Multipartite rational functions

Jurij Volčič, with Igor Klep and Victor Vinnikov

University of Auckland
Multivariable Operator Theory
Technion 2017

Plan

1. Introduction: noncommutative rational functions
2. Multipartite rational functions: construction and universality
3. Amitsur's theorem on multipartite identities
4. Noncommutative function theory perspective

Nc rational expressions

\mathbb{k} a field of characteristic $0, \mathbf{x}=\left\{x_{1}, \ldots, x_{g}\right\}$ freely noncommuting letters, $\mathbb{k}<\mathbf{x}>$ the free algebra of nc polynomials.
$\mathcal{R}_{\mathbb{k}}(\mathbf{x})$ nc rational expressions built from $\mathbb{k}<\mathbf{x}>$ using $+, \cdot,^{-1},($,$) ,$
e.g. $x_{2}\left(1+x_{1} x_{2}^{-1}\left(x_{1}-3\right)\right)^{-1},\left(x_{1} x_{2}\right)^{-1}-x_{2}^{-1} x_{1}^{-1},\left(1-x_{1}^{-1} x_{1}\right)^{-1}$.

Nc rational expressions

\mathbb{k} a field of characteristic $0, \mathbf{x}=\left\{x_{1}, \ldots, x_{g}\right\}$ freely noncommuting letters, $\mathbb{k}<\mathbf{x}>$ the free algebra of nc polynomials.
$\mathcal{R}_{\mathbb{k}}(\mathbf{x})$ nc rational expressions built from $\mathbb{k}<\mathbf{x}>$ using $+, \cdot,^{-1},($,$) ,$
e.g. $x_{2}\left(1+x_{1} x_{2}^{-1}\left(x_{1}-3\right)\right)^{-1},\left(x_{1} x_{2}\right)^{-1}-x_{2}^{-1} x_{1}^{-1},\left(1-x_{1}^{-1} x_{1}\right)^{-1}$.

Evaluations of $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ on tuples of matrices:

- $\mathrm{M}_{n}(\mathbb{k})^{g} \rightarrow \mathrm{M}_{n}(\mathbb{k})$ for all $n \in \mathbb{N}$;
- dom $r \subseteq \bigcup_{n} \mathrm{M}_{n}(\mathbb{k})^{g}$ the domain of r;
- r is degenerate if dom $r=\emptyset$ and nondegenerate otherwise.

Nc rational expressions

\mathbb{k} a field of characteristic $0, \mathbf{x}=\left\{x_{1}, \ldots, x_{g}\right\}$ freely noncommuting letters, $\mathbb{k}<\mathbf{x}>$ the free algebra of nc polynomials.
$\mathcal{R}_{\mathbb{k}}(\mathbf{x})$ nc rational expressions built from $\mathbb{k}<\mathbf{x}>$ using $+, \cdot,^{-1},($,$) ,$
e.g. $x_{2}\left(1+x_{1} x_{2}^{-1}\left(x_{1}-3\right)\right)^{-1},\left(x_{1} x_{2}\right)^{-1}-x_{2}^{-1} x_{1}^{-1},\left(1-x_{1}^{-1} x_{1}\right)^{-1}$.

Evaluations of $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ on tuples of matrices:

- $\mathrm{M}_{n}(\mathbb{k})^{g} \rightarrow \mathrm{M}_{n}(\mathbb{k})$ for all $n \in \mathbb{N}$;
- dom $r \subseteq \bigcup_{n} \mathrm{M}_{n}(\mathbb{k})^{g}$ the domain of r;
- r is degenerate if dom $r=\emptyset$ and nondegenerate otherwise.

Define equivalence relation for nondegenerate expressions: $r_{1} \sim r_{2}$ iff $r_{1}(X)=r_{2}(X)$ for all $X \in \operatorname{dom} r_{1} \cap \operatorname{dom} r_{2}$.

Nc rational functions

Classes of nondegenerate expressions are called nc rational functions and form a skew field $\mathbb{k} \nless x \ngtr$, the free skew field.

Nc rational functions

Classes of nondegenerate expressions are called nc rational functions and form a skew field $\mathbb{k} \nless x \ngtr$, the free skew field.

This construction is due to Helton, McCullough, Vinnikov. Others:

- evaluations on ∞-dim skew fields (Amitsur)
- full matrices over $\mathbb{k}<\mathbf{x}>$ (Cohn)
- Malcev-Neumann series of a free group (Lewin)
- grading on a free Lie algebra (Lichtman)
- unbounded operators associated to a von Neumann algebra (Linnell)

Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here $f=\left(f_{n}\right)_{n}, f_{n}: \Omega_{n} \subseteq \mathrm{M}_{n}(\mathbb{k})^{g} \rightarrow \mathrm{M}_{n}(\mathbb{k})$, is a nc function if $f_{m+n}(X \oplus Y)=f_{m}(X) \oplus f_{n}(Y)$ and $f_{n}\left(P X P^{-1}\right)=P f_{n}(X) P^{-1}$.

Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here $f=\left(f_{n}\right)_{n}, f_{n}: \Omega_{n} \subseteq M_{n}(\mathbb{k})^{g} \rightarrow \mathrm{M}_{n}(\mathbb{k})$, is a nc function if $f_{m+n}(X \oplus Y)=f_{m}(X) \oplus f_{n}(Y)$ and $f_{n}\left(P X P^{-1}\right)=P f_{n}(X) P^{-1}$.

If f is a nc function, then

$$
f\left(\begin{array}{cc}
X & H \\
0 & Y
\end{array}\right)=\left(\begin{array}{cc}
f(X) & \sum_{j} \Delta_{j}(f)(X, Y) H_{j} \\
0 & f(Y)
\end{array}\right),
$$

where Δ_{j} are (left) directional nc difference-differential operators

$$
\Delta_{j}(f)_{m, n}: \Omega_{m} \times \Omega_{n} \rightarrow \operatorname{Hom}_{\mathbb{k}}\left(\mathbb{k}^{m \times n}, \mathbb{k}^{m \times n}\right) .
$$

(higher order nc functions)

Polynomial example

For example, if $f=x_{1}^{2} x_{2} x_{1}$, then the directional nc difference-differential operators of f at $\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)$ are given by

$$
\Delta_{1}(f)\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) H=H Y_{1} Y_{2} Y_{1}+X_{1} H Y_{2} Y_{1}+X_{1}^{2} X_{2} H
$$

$\Delta_{2}(f)\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) H=X_{1}^{2} H Y_{1}$

Polynomial example

For example, if $f=x_{1}^{2} x_{2} x_{1}$, then the directional nc difference-differential operators of f at $\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)$ are given by

$$
\begin{aligned}
\Delta_{1}(f)\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) H & =H Y_{1} Y_{2} Y_{1}+X_{1} H Y_{2} Y_{1}+X_{1}^{2} X_{2} H \\
& =1 \otimes Y_{1} Y_{2} Y_{1}+X_{1} \otimes Y_{2} Y_{1}+X_{1}^{2} X_{2} \otimes 1
\end{aligned}
$$

$$
\Delta_{2}(f)\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) H=X_{1}^{2} H Y_{1}
$$

$$
=X_{1}^{2} \otimes Y_{1}
$$

Hence $\Delta_{1}, \Delta_{2}: \mathbb{k}<\mathbf{x}>\rightarrow \mathbb{k}<\mathbf{x}>\otimes \mathbb{k}<\mathbf{y}>$.

Polynomial example

For example, if $f=x_{1}^{2} x_{2} x_{1}$, then the directional nc difference-differential operators of f at $\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)$ are given by

$$
\begin{aligned}
\Delta_{1}(f)\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) H & =H Y_{1} Y_{2} Y_{1}+X_{1} H Y_{2} Y_{1}+X_{1}^{2} X_{2} H \\
& =1 \otimes Y_{1} Y_{2} Y_{1}+X_{1} \otimes Y_{2} Y_{1}+X_{1}^{2} X_{2} \otimes 1 \\
\Delta_{2}(f)\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) H & =X_{1}^{2} H Y_{1} \\
& =X_{1}^{2} \otimes Y_{1}
\end{aligned}
$$

Hence $\Delta_{1}, \Delta_{2}: \mathbb{k}<\mathbf{x}>\rightarrow \mathbb{k}<\mathbf{x}>\otimes \mathbb{k}<\mathbf{y}>$.
Applying Δ_{j} further: $\mathbb{k}<\mathbf{x}^{(1)}>\otimes \cdots \otimes \mathbb{k}<\mathbf{x}^{(G)}>$. What are higher order nc rational functions?

Universal skew field of fractions

$\mathbb{k} \notin \mathbf{x}>$ is the universal skew field of fractions of $\mathbb{k}<\mathbf{x}>$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Universal skew field of fractions

$\mathbb{k} \notin \mathbf{x} \gg$ is the universal skew field of fractions of $\mathbb{k}<\mathbf{x}>$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a SFF of R if $R \subset U$ and R generates U as a skew field.

Universal skew field of fractions

$\mathbb{k} \notin \mathbf{x} \ngtr$ is the universal skew field of fractions of $\mathbb{k}<\mathbf{x}>$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a SFF of R if $R \subset U$ and R generates U as a skew field.

Furthermore, U is a USFF of R if for every matrix A over R and a homomorphism $\phi: R \rightarrow D$ into a skew field D,
$\phi(A)$ invertible over $D \Rightarrow A$ invertible over U.

Universal skew field of fractions

$\mathbb{k} \notin \mathbf{x} \gg$ is the universal skew field of fractions of $\mathbb{k}<\mathbf{x}>$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a SFF of R if $R \subset U$ and R generates U as a skew field.

Furthermore, U is a USFF of R if for every matrix A over R and a homomorphism $\phi: R \rightarrow D$ into a skew field D,

$$
\phi(A) \text { invertible over } D \quad \Rightarrow \quad A \text { invertible over } U .
$$

This notion is due to Cohn (70s). It is a universal property in the category of skew fields with epimorphisms from R; morphisms are specializations (local homomorphisms) between skew fields.

Rings with USFF

Known rings admitting USFF:

- commutative domains

Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. $\mathbb{k}<\mathbf{x}\rangle$; semifirs, e.g. $\mathbb{k} \ll \mathbf{x} \gg$, or nc functions analytic at the origin
(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank

Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. $\mathbb{k}<\mathbf{x}\rangle$; semifirs, e.g. $\mathbb{k} \ll \mathbf{x} \gg$, or nc functions analytic at the origin
(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank
- (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}\left[t_{1}, t_{2}, t_{3}\right]$ is not a Sylvester domain)

Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. $\mathbb{k}<\mathbf{x}>$; semifirs, e.g. $\mathbb{k} \ll \mathbf{x} \gg$, or nc functions analytic at the origin
(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank
- (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}\left[t_{1}, t_{2}, t_{3}\right]$ is not a Sylvester domain)

Tensor product of free algebras is not a pseudo-Sylvester domain (apart from trivial cases). Cohn ('97) proved that $\mathbb{k}<\mathbf{x}>\otimes \mathbb{k}<\mathbf{y}>$ has the USFF, but was unable to show this for more factors.

Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. $\mathbb{k}<\mathbf{x}>$; semifirs, e.g. $\mathbb{k} \ll \mathbf{x} \gg$, or nc functions analytic at the origin
(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank
- (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}\left[t_{1}, t_{2}, t_{3}\right]$ is not a Sylvester domain)

Tensor product of free algebras is not a pseudo-Sylvester domain (apart from trivial cases). Cohn ('97) proved that $\mathbb{k}<\mathbf{x}>\otimes \mathbb{k}<\mathbf{y}>$ has the USFF, but was unable to show this for more factors.

Today: $\mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{(G)}>:=\mathbb{k}<\mathbf{x}^{(1)}>\otimes \cdots \otimes \mathbb{k}<\mathbf{x}^{(G)}>$ admits the USFF $\mathbb{k} \notin \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ for every $G \in \mathbb{N}$.

Notation

For $i=1, \ldots, G$ let $\mathbf{x}^{(i)}=\left\{x_{1}^{(i)}, \ldots, x_{g_{i}}^{(i)}\right\}$ be sets of freely noncommuting variables and $\mathbf{x}=\mathbf{x}^{(1)} \cup \cdots \cup \mathbf{x}^{(G)}$.

Notation

For $i=1, \ldots, G$ let $\mathbf{x}^{(i)}=\left\{x_{1}^{(i)}, \ldots, x_{g_{i}}^{(i)}\right\}$ be sets of freely noncommuting variables and $\mathbf{x}=\mathbf{x}^{(1)} \cup \cdots \cup \mathbf{x}^{(G)}$.

Given $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ and $X^{(i)} \in \mathrm{M}_{n_{i}}(\mathbb{k})^{g_{i}}$ we define mp-evaluation of r at $X=\left(X^{(1)}, \ldots, X^{(G)}\right)$ as
$r^{\mathrm{mp}}(X):=$
$r\left(X^{(1)} \otimes I \otimes \cdots \otimes I, I \otimes X^{(2)} \otimes \cdots \otimes I, \ldots, I \otimes I \otimes \cdots \otimes X^{(G)}\right)$
in $M_{n_{1} \cdots n_{G}}(\mathbb{k})$, if all nested inverses exist.
Here \otimes denotes Kronecker's product; note that $(A \otimes I)(I \otimes B)=(I \otimes B)(A \otimes I)$.

Example

For example, let $\mathbf{x}=\left\{x_{1}, x_{2}\right\}, \mathbf{y}=\left\{y_{1}, y_{2}\right\}$ and $r=\left(x_{1}+y_{2} x_{2} x_{1} y_{1}\right)^{-1}-y_{2}^{-1}$.

Example

For example, let $\mathbf{x}=\left\{x_{1}, x_{2}\right\}, \mathbf{y}=\left\{y_{1}, y_{2}\right\}$ and $r=\left(x_{1}+y_{2} x_{2} x_{1} y_{1}\right)^{-1}-y_{2}^{-1}$.

Then

$$
\begin{aligned}
r(X ; Y)= & \left(X_{1} \otimes I+\left(I \otimes Y_{2}\right)\left(X_{2} \otimes I\right)\left(X_{1} \otimes I\right)\left(I \otimes Y_{1}\right)\right)^{-1} \\
& -\left(I \otimes Y_{2}\right)^{-1}
\end{aligned}
$$

Example

For example, let $\mathbf{x}=\left\{x_{1}, x_{2}\right\}, \mathbf{y}=\left\{y_{1}, y_{2}\right\}$ and $r=\left(x_{1}+y_{2} x_{2} x_{1} y_{1}\right)^{-1}-y_{2}^{-1}$.

Then

$$
\begin{aligned}
r(X ; Y)= & \left(X_{1} \otimes I+\left(I \otimes Y_{2}\right)\left(X_{2} \otimes I\right)\left(X_{1} \otimes I\right)\left(I \otimes Y_{1}\right)\right)^{-1} \\
& -\left(I \otimes Y_{2}\right)^{-1} \\
= & \left(X_{1} \otimes I+X_{2} X_{1} \otimes Y_{2} Y_{1}\right)^{-1}-I \otimes Y_{2}^{-1}
\end{aligned}
$$

Multipartite rational functions

Given $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ let

$$
\operatorname{dom}^{\mathrm{mp}} r \subseteq \bigcup_{n_{1}, \ldots, n_{G}} \mathrm{M}_{n_{1}}(\mathbb{k})^{g_{1}} \times \cdots \times \mathrm{M}_{n_{G}}(\mathbb{k})^{g_{G}}
$$

be its mp-domain.

Multipartite rational functions

Given $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ let

$$
\operatorname{dom}^{\mathrm{mp}} r \subseteq \bigcup_{n_{1}, \ldots, n_{G}} M_{n_{1}}(\mathbb{k})^{g_{1}} \times \cdots \times \mathrm{M}_{n_{G}}(\mathbb{k})^{g_{G}}
$$

be its mp-domain.
On the set of rational expressions with non-empty mp-domains we define equivalence relation $r_{1} \sim r_{2}$ if and only if $r_{1}^{m p}(X)=r_{2}^{m p}(X)$ for all $X \in \operatorname{dom}^{m p} r_{1} \cap \operatorname{dom}^{m p} r_{2}$. The equivalence class of r is denoted \mathbf{r} and called a multipartite rational function.

Multipartite rational functions

Given $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ let

$$
\operatorname{dom}^{\mathrm{mp}} r \subseteq \bigcup_{n_{1}, \ldots, n_{G}} M_{n_{1}}(\mathbb{k})^{g_{1}} \times \cdots \times \mathrm{M}_{n_{G}}(\mathbb{k})^{g_{G}}
$$

be its mp-domain.
On the set of rational expressions with non-empty mp-domains we define equivalence relation $r_{1} \sim r_{2}$ if and only if $r_{1}^{\mathrm{mp}}(X)=r_{2}^{\mathrm{mp}}(X)$ for all $X \in \operatorname{dom}^{m p} r_{1} \cap \operatorname{dom}^{m p} r_{2}$. The equivalence class of r is denoted \mathbf{r} and called a multipartite rational function.

The set of multipartite rational functions is denoted $\mathbb{k} \notin \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ and endowed with the natural ring structure.

Theorem
$\mathbb{k} \notin \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ is a SFF of $\mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>$.

Basic properties

(1) Let $\mathbf{M} \in \mathrm{M}_{\boldsymbol{d}}\left(\mathbb{k} \notin \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \geqslant\right)$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \operatorname{dom} \mathbf{M}$.

Basic properties

(1) Let $\mathbf{M} \in \mathbf{M}_{d}\left(\mathbb{k} \not \mathbf{x}^{(1)} \rightsquigarrow \cdots \rightsquigarrow \mathbf{x}^{(G)} \ngtr\right)$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \operatorname{dom} \mathbf{M}$.
(2) Let $\mathbf{r} \in \mathbb{k} \notin \mathbf{x}^{(1)} \ldots \ldots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ and $Y \in \operatorname{dom} \mathbf{r}$ with $Y^{(1)} \in \mathrm{M}_{\boldsymbol{d}}(\mathbb{k})^{g_{1}}$. Then there exists $\mathbf{S} \in \mathrm{M}_{\boldsymbol{d}}\left(\mathbb{k} \nless \mathbf{x}^{(2)} \cdots \cdots \mathbf{x}^{(G)} \ngtr\right)$ such that

$$
\mathbf{r}\left(Y^{(1)}, X\right)=\mathbf{S}(X)
$$

for all $X \in \operatorname{dom} \mathbf{S}$ such that $\left(Y^{(1)}, X\right) \in \operatorname{dom} \mathbf{r}$.

Basic properties

 only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \operatorname{dom} \mathbf{M}$.
(2) Let $\mathbf{r} \in \mathbb{k} \notin \mathbf{x}^{(1)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{(G)} \geqslant$ and $Y \in \operatorname{dom} \mathbf{r}$ with $Y^{(1)} \in \mathrm{M}_{d}(\mathbb{k})^{g_{1}}$. Then there exists $\mathbf{S} \in \mathrm{M}_{\boldsymbol{d}}\left(\mathbb{k} \nless \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr\right)$ such that

$$
\mathbf{r}\left(Y^{(1)}, X\right)=\mathbf{S}(X)
$$

for all $X \in \operatorname{dom} \mathbf{S}$ such that $\left(Y^{(1)}, X\right) \in \operatorname{dom} \mathbf{r}$.
(3)
 holds in $\mathbb{k} \nless \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ for $G_{0} \leq G_{1}$.

Basic properties

 only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \operatorname{dom} \mathbf{M}$.
(2) Let $\mathbf{r} \in \mathbb{k} \nless \mathbf{x}^{(1)}{ }_{\leftrightarrow} \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ and $Y \in \operatorname{dom} \mathbf{r}$ with $Y^{(1)} \in \mathrm{M}_{d}(\mathbb{k})^{g_{1}}$. Then there exists $\mathbf{S} \in \mathrm{M}_{\boldsymbol{d}}\left(\mathbb{k} \nless \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr\right)$ such that

$$
\mathbf{r}\left(Y^{(1)}, X\right)=\mathbf{S}(X)
$$

for all $X \in \operatorname{dom} \mathbf{S}$ such that $\left(Y^{(1)}, X\right) \in \operatorname{dom} \mathbf{r}$.
(3)
 holds in $\mathbb{k} \not \subset \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \neq$ for $G_{0} \leq G_{1}$.
(4) The centralizer of $\mathbb{k} \notin \mathbf{x}^{(1)} \ngtr$ in $\left.\mathbb{k} \notin \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)}\right\rangle$ equals $\mathbb{k} \notin \mathbf{x}^{(2)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{(G)} \neq$ if $\left|\mathbf{x}_{1}\right|>1$.

Auxiliary result

Let D be an arbitrary skew field containing \mathbb{k}. Then $D \otimes \mathbb{k}<\mathbf{x}>$ is a fir (Cohn); in particular, it has the USFF.

Auxiliary result

Let D be an arbitrary skew field containing \mathbb{k}. Then $D \otimes \mathbb{k}<\mathbf{x}>$ is a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a $d \times d$ matrix over $D \otimes \mathbb{k}<\mathbf{x}>$. Then M is invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}>$ if and only if $M(X) \in \mathrm{M}_{d}\left(D \otimes \mathrm{M}_{n}(\mathbb{k})\right) \cong \mathrm{M}_{d n}(D)$ is invertible for some $X \in \mathrm{M}_{n}(\mathbb{k})^{g}$.

Auxiliary result

Let D be an arbitrary skew field containing \mathbb{k}. Then $D \otimes \mathbb{k}<\mathbf{x}>$ is a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a $d \times d$ matrix over $D \otimes \mathbb{k}<\mathbf{x}>$. Then M is invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}>$ if and only if $M(X) \in \mathrm{M}_{d}\left(D \otimes \mathrm{M}_{n}(\mathbb{k})\right) \cong \mathrm{M}_{d n}(D)$ is invertible for some $X \in M_{n}(\mathbb{k})^{g}$.

Ingredients: Cohn's theory of USFFs, PI theory, skew field constructions and power series expansions.

Universality

Theorem

Universality

Theorem
$\mathbb{k} \notin \mathbf{x}^{(1)}{ }_{\leftrightarrow} \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$ is the USFF of $\mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>$.

Corollary
Let $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$. TFAE:
(i) $r^{\mathrm{mp}}(X)=0$ for all $X \in \operatorname{dom}^{\mathrm{mp}} r$;
(ii) $r(X)=0$ for all $X \in \operatorname{dom} r$ such that $\left[X_{j_{1}}^{\left(i_{1}\right)}, X_{j_{2}}^{\left(i_{2}\right)}\right]=0$ for $i_{1} \neq i_{2} ;$
(iii) for every skew field $D, r(a) \in\{0$, undef $\}$ for every tuple $a \in D^{g_{1}+\cdots+g_{G}}$ such that $\left[a_{j_{1}}^{\left(i_{1}\right)}, a_{j_{2}}^{\left(i_{2}\right)}\right]=0$.

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>$ and let $\phi: \mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>$ and let $\phi: \mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{(G)}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)}=\phi\left(x_{j}^{(i)}\right) ; M\left(a^{(1)}, a^{(2)}, \ldots\right)$ invertible over D

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow} \ldots \leftrightarrow \mathbf{x}^{(G)}>}$ and let $\phi: \mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)}=\phi\left(x_{j}^{(i)}\right) ; M\left(a^{(1)}, a^{(2)}, \ldots\right)$ invertible over D
2. $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$ fir: $M\left(x^{(1)}, a^{(2)}, \ldots\right)$ invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow} \ldots \leftrightarrow \mathbf{x}^{(G)}>}$ and let $\phi: \mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)}=\phi\left(x_{j}^{(i)}\right) ; M\left(a^{(1)}, a^{(2)}, \ldots\right)$ invertible over D
2. $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$ fir: $M\left(x^{(1)}, a^{(2)}, \ldots\right)$ invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$
3. proposition: $M\left(X^{(1)}, a^{(2)}, \ldots\right) \in \mathrm{M}_{d n_{1}}(D)$ invertible for some $X \in \mathrm{M}_{n_{1}}(\mathbb{k})^{g_{1}}$

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow} \ldots \leftrightarrow \mathbf{x}^{(G)}>}$ and let $\phi: \mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)}=\phi\left(x_{j}^{(i)}\right) ; M\left(a^{(1)}, a^{(2)}, \ldots\right)$ invertible over D
2. $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$ fir: $M\left(x^{(1)}, a^{(2)}, \ldots\right)$ invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$
3. proposition: $M\left(X^{(1)}, a^{(2)}, \ldots\right) \in \mathrm{M}_{d n_{1}}(D)$ invertible for some $X \in \mathrm{M}_{n_{1}}(\mathbb{k})^{g_{1}}$
4. induction: $N=M\left(X^{(1)}, x^{(2)}, \ldots\right)$ invertible over $\mathbb{k} \notin \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \boldsymbol{\gamma}$

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow} \ldots \leftrightarrow \mathbf{x}^{(G)}>}$ and let
$\phi: \mathbb{k}<\mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)}=\phi\left(x_{j}^{(i)}\right) ; M\left(a^{(1)}, a^{(2)}, \ldots\right)$ invertible over D
2. $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$ fir: $M\left(x^{(1)}, a^{(2)}, \ldots\right)$ invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$
3. proposition: $M\left(X^{(1)}, a^{(2)}, \ldots\right) \in \mathrm{M}_{d n_{1}}(D)$ invertible for some $X \in \mathrm{M}_{n_{1}}(\mathbb{k})^{g_{1}}$
4. induction: $N=M\left(X^{(1)}, x^{(2)}, \ldots\right)$ invertible over $\mathbb{k} \notin \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$
5. basic property: $N\left(X^{(2)}, \ldots\right)$ invertible for some $X^{(i)} \in \mathrm{M}_{n_{i}}(\mathbb{k})^{g_{i}}$

Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow} \ldots \leftrightarrow \mathbf{x}^{(G)}>}$ and let
$\phi: \mathbb{k}<\mathbf{x}^{(1)_{\leftrightarrow} \ldots \leftrightarrow \mathbf{x}^{(G)}}>\rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)}=\phi\left(x_{j}^{(i)}\right) ; M\left(a^{(1)}, a^{(2)}, \ldots\right)$ invertible over D
2. $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$ fir: $M\left(x^{(1)}, a^{(2)}, \ldots\right)$ invertible over the USFF of $D \otimes \mathbb{k}<\mathbf{x}^{(1)}>$
3. proposition: $M\left(X^{(1)}, a^{(2)}, \ldots\right) \in M_{d n_{1}}(D)$ invertible for some $X \in \mathrm{M}_{n_{1}}(\mathbb{k})^{g_{1}}$
4. induction: $N=M\left(X^{(1)}, x^{(2)}, \ldots\right)$ invertible over $\mathbb{k} \notin \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$
5. basic property: $N\left(X^{(2)}, \ldots\right)$ invertible for some $X^{(i)} \in \mathrm{M}_{n_{i}}(\mathbb{k})^{g_{i}}$
6. $M\left(X^{(1)}, X^{(2)}, \ldots\right)$ invertible, so M invertible over $\mathfrak{k} \notin \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rightarrow$

Higher order nc rational functions

Let $\mathbf{r} \in \mathbb{k} \nless \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \geqslant$. Then

1. \mathbf{r} respects direct sums in the first factor and up to canonical shuffle in other factors; $(A \otimes B \sim B \otimes A)$
2. \mathbf{r} respects similarities in every factor.

Hence \mathbf{r} is a nc function of order $G-1$.

Higher order nc rational functions

Let $\mathbf{r} \in \mathbb{k} \notin \mathbf{x}^{(1)}{ }_{\leftrightarrow} \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr$. Then

1. \mathbf{r} respects direct sums in the first factor and up to canonical shuffle in other factors; $(A \otimes B \sim B \otimes A)$
2. \mathbf{r} respects similarities in every factor.

Hence \mathbf{r} is a nc function of order $G-1$.
Directional nc difference-differential operators

$$
\Delta_{j}^{(i)}: \mathbb{k} \notin \mathbf{x}^{(1)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr \rightarrow \mathbb{k} \notin \mathbf{x}^{(1)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{\prime(i)_{\leftrightarrow}} \mathbf{x}^{(i)_{\leftrightarrow}} \cdots \leftrightarrow \mathbf{x}^{(G)} \ngtr
$$

satisfy the usual properties.

Higher order nc rational functions cont'd

Furthermore, diagrams like

commute, where \rightarrow are specializations (local homomorphisms) between skew fields.

Thank you,

and happy birthday!

