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k a field of characteristic 0, x = {xi, ..., xg} freely noncommuting
letters, k<x> the free algebra of nc polynomials.

Rxk(x) nc rational expressions built from k<x> using
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eg xa(l+xx(a —3)7Y Oaxe) ™t —xy gt (1 —x k)7t

Evaluations of r € Ri(x) on tuples of matrices:
» M, (k)& --» M,(k) for all n € N;
» domr C |J, M,(k)& the domain of r;

» r is degenerate if dom r = () and nondegenerate otherwise.

Define equivalence relation for nondegenerate expressions: r; ~ r»
iff r1(X) = r2(X) for all X € dom r; N dom ry.
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Nc rational functions

Classes of nondegenerate expressions are called nc rational
functions and form a skew field k€{x}, the free skew field.

This construction is due to Helton, McCullough, Vinnikov. Others:

» evaluations on oo-dim skew fields (Amitsur)

v

full matrices over k<x> (Cohn)

v

Malcev-Neumann series of a free group (Lewin)

v

grading on a free Lie algebra (Lichtman)

v

unbounded operators associated to a von Neumann algebra
(Linnell)
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Nc function context

Evaluations of nc rational functions respect direct sums and
similarities, so they are nc functions equipped with nc
difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here f = (f)n, fn: Qs C My(k)& — Mp(k), is a nc function if
Fnin(X @ Y) = fin(X) ® £(Y) and fo(PXP~1) = Pf,(X)P~L.

If f is a nc function, then

F[XOHY (OO 80X, Y)H;
oY) (o £(Y) ’

where A; are (left) directional nc difference-differential
operators

AJ-(f)m,n : Qm X Qn — Hom]k(]kan’}kan).

(higher order nc functions)
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Polynomial example

For example, if f = xlszxl, then the directional nc
difference-differential operators of f at (X1, Xa; Y1, Y2) are given by

A1 (F)( X1, X2; Y1, Ya)H = HY1 Y2 Y1 + X1HY2 Y1 + X12X2H
=1 Y21+ X1@ YY1+ XX ®1
Do (F)(Xi, Xo: Y1, Ya)H = XPHY:
=X?oY

Hence A1, A : k<x> — k<x> Qk<y>.

Applying A; further: k<x()>® .. @ k<x(®)>. What are higher
order nc rational functions?
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Universal skew field of fractions
k€{x> is the universal skew field of fractions of k<x> (Cohn;
Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U isa SFFof Rif RC U and R
generates U as a skew field.

Furthermore, U is a USFF of R if for every matrix A over R and a
homomorphism ¢ : R — D into a skew field D,

¢(A) invertible over D = A invertible over U.
This notion is due to Cohn (70s). It is a universal property in the

category of skew fields with epimorphisms from R; morphisms are
specializations (local homomorphisms) between skew fields.
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Rings with USFF

Known rings admitting USFF:
» commutative domains
> firs, e.g. k<x>; semifirs, e.g. k<<x>>, or nc functions
analytic at the origin
(semi) free ideal ring: every (finitely generated) left ideal is a free

left module of unique rank

» (pseudo-)Sylvester domains (a bit bigger class; still small, e.g.
k[t1, t, t3] is not a Sylvester domain)

Tensor product of free algebras is not a pseudo-Sylvester domain
(apart from trivial cases). Cohn ('97) proved that k<x> @k<y>
has the USFF, but was unable to show this for more factors.

Today: k<xWe...ox(@)> = kax(MW> @ .- @ k<x(®)> admits
the USFF k{x(Me ... ox(G)Y} for every G € N.
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Notation

Fori=1,...,G let x() = {x(")7 .. ,xg)} be sets of freely
noncommuting variables and x = x(0) U ... U x(©).

Given r € Ry(x) and X() € M,,.(k)& we define mp-evaluation of
rat X = (XM ... X(©) as

rP(X) =
r(X(l)®I®--~®I,I®X(2)®---®I,...,/®I®---®X(G))
in Mp,...n. (k), if all nested inverses exist.

Here ® denotes Kronecker's product; note that
(A N(l®@B)=(I2 B)(A® ).
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Example

For example, let x = {x1,x2}, y = {)1,y2} and
r=(a+yexy)t -yt

Then
X Y)= (Xel+ (oY) e )Xo (oY)

—(l®Yy)™!
=X @1+ XX @ YY) —1e Y,
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Multipartite rational functions
Given r € Ry(x) let
dom™P r C U Mp, (k)& x - -+ x M. (k)&¢
ni,...,ng

be its mp-domain.

On the set of rational expressions with non-empty mp-domains we
define equivalence relation r; ~ ry if and only if r;"P(X) = r;"?(X)
for all X € dom™P r Ndom™P . The equivalence class of r is
denoted r and called a multipartite rational function.

The set of multipartite rational functions is denoted
Lk¢xMe .. ox(€)Y} and endowed with the natural ring structure.

Theorem
kéxWe .. ox(©)Y s a SFF of k<xPer. .. ox(€) >
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Basic properties

(1) Let M € Mg(k¢xMe--.ox(€)}). Then M is invertible if and
only if M(X) is invertible (as a matrix over k) for some
X € dom M.

(2) Let r € k¢x(Me .. .ox(©)3 and Y € domr with
Y1) € My(k)#'. Then there exists S € Mg(k€xPe- .. ox(6)Y)
such that

r(Y®, X) =5(X)

for all X € dom S such that (Y1) X) € domr.
(3)

Ik{x(l)H. . .(—)x(Gl)} N Ik{x(GO)H. . .(—))((G)} = ]k{x(GO)H. . .(—))((Gl)}
holds in k¢éx(Me...ox(G)} for Gy < Gi.

(4) The centralizer of kéx(M3} in kgxMe-..ox(©)} equals
kgxPeo. . ox(C)Yif [xq] > 1.
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Auxiliary result

Let D be an arbitrary skew field containing k. Then D ® k<x> is
a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a d x d matrix over D @ k<x>. Then M is invertible
over the USFF of D ® k<x> if and only if

M(X) € Mg(D @ M(k)) = Mgn(D) is invertible for some

X € Mp(k)8.

Ingredients: Cohn's theory of USFFs, Pl theory, skew field
constructions and power series expansions.
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Universality

Theorem
kéxMe...ox(C)Y s the USFF of k<xMe. .. ox(C)>.

Corollary
Let r € Ry(x). TFAE:
(i) r™P(X) =0 for all X € dom™P r;
(i) r(X) =0 for all X & dom r such that [X\"), X\®)] = 0 for
h# i)
(iii) for every skew field D, r(a) € {0 undef} for every tuple
a € D& T8 such that [a('l) () ]=0.
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Sketch of the proof

Let M be a d x d matrix over k<xMe. .. ox(G)> and let
¢ k<x(Mes...ox(G)> 5 D be a homomorphism into a skew field
D such that ¢(M) is invertible over M.

1.
2.

Write aj(.i) = ¢(XJ-(i)); M(a®M),a®), .. .) invertible over D

D @ k<x(M> fir: M(x(M) a®) ) invertible over the USFF
of D ® k<x(!)>

proposition: M(X(®1) a(®) .)€ Mgy, (D) invertible for some
X € Mp, (k)&

induction: N = M(X®) x() . invertible over

]k{x(z)ﬁ. . .(—)x(G)}

basic property: N(X(3),...) invertible for some

X e M, (k)&

M(X®, X)) invertible, so M invertible over

k{x(l)e}. . .(—)x(G)}
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Higher order nc rational functions

Let r € kfx(De. . x(€)3 Then

1. r respects direct sums in the first factor and up to canonical
shuffle in other factors; (A® B ~ B® A)

2. r respects similarities in every factor.

Hence r is a nc function of order G — 1.
Directional nc difference-differential operators
(). D .. ox(6) WDy (D .+ x(G)
A k€x X\ — k€x X' \ex x\7) 3

satisfy the usual properties.



Higher order nc rational functions cont'd

Furthermore, diagrams like

]k{x(l)Ux(z)H. . .Hx(G)} ********** > ﬂ{{X(l)H Hx(G)}
A A
J

ﬂ{{xl(l) UX/(2)HX(1)UX(2)H . HX(G)} -——== ]k{x/(l)(—;x(l)q—; e Hx(G)}

commute, where --» are specializations (local homomorphisms)
between skew fields.



Thank you,

and happy birthday!



