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1 ∈ S = S∗ ⊂ C(X ) is a function system.
K = {ϕ ∈ S∗ : ϕ ≥ 0, ϕ(1) = 1} state space, compact, convex,
and x ∈ X −→ εx ∈ K , where εx(f ) = f (x) for f ∈ S.

Theorem (Kadison 1951)

S iso−→ A(K ) ⊂ C(K ) isometric isomorphism to affine functions.

∂S := ∂K extreme points is Choquet boundary of S.
f ∈ S affine on K , so S −→ C(∂K ) completely isometric.
∂K is the Shilov boundary of S.
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By Hahn-Banach and Riesz Representation Theorems,
for ϕ ∈ K there exists µ ∈ M+(∂K ) representing measure:

ϕ(f ) =
∫
f dµ for f ∈ S.

Choquet theory yields µ ∈ M+(∂K ).

important in applications

nonmetrizable case: ∂K may not be Borel;
so need technical definition of support.

Definition

Choquet order: µ ≺c ν in M+(K ) if
∫
f dµ ≤

∫
f dν for f convex.

This implies that
∫
f dµ =

∫
f dν for f ∈ S, so represent same ϕ.
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Theorem (Choquet, Mokobodski)

K metrizable.
µ ∈ M+(K ) is maximal in ≺c ⇐⇒ suppµ ⊂ ∂K .

Theorem (Bishop-De Leuuw)

K arbitrary.
µ is maximal in ≺c =⇒ µ(A) = 0 if A Baire s.t. A ∩ ∂K = ∅.

Mokobodski: this does not characterize maximality.
However, if ∂K is closed, then µ is maximal ⇐⇒ suppµ ⊂ ∂K .
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Classical result:

Theorem (Korovkin)

If Φn : C[a, b]→ C[a, b] positive maps s.t.
lim
n→∞

Φn(f ) = f for f ∈ {1, x , x2},
then lim

n→∞
Φn(f ) = f for all f ∈ C[a, b].

modern, significant improvement:

Theorem (Arveson)

If π : C[a, b]→ B(H) ∗-repn., Φn : C[a, b]→ B(H) (completely)
positive maps s.t.

lim
n→∞

Φn(f ) = π(f ) for f ∈ {1, x , x2},
then lim

n→∞
Φn(f ) = π(f ) for all f ∈ C[a, b].
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Definition

1 ∈ F ⊂ C(X ) is a Korovkin set if Φn : C(X )→ C(X ) are positive,
lim
n→∞

Φn(f ) = f for f ∈ F =⇒ lim
n→∞

Φn(f ) = f for f ∈ C(X ).

F is a strong Korovkin set if π : C[a, b]→ B(H) ∗-repn.,
Φn : C(X )→ B(H) (completely) positive, then
lim
n→∞

Φn(f ) = π(f ) for f ∈ F =⇒ lim
n→∞

Φn(f ) = π(f ) for f ∈ C(X ).

Theorem (S̆as̆kin)

X compact metric. 1 ∈ F ⊂ C(X ). S = span{F ∪ F ∗}.
Then F is a Korovkin set ⇐⇒ ∂S = X.

Question (Arveson)

Characterize strong Korovkin sets.
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Definition

1 ∈ S = S∗ ⊂ A = C∗(S) is hyperrigid if whenever
π : A→ B(H) ∗-repn, and Φn : A→ B(H) c.p.
lim
n→∞

Φn(s) = π(s) for s ∈ S =⇒ lim
n→∞

Φn(a) = π(a) for a ∈ A.

Definition

1 ∈ S = S∗ ⊂ A = C∗(S). π : A→ B(H) ∗-repn.
π|S has unique extension property (u.e.p.)
if π is the unique u.c.p. extension to A.

Theorem (Arveson)

1 ∈ S = S∗ ⊂ A = C∗(S). Then
S is hyperrigid ⇐⇒ π|S has u.e.p. ∀π ∗-repn.
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Definition

π ∗-repn. of A is a boundary representation for S if
π is irreducible and π|S has u.e.p.

Conjecture (Arveson)

S is hyperrigid ⇐⇒ every irreducible ∗-repn. is a boundary repn.

Remark

For 1 ∈ S = S∗ ⊂ C(X ), this asks if ∂S = X ,
is S is a strong Korovkin set in C(∂S)?
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Definition

Dilation order: µ ≺d ν ∈ M+(K ) if there exist ∗-repns.

π : C(K )→ B(H), ξ ∈ H, 〈π(f )ξ, ξ〉 =
∫
f dµ ∀f ∈ C(K )

σ : C(K )→ B(K), η ∈ K, 〈π(f )η, η〉 =
∫
f dν ∀f ∈ C(K )

and isometry J : H → K s.t. Jξ = η and J∗σ(f )J = π(f ) ∀f ∈ S.

Theorem 1

Dilation order is the same as Choquet order.

Corollary

µ ≺c ν ⇐⇒ ∃Φ : C(K )→ L∞(µ) positive s.t.

1 Φ(f ) = f for all f ∈ A(K ), and

2
∫

Φ(f ) dµ =
∫
f dν for all f ∈ C(K ).
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πµ : C(K )→ B(L2(µ)) by π(f ) = Mf .

Theorem 2

πµ has u.e.p. ⇐⇒ µ is maximal in ≺d .

Corollary (Hyperrigidity for function systems)

If ∂S is closed, then S is hyperrigid in C(∂S).

Corollary

If X is metrizable, 1 = S ⊂ C(X ), π : C(X )→ B(H) ∗-repn.
Then π has u.e.p. ⇐⇒ π is supported on ∂S .
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Application to approximation theory

The following does not require metrizability, so it generalizes
S̆as̆kin’s Theorem even in the classical situation.

Corollary

1 ∈ S = span{F ∪ F ∗} ⊂ C(X ).
TFAE

1 ∂S = X

2 F is a Korovkin set.

3 F is a strong Korovkin set.
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Application to classical Choquet theory

Theorem (Cartier)

If K is metrizable, µ ≺c ν, then ∃λ : K → M+,1(K ) s.t.

1 x → λx(f ) is Borel ∀f ∈ C(K ),

2 λx(f ) = f (x) ∀f ∈ A(K ), and

3
∫
f dν =

∫
λx(f ) dµ ∀f ∈ C(K ).

Theorem 3

K compact convex, µ ≺c ν, then ∃λ : K → M+,1(K ) s.t.

1 x → λx(f ) is Borel ∀f ∈ C(K ),

2 λx(f ) = f (x) a.e.(µ) ∀f ∈ A(K ), and

3
∫
f dν =

∫
λx(f ) dµ ∀f ∈ C(K ).
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Thank you.
The end.
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