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Topology: Terminology and Notation

X - topological space; U, V open covers of X

U ≤ V (U refines V ) if every set in U is contained in a set in V .
Equivalently, say V coarsens U.

X is paracompact if every open cover has a locally finite refinement.

Paracompactness allows one to endow X with a uniform structure, and hence
to write X as an inverse limit of metrizable spaces, as we will explain in just a
moment.
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Star refinement and uniform structure I

Given U ∈U the star of U against the cover U is the union of all the sets in
U that intersect U .

Set U in U. star(U,U)
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Star refinement and uniform structure II

Given U ∈U the star of U against the cover U is the union of all the sets in
U that intersect U .

Say that U star refines a cover V (denoted U ≤ V ) if, for any U ∈U,
star(U,U) is contained in some element of V .

For a set X a uniform structure is a collection of covers {Uλ}λ∈Λ which is a
cofinal filter under reverse star refinement, and is closed under coarsening of
the covers.

The example to keep in mind: a metric space with covers given by ε-balls
(and coarsenings thereof). This information can be used to define uniform
continuity of functions on the space and other similar concepts.

A paracompact space X has a uniform structure. If U is an open cover of X
then one can find an open cover V which is a star refinement of U.
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Uniform structure and inverse limits I

An increasing sequence of covers ordered by reverse star refinement is
called a normal sequence.

If Λ = {Un} is a normal sequence for X , then one can define a
pseudo-metric d on X :

• For x,y in X , let n(x,y) be the largest n such that there exists U ∈Un
containing both x and y.

• Let ρ(x,y) = 2−n(x,y), with the understanding that 2−∞ = 0.

• Let d(x,y) = inf∑
n
i=1 ρ(xi,xi+1) where x1 = x, xn = y and xi ∈ X .
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Uniform structure and inverse limits II

On the previous slide we explained how to get a pseudo-metric d from a
normal sequence of covers on X .

Let Xλ be the quotient of X obtained from the equivalence relation x∼ y if
and only d(x,y) = 0. The resulting space Xλ is a metric space, and X → Xλ

is continuous.

WARNING: We will refer to Xλ as a quotient of X ; however, we warn that the
topology of Xλ is not the canonical quotient topology induced by the original
topology on X and the equivalence relation, but is instead determined by the
choice of covers {Un} (i.e. a possibly weaker topology).
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Uniform structure and inverse limits III
On the previous slide we explained how to get a metrizable quotient Xλ from
a topological space X equipped with a normal sequence of covers.

Let U and V be two normal sequences for X . Say that V cofinally refines U
if for every n ∈ N there exists k(n) ∈ N such that Vk(n) ≤Un.

Let X̂α = 〈X ,U〉 and X̂β = 〈X ,V 〉 (meaning X equipped with the
pseudo-metric resulting from U and V respectively). If V cofinally refines U
then:

X X̂α

X̂β

ϕ = id

where the map ϕ : X̂β→ X̂α is uniformly continuous. If we then define Xα and
Xβ to be the corresponding quotient spaces, it should be clear that ϕ then
induces a map Xβ→ Xα.
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Uniform structure and inverse limits IV

Suppose additionally that X is Lindelöf – that is, that every open cover has
a countable subcover. This assumption ensures that we can take each cover
in the normal sequence to be countable, and thus that the space Xλ is
second countable.

We also note that for any open cover U of X we can get a normal sequence
{Un} for X such that U1 = U.

Considering all sequences of covers ordered by cofinal refinement we get:

Theorem
If X is a locally compact and Lindelöf space then it is the inverse limit of a
system {Xϕ, pϕ

ψ : Xϕ→ Xψ}ϕ∈Λ where each Xϕ is second countable and
locally compact, and all the connecting maps are proper.
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Groupoids: Definition
One can think of a groupoid G as a set (of arrows), with two operations:

• a partial multiplication (g,h) 7→ gh defined on a subset G (2) ⊂ G ×G
• an inverse g 7→ g−1 defined on all of G .

The set G (2) is called the set of composable arrows. One defines
s, t : G → G by s(g) = gg−1 and t(g) = g−1g (the source and target of each
arrow). The following rules must be satisfied:

• (g,h) ∈ G (2) if and only if t(g) = s(h), and composition of arrows is
associative.

• the inverse of g−1 is g.

• s(g) and t(g) act as identity elements for arrows with which they are
composable.

The image of the source map (or, equivalently, the target map) is a subset of
G denoted G (0), referred to as the unit space of the groupoid.
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Toplogical groupoids

More succinct, but also more abstract definition of groupoid: A groupoid is a
small category in which every morphism is invertible.

A topological groupoid is a groupoid endowed with a locally compact
Hausdorff topology, such that the multiplication and inverse are both
continuous.

Of course, this implies the source and target maps are also continuous.
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Examples: Topological Groupoids

• with discrete topology

• transformation groupoid - starting from G a topological group, X a
topological space, and α : G x X a continuous action of G on X by
homeomorphisms. The groupoid is basically X×G:

x αg(x) αhg(x)

g h

hg
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Groupoid Notation and Terminology

for x ∈ G (0) write:

• G x - the set of arrows whose target is x
• Gx - the set of arrows whose source is x

Terminology: we say G is

• open if the source and target maps are open maps.

• étale if the source and target maps are local homeomorphisms.

• transitive if for any x,y ∈ G (0) there exists g ∈ G such that s(g) = x and
t(g) = y.
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Approximation for Groupoids I

Lemma
Let G be an open Lindelöf groupoid, and {Kn} an exhaustion of G by
compact sets. There exists a sequence of countable and locally finite open
coverings {Un}n≥0 of G such that for all n≥ 0:

1. each set in Un is pre-compact.

2. U0
n+1 ≤ s({Kn∩U : U ∈U1

n}), t({Kn∩U : U ∈U1
n})≤U0

n .

3. m(U1
n+1

∣∣
Kn
, U1

n+1

∣∣
Kn
)≤U1

n .

4. (U1
n+1)

−1 ≤U1
n .
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Approximation for Groupoids II

If we have a normal sequence of covers {Un} for G satisfying the conditions
of the previous slide, then we can form the quotient Gα (in the same way as
described for a general topological space).

The extra conditions we impose on the normal sequence mean that we can
define:

• s([g]) = [s(g)] (where g ∈ G is a representative of [g] ∈ Gα)

• [g], [h] ∈ G (2)
α are composable if there exists g′ ∈ [g] and h′ ∈ [h] with

s(h′) = t(g′), in which case m([g], [h]) = [g′h′]
• [g]−1 = [g−1]

and these operations are well-defined and continuous in Gα.
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Haar system of measures
Let G be a topological groupoid. A Haar system of measures on G is a
collection {µx : x ∈ G (0)} of positive Radon measures on G such that:

1. µx is supported on G x

2. for fixed f ∈ Cc(G), x 7→
∫

G (0) f (y)dµx(y) is continuous on G (0)

3. for all g ∈ G (1) and f ∈ Cc(G),∫
G t(g)

f (y)dµt(g)(y) =
∫

G s(g)
f (gy)dµs(g)(y).

The last condition is the groupoid equivalent of ’left invariance for Haar
measure’ in the case of groups. The second condition is a continuity
condition for the choice of measures, and is needed in order for the
convolution product to work (we will discuss this later).
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Notes on Haar system of measures

Unlike for groups, a Haar system of measures might not exist, or if it does it
might not be unique.

A topological groupoid which has a Haar system of measures is necessarily
an open groupoid.

A general result regarding when a Haar system of measures exists is not
known, though there are partial result.
e.g. Every topological groupoid which is locally transitive admits a Haar
system (Seda, 1970’s).

Having a Haar system on G enables one to construct the groupoid
C∗-algebra (as explained later).
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Approximation of Haar system
We modify the construction of the normal sequence Un by the addition of a
partition of unity and the following condition:

Fix { f n
ω : ω ∈ Λn} a finite partition of unity of Kn whose carriers

refine Un. Let (λω)ω ⊂C be any sequence with |λω|< n. For each
element U ∈Un+1 and for each x,y ∈ s(U) we have∣∣∣∣∣

∫
G

(
∑
ω

λω f n
ω

)
dµx−

∫
G

(
∑
ω

λω f n
ω

)
dµy

∣∣∣∣∣< 1
n
.

Let q : G → Gα. It follows that for each f ∈ Cc(Gα)

x∼ y for x,y ∈ G (0)⇒
∫

Gx
( f ◦q)dµx =

∫
Gy
( f ◦q)dµy,

allowing us to define a Haar system of measures on Gα based on the Haar
system of measures on G .
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Groupoid C∗-algebra I

Assume {µx} is a Haar system on G .
Equip Cc(G) with a convolution product and an involution operation. One can
then complete the resulting algebra to a C∗-algebra (in fact, there is a
reduced C∗-algebra and a full C∗-algebra).

For ϕ,ψ ∈ Cc(G) define:
convolution: (ϕ∗ψ)(g) =

∫
ϕ(gh)ψ(h−1)dµs(g)(h)

involution: ϕ∗(g) = ϕ(g−1)

We omit the description of the reduced and full C∗-algebra completion.
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Groupoid C∗-algebra II

With the construction described so far, Cc(Gα) ↪→ Cc(G) (as a *-algebra
embedding).

This is an easy computational check:
Denote by q the map G → Gα which takes g to [g]. The embedding is given
by q̃(ϕ) = (ϕ◦q) for ϕ ∈ Cc(Gα):

q̃(ϕ∗ψ)(g) = (ϕ∗ψ)(q(g)) =
∫

Gα

ϕ(q(g)q(h))ψ(q(h)−1)dµs(q(g))(q(h))

= (q̃(ϕ)∗ q̃(ψ))(g)

q̃(ϕ∗)(g) = (ϕ∗ ◦q)(g) = ϕ(q(g)−1) = q̃(ϕ)(g−1) = (q̃(ϕ))∗(g),

where ϕ,ψ ∈ Cc(Gα)and g ∈ G . We used the fact that q : G → Gα respects
the groupoid operations and is onto.
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by q̃(ϕ) = (ϕ◦q) for ϕ ∈ Cc(Gα):

q̃(ϕ∗ψ)(g) = (ϕ∗ψ)(q(g)) =
∫

Gα

ϕ(q(g)q(h))ψ(q(h)−1)dµs(q(g))(q(h))

= (q̃(ϕ)∗ q̃(ψ))(g)

q̃(ϕ∗)(g) = (ϕ∗ ◦q)(g) = ϕ(q(g)−1) = q̃(ϕ)(g−1) = (q̃(ϕ))∗(g),

where ϕ,ψ ∈ Cc(Gα)and g ∈ G . We used the fact that q : G → Gα respects
the groupoid operations and is onto.
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2-Cocycles and twisted convolution algebra
A 2-cocycle for G is a map σ : G (2)→ T such that

• σ(g,h)σ(gh,k) = σ(g,hk)σ(gh,k) for all (g,h),(h,k) ∈ G (2), and

• σ(g,s(g)) = 1 = σ(t(g),g) for all g ∈ G .

Such a cocycle allows us to construct twisted groupoid C∗-algebras (modify
the convolution product).

A cocycle on G can be pushed to a cocycle on Gα by again modifying the
normal sequence construction to add the following condition:

Choose a normal sequence {Vn} for T, where Vn is a finite cover
by 1

2n -balls, and also ask that the sequence {Un} satisfies:

σ(Un|Kn
, Un|Kn

)≤ Vn

This ensures that we can define σ([g], [h]) = σ(g,h) for g,h ∈ G
representatives of [g], [h] ∈ Gα. Similarly to the previous slide,
Cc(Gα,σ) ↪→ Cc(G ,σ) (as a *-algebra embedding).
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Disintegration Theorem

The version of Renault’s theorem mentioned below omits the mention of a
2-cocycle for G in order to simplify slightly the presentation.

Theorem (Renault’s Disintegration Theorem)
Let G be a second countable locally compact groupoid endowed with a Haar
system of measures. Every nondegenerate representation of the *-algebra
Cc(G) on a separable Hilbert space is the integrated form of a representation
of G on a bundle of Hilbert spaces.

Our goal is to use the approximation by second countable groupoids
described in the earlier part of the talk to bootstrap this result to σ-compact
groupoids.
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Hilbert bundles

A Borel bundle of Hilbert spaces over a space X is a Borel space
Z = X ∗H = {(x,v) : x ∈ X and v ∈Hx} such that

1. the projection p : Z→ X is measurable, and each fiber Hx is a Hilbert
space

along with measurable sections {sα}α∈A to p such that for each x ∈ X the
span of the set {sα(x) : α ∈ A} is dense in p−1(x) and satisfying the
following properties

1. for each α ∈ A the map (x,v)→ 〈sα(x),v〉 is measurable on Z.

2. for each α,β ∈ A the map x→ 〈sα(x),sβ(x)〉Hx is measurable on X .

3. the functions (x,v)→ 〈sα(x),v〉 separate the points of Z.

If A = N then we say that the bundle is separable.
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Representations of Groupoids
We represent groupoids on a bundle of Hilbert spaces.

Isomorphism groupoid: Iso(G (0) ∗H ) := {(x,U,y) : U : Hx→Hy is unitary}.

If G is a groupoid equipped with a Haar system of measures, a unitary
representation of G is a triple (G (0) ∗H ,L,ν) where

• G (0) ∗H is a Borel Hilbert bundle over G (0)

• L : G → Iso(G (0) ∗H ) is such that L(g) = (t(g),Lg,s(g))

• ν is a quasi-invariant measure on G (0);

additionally define Borel sections and square-integrable sections
B(G (0) ∗H ) := { f : G (0)→ G (0) ∗H : x 7→ 〈 f (x), fα(x)〉 is Borel for all α}
L2(G (0) ∗H ,ν) = { f ∈ B(G (0) ∗H ) : x 7→ ‖ f (x)‖2 is integrable on G (0)},

and impose the condition that g 7→ 〈Lgh(s(g)),k(t(g))〉 should be
ν-measurable for all h,k ∈ L2(G (0) ∗H ,ν).
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Integrated form of a representation

Suppose G is a groupoid equipped with a Haar system of measures {µx}.
Suppose moreover that (G (0) ∗H ,L,ν) is a unitary representation of G .

There is a representation of Cc(G), called the integrated form of
(G (0) ∗H ,L,ν), denoted by L through a standard abuse of notation, defined
such that

〈L(ϕ)h,k〉=
∫

G (0)

∫
G

ϕ(g)〈Lg(h(s(g))),k(t(g))〉∆(g)−1/2 dµx(g)dν(x),

where ϕ ∈ Cc(G), h,k ∈ L2(G (0) ∗H ,ν) and ∆ is the modular function of ν.

Renault’s disintegration theorem states that if G is second countable then all
representations of Cc(G) are of this type.
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Disintegration Theorem for Lindelöf groupoids

We want to extend Renault’s result to Lindelöf groupoids:

Theorem
Let G be a Lindelöf locally compact groupoid endowed with a Haar system of
measures. Every nondegenerate representation of the *-algebra Cc(G) on a
Hilbert space is the integrated form of a representation of G on a bundle of
Hilbert spaces.
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Comments, and avenues for future investigation

Some obvious comments about the quotient construction:

• If G is transitive, so is Gα.

• If G is étale, it is easy to ensure the quotient groupoids Gα are also
étale.

Some questions:

• Is it true that if G is étale then finite dynamic asymptotic dimension is
preserved by the construction?

• If G is equipped with a Fell bundle, is there a good way to associate a
Fell bundle to Gα?

• are there results for second countable groupoids that, using the ideas /
constructions presented, can be extended to Lindelöf groupoids?
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...The End

Thank you for your attention.
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