isometry
 (ii) W_fC ⊥ z^k(W_fC) ∀ k > 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

K_m-inner functions

Hedenmalm'91: $f \in L^2_a(\mathbb{D})$ is Bergman inner if

$$(*) \quad \int\limits_{\mathbb{D}} (|f(z)|^2 - 1) z^k \ dz = 0 \quad \forall \ k \ge 0.$$

Theorem (Hedenmalm '91, Zhu '96)

If f is Bergman inner, then (a) $H^2(\mathbb{D}) \to L^2_a(\mathbb{D}), g \mapsto fg$ is a contractive multiplier (b) $|f(z)|^2 \le 1/(1-|z|^2) \quad \forall z \in \mathbb{D}$

$$(*) \quad \Leftrightarrow \quad W_f: \mathbb{D} \to L(\mathbb{C}) \cong \mathbb{C}, \ z \mapsto M_{f(z)} \text{ satisfies}$$

(i)
$$\mathbb{C} \to L^2_a(\mathbb{D}), \ \alpha \mapsto W_f \alpha$$
 is an isometry
(ii) $W_f \mathbb{C} \perp z^k (W_f \mathbb{C}) \ \forall \ k \ge 1$

Parametrization of wandering subspaces

Let $\mathcal{E}_*, \mathcal{E}$ be Hilbert spaces, $H(K) \subset \mathcal{O}(\mathbb{B})$ a functional Hilbert space such that

 $M_z \in L(H(K))^n$ is a row contraction.

A function $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ is called *K*-inner if

(i) $\mathcal{E}_* \to H(K, \mathcal{E}), x \mapsto Wx$ is an isometry,

(ii) $(W\mathcal{E}_*) \perp M_Z^{\alpha}(W\mathcal{E}_*) \ \forall \alpha \in \mathbb{N}^n \setminus \{0\}.$

Theorem (Bhattacharjee, Keshari, Sarkar, E.)

(i) W *K*-inner \Rightarrow M_W : $H_1(\mathbb{B}, \mathcal{E}_*) \rightarrow H(K, \mathcal{E})$ contractive multiplier

(ii) Wand $(M_Z, H(K, \mathcal{E})) = \{W\mathcal{E}_*; W K \text{-inner for some } \mathcal{E}_*\}.$

Idea for (ii): For $\mathcal{W} \in \text{Wand}(M_z)$, choose a partially isometric multiplier (Sarkar, Ball)

 $M_{\theta}: H_1(\mathbb{B}, \mathcal{D}) \to H(K, \mathcal{E})$ with ran $M_{\theta} = [\mathcal{W}]$.

Define $\mathcal{E}_* = \mathcal{D} \cap (\ker M_\theta)^{\perp}$ and $W(z) = \theta(z)|_{\mathcal{E}_*}$. Then $\mathcal{W} = W(\mathcal{E}_*)$.

・ロト・西ト・ヨト・ヨー うへぐ

Parametrization of wandering subspaces

Let $\mathcal{E}_*, \mathcal{E}$ be Hilbert spaces, $H(K) \subset \mathcal{O}(\mathbb{B})$ a functional Hilbert space such that

 $M_z \in L(H(K))^n$ is a row contraction.

A function $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ is called *K*-inner if

- (i) $\mathcal{E}_* \to H(K, \mathcal{E}), x \mapsto Wx$ is an isometry,
- (ii) $(W\mathcal{E}_*) \perp M_Z^{\alpha}(W\mathcal{E}_*) \ \forall \alpha \in \mathbb{N}^n \setminus \{0\}.$

Theorem (Bhattacharjee, Keshari, Sarkar, E.)

(i) W K-inner \Rightarrow M_W : $H_1(\mathbb{B}, \mathcal{E}_*) \rightarrow H(K, \mathcal{E})$ contractive multiplier

(ii) Wand(M_z , $H(K, \mathcal{E})$) = { $W\mathcal{E}_*$; W K-inner for some \mathcal{E}_* }.

Idea for (ii): For $\mathcal{W} \in Wand(M_z)$, choose a partially isometric multiplier (Sarkar, Ball)

 $M_{\theta}: H_1(\mathbb{B}, \mathcal{D}) \to H(K, \mathcal{E})$ with ran $M_{\theta} = [\mathcal{W}]$.

Define $\mathcal{E}_* = \mathcal{D} \cap (\ker M_\theta)^{\perp}$ and $W(z) = \theta(z)|_{\mathcal{E}_*}$. Then $\mathcal{W} = W(\mathcal{E}_*)$.

Parametrization of wandering subspaces

Let $\mathcal{E}_*, \mathcal{E}$ be Hilbert spaces, $H(K) \subset \mathcal{O}(\mathbb{B})$ a functional Hilbert space such that

 $M_z \in L(H(K))^n$ is a row contraction.

A function $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ is called *K*-inner if

- (i) $\mathcal{E}_* \to H(K, \mathcal{E}), x \mapsto Wx$ is an isometry,
- (ii) $(W\mathcal{E}_*) \perp M_Z^{\alpha}(W\mathcal{E}_*) \ \forall \alpha \in \mathbb{N}^n \setminus \{0\}.$

Theorem (Bhattacharjee, Keshari, Sarkar, E.)

(i) W K-inner \Rightarrow M_W : $H_1(\mathbb{B}, \mathcal{E}_*) \rightarrow H(K, \mathcal{E})$ contractive multiplier

(ii) Wand $(M_z, H(K, \mathcal{E})) = \{W\mathcal{E}_*; W K \text{-inner for some } \mathcal{E}_*\}.$

Idea for (ii): For $W \in Wand(M_z)$, choose a partially isometric multiplier (Sarkar, Ball)

 $M_{\theta}: H_1(\mathbb{B}, \mathcal{D}) \to H(K, \mathcal{E})$ with ran $M_{\theta} = [\mathcal{W}]$.

Define $\mathcal{E}_* = \mathcal{D} \cap (\ker M_\theta)^{\perp}$ and $W(z) = \theta(z)|_{\mathcal{E}_*}$. Then $\mathcal{W} = W(\mathcal{E}_*)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

K_m -inner functions as transfer functions: n = 1

Theorem (Olofsson '06/'07)

A function $W : \mathbb{D} \to L(\mathcal{E}_*, \mathcal{E})$ is K_m -inner iff

there exist a pure *m*-hypercontraction $T \in L(H)$ and a matrix operator

$$\left(\begin{array}{c|c} T^* & B \\ \hline C & D \end{array}\right) \in L(H \oplus \mathcal{E}_*, H \oplus \mathcal{E})$$

with $W(z) = D + zC \left(\sum_{k=1}^{m} (1_H - zT^*)^{-k} \right) B$ and (i) $C^*C = \Delta_T^{(m)}$ (ii) $D^*C + B^* \left(\sum_{k=0}^{m-1} \Delta_T^{(k)} \right) B = 0$ (iii) $D^*D + B^* \left(\sum_{k=0}^{m-1} \Delta_T^{(k)} \right) B = 1_{\mathcal{E}_*}.$

Here $\Delta_T^{(k)} = (1 - \sigma_T)^k (1_H) \ge 0$ are the *k*th order defect operators of *T*.

*K*_{*m*}-inner functions as transfer functions: $n \ge 1$

Theorem (E.)

A function $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ is K_m -inner iff there exist a pure m-hypercontraction $T \in L(H)^n$ and a matrix operator

$$\left(\begin{array}{c|c} T^* & B \\ \hline C & D \end{array}\right) \in L(H \oplus \mathcal{E}_*, H^n \oplus \mathcal{E})$$

with $W(z) = D + C\left(\sum_{k=1}^{m} (1_H - ZT^*)^{-k}\right) ZB$ and (i)-(iii) as well as

(iv) $\operatorname{Im}(\oplus j)B \subset M_Z^*H_m(\mathbb{B}, \mathcal{E}).$

Corollary

 $M \in \operatorname{Lat}(M_z, H_m(\mathbb{B})) \Rightarrow \forall f \in W_{M_z}(M) = M \ominus \sum_{i=1}^n z_i M$

$$|f(z)|^2 \leq ||f||^2_{H_m(\mathbb{B})} \left(\frac{1}{(1-|z|^2)^{m-1}} - (1-|z|^2)K_{M^{\perp}}(z,z) \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

*K*_{*m*}-inner functions as transfer functions: $n \ge 1$

Theorem (E.)

A function $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ is K_m -inner iff there exist a pure m-hypercontraction $T \in L(H)^n$ and a matrix operator

$$\left(\begin{array}{c|c} T^* & B \\ \hline C & D \end{array}\right) \in L(H \oplus \mathcal{E}_*, H^n \oplus \mathcal{E})$$

with $W(z) = D + C\left(\sum_{k=1}^{m} (1_H - ZT^*)^{-k}\right) ZB$ and (i)-(iii) as well as

(iv) $\operatorname{Im}(\oplus j)B \subset M_Z^*H_m(\mathbb{B}, \mathcal{E}).$

Corollary

$$M \in \operatorname{Lat}(M_z, H_m(\mathbb{B})) \Rightarrow \forall f \in W_{M_z}(M) = M \ominus \sum_{i=1}^n z_i M$$

$$|f(z)|^2 \leq \|f\|_{H_m(\mathbb{B})}^2 \left(\frac{1}{(1-|z|^2)^{m-1}} - (1-|z|^2) \mathcal{K}_{M^{\perp}}(z,z)
ight).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

K_m -inner function W_T of an *m*-hypercontraction

(1) If *T* is a pure *m*-hypercontraction, then $j_T : (H, T^*) \to (H_m(\mathbb{B}, \mathcal{D}), M_z^*)$,

 $j_T(x) = C(1_H - ZT^*)^{-m}x$ is an isometric intertwiner,

 $M = (\operatorname{ran} j_T)^{\perp} \in \operatorname{Lat}(M_Z, H_m(\mathbb{B}, \mathcal{D})).$

Construct a K_m -inner function W_T with $W_T \mathcal{E}_* = W_T(M)$ of the right form.

(2) For $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ K_m -inner, apply (1) to

$$T = P_{[\mathcal{W}]^{\perp}} M_{Z}|_{[\mathcal{W}]^{\perp}}, \quad \mathcal{W} = W \mathcal{E}_* \in \mathrm{Wand}(M_Z),$$

and show that $W \cong W_T$.

One of the problems: For n = 1 the operator

 $L = (M_z^* M_z)^{-1} M_z^*$ solves Gleason's problem $M_z L f = f - f(0)$.

Find a suitable multidimensional replacement.

K_m -inner function W_T of an *m*-hypercontraction

(1) If *T* is a pure *m*-hypercontraction, then $j_T : (H, T^*) \to (H_m(\mathbb{B}, \mathcal{D}), M_z^*)$,

 $j_T(x) = C(1_H - ZT^*)^{-m}x$ is an isometric intertwiner,

 $M = (\operatorname{ran} j_T)^{\perp} \in \operatorname{Lat}(M_Z, H_m(\mathbb{B}, \mathcal{D})).$

Construct a K_m -inner function W_T with $W_T \mathcal{E}_* = W_T(M)$ of the right form.

(2) For $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ K_m-inner, apply (1) to

$$T = P_{[\mathcal{W}]^{\perp}} M_z|_{[\mathcal{W}]^{\perp}}, \quad \mathcal{W} = W\mathcal{E}_* \in \operatorname{Wand}(M_z),$$

and show that $W \cong W_T$.

One of the problems: For n = 1 the operator

 $L = (M_z^* M_z)^{-1} M_z^*$ solves Gleason's problem $M_z L f = f - f(0)$.

Find a suitable multidimensional replacement.

K_m -inner function W_T of an *m*-hypercontraction

(1) If *T* is a pure *m*-hypercontraction, then $j_T : (H, T^*) \to (H_m(\mathbb{B}, \mathcal{D}), M_z^*)$,

 $j_T(x) = C(1_H - ZT^*)^{-m}x$ is an isometric intertwiner,

 $M = (\operatorname{ran} j_T)^{\perp} \in \operatorname{Lat}(M_Z, H_m(\mathbb{B}, \mathcal{D})).$

Construct a K_m -inner function W_T with $W_T \mathcal{E}_* = W_T(M)$ of the right form.

(2) For $W : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{E})$ K_m-inner, apply (1) to

$$T = P_{[\mathcal{W}]^{\perp}} M_z|_{[\mathcal{W}]^{\perp}}, \quad \mathcal{W} = W\mathcal{E}_* \in \mathrm{Wand}(M_z),$$

and show that $W \cong W_T$.

One of the problems: For n = 1 the operator

 $L = (M_z^* M_z)^{-1} M_z^*$ solves Gleason's problem $M_z L f = f - f(0)$.

Find a suitable multidimensional replacement.

Characteristic functions

For a single pure contraction $T \in L(H)$ (i.e. m = 1 = n), the function

$$W_T: \mathbb{D} \to L(\mathcal{D}_T, \mathcal{D}_{T^*}), W_T(z) = D + C(1_H - ZT^*)^{-1}ZB$$

coincides with the Sz.-Nagy-Foias characteristic function θ_T of T.

For a pure row contraction $T \in L(H)^n$ (i.e. m = 1), the function

$$W_T: \mathbb{B} \to L(\mathcal{E}_*, \mathcal{D}), W_T(z) = D + C(1_H - ZT^*)^{-1}ZB$$

is simply a restriction $W_T(z) = \theta_T(z) | \mathcal{E}_*$ of the characteristic function θ_T of *T*.

Can one define a characteristic function θ_T for *m*-hypercontractions?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Characteristic functions

For a single pure contraction $T \in L(H)$ (i.e. m = 1 = n), the function

$$W_T : \mathbb{D} \to L(\mathcal{D}_T, \mathcal{D}_{T^*}), W_T(z) = D + C(1_H - ZT^*)^{-1}ZB$$

coincides with the Sz.-Nagy-Foias characteristic function θ_T of T.

For a pure row contraction $T \in L(H)^n$ (i.e. m = 1), the function

$$W_T : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{D}), W_T(z) = D + C(1_H - ZT^*)^{-1}ZB$$

is simply a restriction $W_T(z) = \theta_T(z) | \mathcal{E}_*$ of the characteristic function θ_T of T.

Can one define a characteristic function θ_T for *m*-hypercontractions?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Characteristic functions

For a single pure contraction $T \in L(H)$ (i.e. m = 1 = n), the function

$$W_T : \mathbb{D} \to L(\mathcal{D}_T, \mathcal{D}_{T^*}), W_T(z) = D + C(1_H - ZT^*)^{-1}ZB$$

coincides with the Sz.-Nagy-Foias characteristic function θ_T of T.

For a pure row contraction $T \in L(H)^n$ (i.e. m = 1), the function

$$W_T : \mathbb{B} \to L(\mathcal{E}_*, \mathcal{D}), W_T(z) = D + C(1_H - ZT^*)^{-1}ZB$$

is simply a restriction $W_T(z) = \theta_T(z) | \mathcal{E}_*$ of the characteristic function θ_T of T.

Can one define a characteristic function θ_T for *m*-hypercontractions?

Characteristic function: An idea

One can define a purely contractive analytic function $\theta_T : \mathbb{B} \to L(\mathcal{D}_T \oplus M, \mathcal{D})$

$$\theta_T(z) = -\Delta_1(z)(T \oplus 1_M) + \Delta_0(1_H - ZT^*)^{-m}Z(D_T, 0_M)$$

such that θ_T induces a partially isometric multiplier

•
$$M_{\theta_{\mathcal{T}}}: H_1(\mathbb{B}, \mathcal{D}_{\mathcal{T}} \oplus M) \to H_m(\mathbb{B}, \mathcal{D})$$
 with

•
$$M_{\theta_T} M_{\theta_T}^* + j_T j_T^* = \mathbf{1}_{H_m(\mathbb{B}, \mathcal{D})}$$

• For
$$m = 1$$
: $M = \{0\}, \ \Delta_1(z) = 1_{\mathcal{D}_T} = \Delta_0$.

By abstract results there is an isometry $V : \mathcal{E}_* \to \mathcal{D}_T \oplus M$ such that

$$\theta_T(z)V = W_T(z) \quad (z \in \mathbb{B}).$$

Describe V explicitly, or give a better definition of a characteristic function.

・ロト・4回ト・4回ト・4回ト 回 のQの

Characteristic function: An idea

One can define a purely contractive analytic function $\theta_T : \mathbb{B} \to L(\mathcal{D}_T \oplus M, \mathcal{D})$

$$\theta_T(z) = -\Delta_1(z)(T \oplus \mathbf{1}_M) + \Delta_0(\mathbf{1}_H - ZT^*)^{-m}Z(D_T, \mathbf{0}_M)$$

such that θ_T induces a partially isometric multiplier

•
$$M_{\theta_T} : H_1(\mathbb{B}, \mathcal{D}_T \oplus M) \to H_m(\mathbb{B}, \mathcal{D})$$
 with
• $M_{\theta_T} M_{\theta_T}^* + j_T j_T^* = 1_{H_m(\mathbb{B}, \mathcal{D})}$

• For m = 1: $M = \{0\}, \ \Delta_1(z) = 1_{\mathcal{D}_T} = \Delta_0$.

By abstract results there is an isometry $V : \mathcal{E}_* \to \mathcal{D}_T \oplus M$ such that

$$\theta_T(z)V = W_T(z) \quad (z \in \mathbb{B}).$$

Describe V explicitly, or give a better definition of a characteristic function.

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Characteristic function: An idea

One can define a purely contractive analytic function $\theta_T : \mathbb{B} \to L(\mathcal{D}_T \oplus M, \mathcal{D})$

$$\theta_T(z) = -\Delta_1(z)(T \oplus \mathbf{1}_M) + \Delta_0(\mathbf{1}_H - ZT^*)^{-m}Z(D_T, \mathbf{0}_M)$$

such that θ_T induces a partially isometric multiplier

•
$$M_{\theta_T}: H_1(\mathbb{B}, \mathcal{D}_T \oplus M) \to H_m(\mathbb{B}, \mathcal{D})$$
 with

•
$$M_{\theta_T} M_{\theta_T}^* + j_T j_T^* = \mathbf{1}_{H_m(\mathbb{B}, \mathcal{D})}$$

• For m = 1: $M = \{0\}, \ \Delta_1(z) = 1_{\mathcal{D}_T} = \Delta_0$.

By abstract results there is an isometry $V : \mathcal{E}_* \to \mathcal{D}_T \oplus M$ such that

$$\theta_T(z)V = W_T(z) \quad (z \in \mathbb{B}).$$

Describe V explicitly, or give a better definition of a characteristic function.

Thank you!

Many happy returns of the day, Baruch!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you!

Many happy returns of the day, Baruch!