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CHOQUET THEORY

1€ S =8"C C(X)is a function system.
K={peS :1¢>0, o(1) =1} state space, compact, convex,
and x € X — ¢, € K, where e,(f) = f(x) for f € S.
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CHOQUET THEORY

1eS§=8"CC(X) function system
K={peS :¢>0, p(1) =1} state space

THEOREM (KADISON 1951)

S 2 A(K) C C(K) isometric isomorphism to affine functions.
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CHOQUET THEORY

1eS§=8"CC(X) function system
K={peS :¢>0, p(1) =1} state space

THEOREM (KADISON 1951)

S 2 A(K) C C(K) isometric isomorphism to affine functions.

0S := 0K Chogquet boundary of S
S — C(9K)
oK Shilov boundary
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CHOQUET THEORY

representing measure
o(f)=[fdu
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CHOQUET THEORY

representing measure
p(f) = [ fdu
1€ My (0K)
@ important in applications

@ nonmetrizable case: K may not be Borel,
so need technical definition of support.
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CHOQUET THEORY

representing measure
p(f) = [ fdu
1€ My (0K)
@ important in applications

@ nonmetrizable case: K may not be Borel,
so need technical definition of support.

DEFINITION
Choquet order: p <c v in My(K) if [ fdu < [fdv for f convex. J
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THEOREM (CHOQUET, MOKOBODSKI)

K metrizable.
w € Mi(K) is maximal in <. <= supp p C OK.
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CHOQUET THEORY

THEOREM (CHOQUET, MOKOBODSKI)

K metrizable.
w € Mi(K) is maximal in <. <= supp p C OK.

THEOREM (BIsHOP-DE LEUUW)

K arbitrary.
w is maximal in <. = u(A) =0 if A Baire s.t. ANOK = @.
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CHOQUET THEORY

THEOREM (CHOQUET, MOKOBODSKI)

K metrizable.
w € Mi(K) is maximal in <. <= supp p C OK.

THEOREM (Bisnor-DE LEUUW)

K arbitrary.
w is maximal in <. = u(A) =0 if A Baire s.t. ANOK = @.

if OK is closed 1 is maximal <= supp . C OK.
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APPROXIMATION THEORY

THEOREM (KOROVKIN)

If &, : Cla, b] — Cla, b] positive maps s.t.
lim ®n(f)=f for fe {1,x,x°},
then Ii_)m o,(f) =1 forall f e Cla,b].
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APPROXIMATION THEORY

THEOREM (KOROVKIN)

If &, : Cla, b] — Cla, b] positive maps s.t.
lim ®n(f)=f for fe {1,x,x°},
then Ii_)m o,(f) =1 forall f e Cla,b].

THEOREM (ARVESON)

If m: Cla, b] — B(#) *-repn., &, : Cla, b] — B(H) (completely)
positive maps s.t.

lim ®,(f) ==(f) for fe{l,x,x°},
then ILm ®,(f) =m(f) forall f e Cla,b].
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APPROXIMATION THEORY

DEFINITION
1 e F C C(X) is a Korovkin set if ®,: C(X) — C(X) are positive,
lim ®,(f)=f for f € F = Ii_}m ®,(f) =f for f € C(X).

n—o0
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APPROXIMATION THEORY

DEFINITION

1 e F C C(X) is a Korovkin set if ®,: C(X) — C(X) are positive,
Ii_}m S,(f)=fforf e F= Ii_}m ®,(f) =f for f € C(X).

F is a strong Korovkin set if 7 : Cla, b] — B(H) *-repn.,

o, : C(X) — B(H) (completely) positive, then

Ii_}m O,(f) =n(f) for f € F = Ii_}m ®,(f) = m(f) for f € C(X).
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APPROXIMATION THEORY

DEFINITION

1 e F C C(X) is a Korovkin set if ®,: C(X) — C(X) are positive,
Ii_}m S,(f)=fforf e F= Ii_}m ®,(f) =f for f € C(X).

F is a strong Korovkin set if 7 : Cla, b] — B(H) *-repn.,

o, : C(X) — B(H) (completely) positive, then

Ii_}m O,(f) =n(f) for f € F = Ii_}m ®,(f) = m(f) for f € C(X).

THEOREM (SASKIN)

X compact metric. 1 € F C C(X). S =span{F U F*}.
Then F is a Korovkin set <= 0S = X.
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APPROXIMATION THEORY

DEFINITION

1€ F C C(X) is a Korovkin set if @, : C(X) — C(X) are positive,
Ii_}m S,(f)=fforf e F= Ii_}m ®,(f) =f for f € C(X).

F is a strong Korovkin set if m : C[a, b] — B(H) *-repn.,

o, : C(X) — B(H) (completely) positive, then

Ii_}m O,(f) =n(f) for f € F = Ii_>m ®,(f) = m(f) for f € C(X).

THEOREM (SASKIN)

X compact metric. 1 € F C C(X). S =span{F U F*}.
Then F is a Korovkin set <= 0S = X.

QUESTION (ARVESON)

Characterize strong Korovkin sets.
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HYPERRIGIDITY

DEFINITION

1 eS8 =38"C A= C*S) is hyperrigid if whenever

A — B(H) *-repn, and ¢, : A — B(H) c.p.

Ii_)m ®,(s) =m(s) fors e § = Ii_>m ®,(a) = w(a) for a € A.
n—o0 n—o0
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HYPERRIGIDITY

DEFINITION

1eS=S8"C A= C*S) is hyperrigid if whenever

A — B(H) *-repn, and ¢, : A — B(H) c.p.

Ii_)m ®,(s) =7(s) forse S = Ii_>m ®,(a) = m(a) for a € .
n—o0 n—o0

DEFINITION

1eS=8"CcA=CHS). m: A — B(H) *-repn.
m|s has unique extension property (u.e.p.)

if 7 is the unique u.c.p. extension to 2.
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HYPERRIGIDITY

DEFINITION

1eS=S8"C A= C*S) is hyperrigid if whenever

A — B(H) *-repn, and ¢, : A — B(H) c.p.

Ii_)m ®,(s) =7(s) forse S = Ii_>m ®,(a) = m(a) for a € .
n—o0 n—o0

DEFINITION

1eS=8"CcA=CHS). m: A — B(H) *-repn.
m|s has unique extension property (u.e.p.)

if 7 is the unique u.c.p. extension to 2.

THEOREM (ARVESON)
1eS=8"CUA=C*S). Then
S is hyperrigid <= 7|s has u.e.p. V7 x-repn.
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HYPERRIGIDITY

DEFINITION

7 x-repn. of 2 is a boundary representation for S if
7 is irreducible and 7|s has u.e.p.
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HYPERRIGIDITY

DEFINITION
7 x-repn. of 2 is a boundary representation for S if
7 is irreducible and 7|s has u.e.p.

CONJECTURE (ARVESON)

S is hyperrigid <= every irreducible x-repn. is a boundary repn.
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HYPERRIGIDITY

DEFINITION

7 x-repn. of 2 is a boundary representation for S if
7 is irreducible and 7|s has u.e.p.

CONJECTURE (ARVESON)
S is hyperrigid <= every irreducible x-repn. is a boundary repn.

REMARK

For 1 € § = S8* C C(X), this asks if IS = X,
is S is a strong Korovkin set in C(0S)?
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DILATION ORDER

DEFINITION
Dilation order: p <4 v € M4 (K) if there exist *-repns.

7 O(K) > B(H), €€M, (n(F)E,&) = [Ffdu Vf € C(K)
o:C(K)—= B(K), neK, (x(f)n,n)=[fdv Vfe C(K)
and isometry J : H — K s.t. J€ =n and J*o(f)J = n(f) Vf € S.
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DILATION ORDER

DEFINITION
Dilation order: p <4 v € M4 (K) if there exist *-repns.

7 O(K) > B(H), €€M, (n(F)E,&) = [Ffdu Vf € C(K)
o:C(K)—= B(K), neK, (x(f)n,n)=[fdv Vfe C(K)
and isometry J : H — K s.t. J€ =n and J*o(f)J = n(f) Vf € S.

THEOREM 1

Dilation order is the same as Choquet order.
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DILATION ORDER

DEFINITION
Dilation order: p <4 v € M4 (K) if there exist *-repns.

7 O(K) > B(H), €€M, (n(F)E,&) = [Ffdu Vf € C(K)
o:C(K)—= B(K), nek, (x(f)n,n) = [fdv Vfe C(K)
and isometry J : H — K s.t. J€ =n and J*o(f)J = n(f) Vf € S.

THEOREM 1
Dilation order is the same as Choquet order.

COROLLARY

p=cv <= 30 :C(K)— L>(u) positive s.t.
@ O(f) =f for all f € A(K), and
Q@ [O(f)dp= [ fdvforall f e C(K).
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DILATION ORDER

THEOREM 2
m, has u.e.p. <= p is maximal in <4.
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DILATION ORDER

THEOREM 2
m, has u.e.p. <= p is maximal in <4.

COROLLARY (HYPERRIGIDITY FOR FUNCTION SYSTEMS)
If 0S is closed, then S is hyperrigid in C(9S).
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DILATION ORDER

THEOREM 2
m, has u.e.p. <= p is maximal in <4.

COROLLARY (HYPERRIGIDITY FOR FUNCTION SYSTEMS)
If 0S is closed, then S is hyperrigid in C(9S).

COROLLARY
If X is metrizable, 1 =8 C C(X), m: C(X) — B(H) *-repn.
Then 7 has u.e.p. <= 7 is supported on 9S.
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APPLICATIONS

COROLLARY
1€ S =span{FUF*} C C(X).
TFAE

QIJ05=X

@ F is a Korovkin set.

@ F is a strong Korovkin set.
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APPLICATIONS

THEOREM (CARTIER)

If K is metrizable, p <c v, then 3\ : K — My 1(K) s.t.
Q@ x — \(f) is Borel Vf € C(K),
Q@ \(f)="f(x) VfeAK), and
Q@ [fdv=[X(f)dp Vfe C(K).

KEN DAVIDSON AND MATT KENNEDY CHOQUET ORDER AND HYPERRIGIDITY



APPLICATIONS

THEOREM (CARTIER)

If K is metrizable, p <c v, then 3\ : K — My 1(K) s.t.
Q@ x — \(f) is Borel Vf € C(K),
Q@ \(f)="f(x) VfeAK), and
Q@ [fdv=[X(f)dp Vfe C(K).

THEOREM 3

K compact convex, i <c v, then 3\ : K — My 1(K) s.t.
@ x — A(f) is Borel ¥Vf € C(K),
Q M\ (f)=f(x)a.e(u) VFfe A(K), and
Q@ [fdv=[)A(f)du Vfe C(K).
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