Jurij Volčič, with Igor Klep and Victor Vinnikov

University of Auckland

Multivariable Operator Theory

Technion 2017

Plan

- 1. Introduction: noncommutative rational functions
- 2. Multipartite rational functions: construction and universality
- 3. Amitsur's theorem on multipartite identities
- 4. Noncommutative function theory perspective

Nc rational expressions

k a field of characteristic 0, $\mathbf{x} = \{x_1, \dots, x_g\}$ freely noncommuting letters, $k < \mathbf{x} >$ the free algebra of nc polynomials.

 $\mathcal{R}_{\mathbb{k}}(\mathbf{x})$ nc rational expressions built from $\mathbb{k}<\mathbf{x}>$ using $+, \cdot, \cdot^{-1}, (,),$ e.g. $x_2(1+x_1x_2^{-1}(x_1-3))^{-1}, (x_1x_2)^{-1}-x_2^{-1}x_1^{-1}, (1-x_1^{-1}x_1)^{-1}.$

Nc rational expressions

k a field of characteristic 0, $\mathbf{x} = \{x_1, \dots, x_g\}$ freely noncommuting letters, $k < \mathbf{x} >$ the free algebra of nc polynomials.

$$\mathcal{R}_{\mathbb{k}}(\mathbf{x})$$
 nc rational expressions built from $\mathbb{k} < \mathbf{x} >$ using $+, \cdot, \cdot^{-1}, (,),$ e.g. $x_2(1+x_1x_2^{-1}(x_1-3))^{-1}, (x_1x_2)^{-1}-x_2^{-1}x_1^{-1}, (1-x_1^{-1}x_1)^{-1}.$

Evaluations of $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ on tuples of matrices:

- ▶ $M_n(\mathbb{k})^g \dashrightarrow M_n(\mathbb{k})$ for all $n \in \mathbb{N}$;
- ▶ dom $r \subseteq \bigcup_n M_n(\mathbb{k})^g$ the **domain** of r;
- ▶ r is **degenerate** if dom $r = \emptyset$ and **nondegenerate** otherwise.

Nc rational expressions

k a field of characteristic 0, $\mathbf{x} = \{x_1, \dots, x_g\}$ freely noncommuting letters, $k < \mathbf{x} >$ the free algebra of nc polynomials.

$$\mathcal{R}_{\mathbb{k}}(\mathbf{x})$$
 nc rational expressions built from $\mathbb{k} < \mathbf{x} >$ using $+, \cdot, \cdot^{-1}, (,),$ e.g. $x_2(1+x_1x_2^{-1}(x_1-3))^{-1}, (x_1x_2)^{-1}-x_2^{-1}x_1^{-1}, (1-x_1^{-1}x_1)^{-1}.$

Evaluations of $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ on tuples of matrices:

- ▶ $M_n(\mathbb{k})^g \dashrightarrow M_n(\mathbb{k})$ for all $n \in \mathbb{N}$;
- ▶ dom $r \subseteq \bigcup_n M_n(\mathbb{k})^g$ the **domain** of r;
- ▶ r is **degenerate** if dom $r = \emptyset$ and **nondegenerate** otherwise.

Define equivalence relation for nondegenerate expressions: $r_1 \sim r_2$ iff $r_1(X) = r_2(X)$ for all $X \in \text{dom } r_1 \cap \text{dom } r_2$.

Nc rational functions

Classes of nondegenerate expressions are called **nc rational** functions and form a skew field $\mathbb{k} \langle \mathbf{x} \rangle$, the **free skew field**.

Nc rational functions

Classes of nondegenerate expressions are called **nc rational** functions and form a skew field $\mathbb{k} \langle \mathbf{x} \rangle$, the **free skew field**.

This construction is due to Helton, McCullough, Vinnikov. Others:

- ▶ evaluations on ∞-dim skew fields (Amitsur)
- ▶ full matrices over k<x> (Cohn)
- Malcev-Neumann series of a free group (Lewin)
- grading on a free Lie algebra (Lichtman)
- unbounded operators associated to a von Neumann algebra (Linnell)

Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here $f = (f_n)_n$, $f_n : \Omega_n \subseteq M_n(\mathbb{k})^g \to M_n(\mathbb{k})$, is a **nc function** if $f_{m+n}(X \oplus Y) = f_m(X) \oplus f_n(Y)$ and $f_n(PXP^{-1}) = Pf_n(X)P^{-1}$.

Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here
$$f = (f_n)_n$$
, $f_n : \Omega_n \subseteq M_n(\mathbb{k})^g \to M_n(\mathbb{k})$, is a **nc function** if $f_{m+n}(X \oplus Y) = f_m(X) \oplus f_n(Y)$ and $f_n(PXP^{-1}) = Pf_n(X)P^{-1}$.

If f is a nc function, then

$$f\begin{pmatrix} X & H \\ 0 & Y \end{pmatrix} = \begin{pmatrix} f(X) & \sum_{j} \Delta_{j}(f)(X,Y)H_{j} \\ 0 & f(Y) \end{pmatrix},$$

where Δ_j are (left) directional nc difference-differential operators

$$\Delta_j(f)_{m,n}:\Omega_m\times\Omega_n\to \mathsf{Hom}_{\Bbbk}(\Bbbk^{m\times n},\Bbbk^{m\times n}).$$

(higher order nc functions)

Polynomial example

For example, if $f=x_1^2x_2x_1$, then the directional nc difference-differential operators of f at $(X_1,X_2;Y_1,Y_2)$ are given by

$$\Delta_1(f)(X_1,X_2;Y_1,Y_2)H = HY_1Y_2Y_1 + X_1HY_2Y_1 + X_1^2X_2H$$

$$\Delta_2(f)(X_1, X_2; Y_1, Y_2)H = X_1^2 H Y_1$$

Polynomial example

For example, if $f=x_1^2x_2x_1$, then the directional nc difference-differential operators of f at $(X_1,X_2;Y_1,Y_2)$ are given by

$$\begin{split} \Delta_1(f)(X_1,X_2;Y_1,Y_2)H &= HY_1Y_2Y_1 + X_1HY_2Y_1 + X_1^2X_2H \\ &= 1 \otimes Y_1Y_2Y_1 + X_1 \otimes Y_2Y_1 + X_1^2X_2 \otimes 1 \\ \Delta_2(f)(X_1,X_2;Y_1,Y_2)H &= X_1^2HY_1 \\ &= X_1^2 \otimes Y_1 \end{split}$$

Hence $\Delta_1, \Delta_2 : \Bbbk < \mathbf{x} > \to \Bbbk < \mathbf{x} > \otimes \Bbbk < \mathbf{y} >$.

Polynomial example

For example, if $f = x_1^2 x_2 x_1$, then the directional nc difference-differential operators of f at $(X_1, X_2; Y_1, Y_2)$ are given by

$$\Delta_{1}(f)(X_{1}, X_{2}; Y_{1}, Y_{2})H = HY_{1}Y_{2}Y_{1} + X_{1}HY_{2}Y_{1} + X_{1}^{2}X_{2}H$$

$$= 1 \otimes Y_{1}Y_{2}Y_{1} + X_{1} \otimes Y_{2}Y_{1} + X_{1}^{2}X_{2} \otimes 1$$

$$\Delta_{2}(f)(X_{1}, X_{2}; Y_{1}, Y_{2})H = X_{1}^{2}HY_{1}$$

$$= X_{1}^{2} \otimes Y_{1}$$

Hence $\Delta_1, \Delta_2 : \mathbb{k} < \mathbf{x} > \to \mathbb{k} < \mathbf{x} > \otimes \mathbb{k} < \mathbf{y} >$.

Applying Δ_j further: $\mathbb{k} < \mathbf{x}^{(1)} > \otimes \cdots \otimes \mathbb{k} < \mathbf{x}^{(G)} >$. What are higher order no rational functions?

 $\mathbb{R} \langle \mathbf{x} \rangle$ is the universal skew field of fractions of $\mathbb{R} \langle \mathbf{x} \rangle$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

 $k \langle x \rangle$ is the universal skew field of fractions of $k \langle x \rangle$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a **SFF** of R if $R \subset U$ and R generates U as a skew field.

 $k \not\{x\}$ is the universal skew field of fractions of k < x > (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a **SFF** of R if $R \subset U$ and R generates U as a skew field.

Furthermore, U is a **USFF** of R if for every matrix A over R and a homomorphism $\phi: R \to D$ into a skew field D,

 $\phi(A)$ invertible over $D \Rightarrow A$ invertible over U.

 $k \langle x \rangle$ is the universal skew field of fractions of $k \langle x \rangle$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a **SFF** of R if $R \subset U$ and R generates U as a skew field.

Furthermore, U is a **USFF** of R if for every matrix A over R and a homomorphism $\phi: R \to D$ into a skew field D,

 $\phi(A)$ invertible over $D \Rightarrow A$ invertible over U.

This notion is due to Cohn (70s). It is a universal property in the category of skew fields with epimorphisms from R; morphisms are specializations (local homomorphisms) between skew fields.

Known rings admitting USFF:

commutative domains

Known rings admitting USFF:

- commutative domains
- ▶ firs, e.g. k < x>; semifirs, e.g. k < x>, or nc functions analytic at the origin

(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank

Known rings admitting USFF:

- commutative domains
- ▶ firs, e.g. k < x>; semifirs, e.g. k < x>, or nc functions analytic at the origin
 - (semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank
- ▶ (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}[t_1, t_2, t_3]$ is not a Sylvester domain)

Known rings admitting USFF:

- commutative domains
- ▶ firs, e.g. k < x>; semifirs, e.g. k < x>, or nc functions analytic at the origin
 - (semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank
- ▶ (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}[t_1, t_2, t_3]$ is not a Sylvester domain)

Tensor product of free algebras is **not** a pseudo-Sylvester domain (apart from trivial cases). Cohn ('97) proved that $\mathbb{k} < \mathbf{x} > \otimes \mathbb{k} < \mathbf{y} >$ has the USFF, but was unable to show this for more factors.

Known rings admitting USFF:

- commutative domains
- ▶ firs, e.g. k < x>; semifirs, e.g. k < x>, or nc functions analytic at the origin
 - (semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank
- ▶ (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}[t_1, t_2, t_3]$ is not a Sylvester domain)

Tensor product of free algebras is **not** a pseudo-Sylvester domain (apart from trivial cases). Cohn ('97) proved that $\mathbb{k} < \mathbf{x} > \otimes \mathbb{k} < \mathbf{y} >$ has the USFF, but was unable to show this for more factors.

Today: $\mathbb{k} < \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} > := \mathbb{k} < \mathbf{x}^{(1)} > \otimes \cdots \otimes \mathbb{k} < \mathbf{x}^{(G)} > \text{ admits}$ the USFF $\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ for every $G \in \mathbb{N}$.

Notation

For $i=1,\ldots,G$ let $\mathbf{x}^{(i)}=\{x_1^{(i)},\ldots,x_{g_i}^{(i)}\}$ be sets of freely noncommuting variables and $\mathbf{x}=\mathbf{x}^{(1)}\cup\cdots\cup\mathbf{x}^{(G)}$.

Notation

For $i=1,\ldots,G$ let $\mathbf{x}^{(i)}=\{x_1^{(i)},\ldots,x_{g_i}^{(i)}\}$ be sets of freely noncommuting variables and $\mathbf{x}=\mathbf{x}^{(1)}\cup\cdots\cup\mathbf{x}^{(G)}$.

Given $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$ and $X^{(i)} \in \mathsf{M}_{n_i}(\mathbb{k})^{g_i}$ we define **mp-evaluation** of r at $X = (X^{(1)}, \dots, X^{(G)})$ as

$$r^{\mathsf{mp}}(X) :=$$
 $r\left(X^{(1)} \otimes I \otimes \cdots \otimes I, I \otimes X^{(2)} \otimes \cdots \otimes I, \dots, I \otimes I \otimes \cdots \otimes X^{(G)}\right)$

in $M_{n_1\cdots n_G}(\mathbb{k})$, if all nested inverses exist.

Here \otimes denotes Kronecker's product; note that $(A \otimes I)(I \otimes B) = (I \otimes B)(A \otimes I)$.

Example

For example, let
$$\mathbf{x} = \{x_1, x_2\}$$
, $\mathbf{y} = \{y_1, y_2\}$ and $r = (x_1 + y_2 x_2 x_1 y_1)^{-1} - y_2^{-1}$.

Example

For example, let
$$\mathbf{x} = \{x_1, x_2\}$$
, $\mathbf{y} = \{y_1, y_2\}$ and $r = (x_1 + y_2 x_2 x_1 y_1)^{-1} - y_2^{-1}$.

Then

$$r(X;Y) = (X_1 \otimes I + (I \otimes Y_2)(X_2 \otimes I)(X_1 \otimes I)(I \otimes Y_1))^{-1} - (I \otimes Y_2)^{-1}$$

Example

For example, let
$$\mathbf{x} = \{x_1, x_2\}$$
, $\mathbf{y} = \{y_1, y_2\}$ and $r = (x_1 + y_2 x_2 x_1 y_1)^{-1} - y_2^{-1}$.

Then

$$r(X;Y) = (X_1 \otimes I + (I \otimes Y_2)(X_2 \otimes I)(X_1 \otimes I)(I \otimes Y_1))^{-1}$$
$$- (I \otimes Y_2)^{-1}$$
$$= (X_1 \otimes I + X_2X_1 \otimes Y_2Y_1)^{-1} - I \otimes Y_2^{-1}.$$

Given
$$r \in \mathcal{R}_{\Bbbk}(\mathbf{x})$$
 let

$$\mathsf{dom}^{\mathsf{mp}} \, r \subseteq \bigcup_{n_1, \dots, n_G} \mathsf{M}_{n_1}(\Bbbk)^{g_1} \times \dots \times \mathsf{M}_{n_G}(\Bbbk)^{g_G}$$

be its mp-domain.

Given $r \in \mathcal{R}_{\Bbbk}(\mathbf{x})$ let

$$\mathsf{dom}^{\mathsf{mp}} r \subseteq \bigcup_{n_1, \dots, n_G} \mathsf{M}_{n_1}(\Bbbk)^{g_1} \times \dots \times \mathsf{M}_{n_G}(\Bbbk)^{g_G}$$

be its mp-domain.

On the set of rational expressions with non-empty mp-domains we define equivalence relation $r_1 \sim r_2$ if and only if $r_1^{\rm mp}(X) = r_2^{\rm mp}(X)$ for all $X \in {\rm dom}^{\rm mp}\, r_1 \cap {\rm dom}^{\rm mp}\, r_2$. The equivalence class of r is denoted ${\bf r}$ and called a **multipartite rational function**.

Given
$$r \in \mathcal{R}_{\Bbbk}(\mathbf{x})$$
 let

$$\mathsf{dom}^{\mathsf{mp}} \, r \subseteq \bigcup_{n_1, \dots, n_G} \mathsf{M}_{n_1}(\Bbbk)^{g_1} \times \dots \times \mathsf{M}_{n_G}(\Bbbk)^{g_G}$$

be its mp-domain.

On the set of rational expressions with non-empty mp-domains we define equivalence relation $r_1 \sim r_2$ if and only if $r_1^{\rm mp}(X) = r_2^{\rm mp}(X)$ for all $X \in {\rm dom}^{\rm mp}\, r_1 \cap {\rm dom}^{\rm mp}\, r_2$. The equivalence class of r is denoted ${\bf r}$ and called a **multipartite rational function**.

The set of multipartite rational functions is denoted $\mathbb{R} \{ \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \}$ and endowed with the natural ring structure.

Theorem

$$\mathbb{k}\langle \mathbf{x}^{(1)}\leftrightarrow\cdots\leftrightarrow\mathbf{x}^{(G)}\rangle$$
 is a SFF of $\mathbb{k}\langle \mathbf{x}^{(1)}\leftrightarrow\cdots\leftrightarrow\mathbf{x}^{(G)}\rangle$.

(1) Let $\mathbf{M} \in \mathsf{M}_d(\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle)$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \mathsf{dom} \, \mathbf{M}$.

- (1) Let $\mathbf{M} \in \mathsf{M}_d(\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle)$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \mathsf{dom} \, \mathbf{M}$.
- (2) Let $\mathbf{r} \in \mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ and $Y \in \text{dom } \mathbf{r}$ with $Y^{(1)} \in \mathsf{M}_d(\mathbb{k})^{g_1}$. Then there exists $\mathbf{S} \in \mathsf{M}_d(\mathbb{k} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle)$ such that

$$\mathsf{r}(Y^{(1)},X)=\mathsf{S}(X)$$

for all $X \in \text{dom } \mathbf{S}$ such that $(Y^{(1)}, X) \in \text{dom } \mathbf{r}$.

- (1) Let $\mathbf{M} \in \mathsf{M}_d(\Bbbk \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle)$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \Bbbk) for some $X \in \mathsf{dom} \, \mathbf{M}$.
- (2) Let $\mathbf{r} \in \mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ and $Y \in \text{dom } \mathbf{r}$ with $Y^{(1)} \in \mathsf{M}_d(\mathbb{k})^{g_1}$. Then there exists $\mathbf{S} \in \mathsf{M}_d(\mathbb{k} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle)$ such that

$$\mathsf{r}(Y^{(1)},X)=\mathsf{S}(X)$$

for all $X \in \text{dom } \mathbf{S}$ such that $(Y^{(1)}, X) \in \text{dom } \mathbf{r}$.

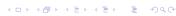
(3)
$$\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G_1)} \rangle \cap \mathbb{k} \langle \mathbf{x}^{(G_0)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle = \mathbb{k} \langle \mathbf{x}^{(G_0)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G_1)} \rangle$$
 holds in $\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ for $G_0 \leq G_1$.

- (1) Let $\mathbf{M} \in \mathsf{M}_d(\Bbbk \not \{ \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \})$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \Bbbk) for some $X \in \mathsf{dom}\,\mathbf{M}$.
- (2) Let $\mathbf{r} \in \mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ and $Y \in \text{dom } \mathbf{r}$ with $Y^{(1)} \in M_d(\mathbb{k})^{g_1}$. Then there exists $\mathbf{S} \in M_d(\mathbb{k} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle)$ such that

$$\mathbf{r}(Y^{(1)},X)=\mathbf{S}(X)$$

for all $X \in \text{dom } \mathbf{S}$ such that $(Y^{(1)}, X) \in \text{dom } \mathbf{r}$.

- (3) $\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G_1)} \rangle \cap \mathbb{k} \langle \mathbf{x}^{(G_0)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle = \mathbb{k} \langle \mathbf{x}^{(G_0)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G_1)} \rangle$ holds in $\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ for $G_0 \leq G_1$.
- (4) The centralizer of $\mathbb{R} \langle \mathbf{x}^{(1)} \rangle$ in $\mathbb{R} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ equals $\mathbb{R} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$ if $|\mathbf{x}_1| > 1$.



Auxiliary result

Let D be an arbitrary skew field containing k. Then $D \otimes k < x >$ is a fir (Cohn); in particular, it has the USFF.

Auxiliary result

Let D be an arbitrary skew field containing k. Then $D \otimes k < x >$ is a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a $d \times d$ matrix over $D \otimes \Bbbk < \mathbf{x} >$. Then M is invertible over the USFF of $D \otimes \Bbbk < \mathbf{x} >$ if and only if $M(X) \in \mathsf{M}_d(D \otimes \mathsf{M}_n(\Bbbk)) \cong \mathsf{M}_{dn}(D)$ is invertible for some $X \in \mathsf{M}_n(\Bbbk)^g$.

Auxiliary result

Let D be an arbitrary skew field containing k. Then $D \otimes k < x >$ is a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a $d \times d$ matrix over $D \otimes \Bbbk < \mathbf{x} >$. Then M is invertible over the USFF of $D \otimes \Bbbk < \mathbf{x} >$ if and only if $M(X) \in \mathsf{M}_d(D \otimes \mathsf{M}_n(\Bbbk)) \cong \mathsf{M}_{dn}(D)$ is invertible for some $X \in \mathsf{M}_n(\Bbbk)^g$.

Ingredients: Cohn's theory of USFFs, PI theory, skew field constructions and power series expansions.

Universality

Theorem

Universality

Theorem

$$\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$$
 is the USFF of $\mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$.

Corollary

Let $r \in \mathcal{R}_{\mathbb{k}}(\mathbf{x})$. TFAE:

- (i) $r^{mp}(X) = 0$ for all $X \in dom^{mp} r$;
- (ii) r(X) = 0 for all $X \in \text{dom } r \text{ such that } [X_{j_1}^{(i_1)}, X_{j_2}^{(i_2)}] = 0$ for $i_1 \neq i_2$;
- (iii) for every skew field D, $r(a) \in \{0, undef\}$ for every tuple $a \in D^{g_1+\cdots+g_G}$ such that $[a_{j_1}^{(i_1)}, a_{j_2}^{(i_2)}] = 0$.

Let M be a $d \times d$ matrix over $\mathbb{k} < \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} >$ and let $\phi : \mathbb{k} < \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} > \to D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, ...)$ invertible over D

- 1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, ...)$ invertible over D
- 2. $D \otimes \mathbb{k} < \mathbf{x}^{(1)} > \text{ fir: } M(x^{(1)}, a^{(2)}, \dots) \text{ invertible over the USFF}$ of $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$

- 1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, ...)$ invertible over D
- 2. $D \otimes \mathbb{k} < \mathbf{x}^{(1)} > \text{ fir: } M(x^{(1)}, a^{(2)}, \dots) \text{ invertible over the USFF}$ of $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$
- 3. proposition: $M(X^{(1)}, a^{(2)}, \dots) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{k})^{g_1}$

- 1. Write $a_j^{(i)} = \phi(x_j^{(i)}); M(a^{(1)}, a^{(2)}, ...)$ invertible over D
- 2. $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$ fir: $M(x^{(1)}, a^{(2)}, ...)$ invertible over the USFF of $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$
- 3. proposition: $M(X^{(1)}, a^{(2)}, ...) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{k})^{g_1}$
- 4. induction: $N = M(X^{(1)}, x^{(2)}, ...)$ invertible over $\mathbb{R} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$

- 1. Write $a_j^{(i)}=\phi(x_j^{(i)});~M(a^{(1)},a^{(2)},\dots)$ invertible over D
- 2. $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$ fir: $M(\mathbf{x}^{(1)}, \mathbf{a}^{(2)}, \dots)$ invertible over the USFF of $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$
- 3. proposition: $M(X^{(1)}, a^{(2)}, ...) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{k})^{g_1}$
- 4. induction: $N = M(X^{(1)}, x^{(2)}, ...)$ invertible over $\mathbb{R} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$
- 5. basic property: $N(X^{(2)},...)$ invertible for some $X^{(i)} \in \mathsf{M}_{n_i}(\Bbbk)^{g_i}$

- 1. Write $a_{j}^{(i)} = \phi(x_{j}^{(i)}); M(a^{(1)}, a^{(2)}, \dots)$ invertible over D
- 2. $D \otimes \mathbb{k} < \mathbf{x}^{(1)} > \text{ fir: } M(x^{(1)}, a^{(2)}, \dots) \text{ invertible over the USFF}$ of $D \otimes \mathbb{k} < \mathbf{x}^{(1)} >$
- 3. proposition: $M(X^{(1)}, a^{(2)}, ...) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{k})^{g_1}$
- 4. induction: $N = M(X^{(1)}, x^{(2)}, ...)$ invertible over $\mathbb{R} \langle \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$
- 5. basic property: $N(X^{(2)},...)$ invertible for some $X^{(i)} \in \mathsf{M}_{n_i}(\Bbbk)^{g_i}$
- 6. $M(X^{(1)}, X^{(2)}, ...)$ invertible, so M invertible over $\mathbb{R} \not \{ \mathbf{x}^{(1)} \mapsto \cdots \mapsto \mathbf{x}^{(G)} \}$

Higher order nc rational functions

Let
$$\mathbf{r} \in \mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$$
. Then

- 1. **r** respects direct sums in the first factor and up to canonical shuffle in other factors; $(A \otimes B \sim B \otimes A)$
- 2. r respects similarities in every factor.

Hence **r** is a nc function of order G-1.

Higher order nc rational functions

Let
$$\mathbf{r} \in \mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$$
. Then

- 1. **r** respects direct sums in the first factor and up to canonical shuffle in other factors; $(A \otimes B \sim B \otimes A)$
- 2. r respects similarities in every factor.

Hence **r** is a nc function of order G-1.

Directional nc difference-differential operators

satisfy the usual properties.

Higher order nc rational functions cont'd

Furthermore, diagrams like

$$\mathbb{k} \langle \mathbf{x}^{(1)} \cup \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle \xrightarrow{----} \mathbb{k} \langle \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle \\
\downarrow \Delta_{j}^{(1)} \qquad \qquad \downarrow \Delta_{j}^{(1)} \\
\mathbb{k} \langle \mathbf{x}'^{(1)} \cup \mathbf{x}'^{(2)} \leftrightarrow \mathbf{x}^{(1)} \cup \mathbf{x}^{(2)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle \xrightarrow{----} \mathbb{k} \langle \mathbf{x}'^{(1)} \leftrightarrow \mathbf{x}^{(1)} \leftrightarrow \cdots \leftrightarrow \mathbf{x}^{(G)} \rangle$$

commute, where --→ are specializations (local homomorphisms) between skew fields.

Thank you,

and happy birthday!