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Classical Nevanlinna-Pick theorem

Let H*(D) = {f : D — C | f is bounded and analytic}.
Theorem (Pick 1915)

Given N distinct points z1,...,zy € D and N points
A1, ..., Ay € C, there exists f € H>(D) such that ||f|| < 1 and

f(Z,'):)\,', iZl,...,N,

if and only if the Pick matrix

=,
1=7izj ] j=1

is positive semidefinite.

Rachael M. Norton Pick interpolation and the displacement equation



Early generalizations

o (Nagy-Koranyi 1956) A\; € M,(C).
@ (Sarason 1967) Commutant lifting in H>°(ID) implies classical
Nevanlinna-Pick theorem and Nagy-Koranyi theorem.

o (Ball-Gohberg 1985) Commutant lifting in the set of block
upper triangular matrices implies Nevanlinna-Pick theorem for
zZi € Mn(C) and \; € Mm((C)
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Generalizations of interest

Two main strategies for proving generalized noncommutative
Nevanlinna-Pick theorems since 1967:

@ displacement equation

@ commutant lifting
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Generalizations of interest

Two main strategies for proving generalized noncommutative
Nevanlinna-Pick theorems since 1967:

@ displacement equation
@ commutant lifting
Goal:

@ Understand the relationship between these two approaches
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Generalizations of interest

Two main strategies for proving generalized noncommutative
Nevanlinna-Pick theorems since 1967:

e displacement equation (Constantinescu-Johnson 2003)
e commutant lifting (Muhly-Solel 2004, Popescu 2003)
Goal:

@ Understand the relationship between these two approaches
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@ Comparison with Muhly-Solel’s theorem
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Definitions

Definitions

W*-algebra
A W*-algebra M is a C*-algebra that is a dual space.
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Definitions

Definitions

W*-algebra
A W*-algebra M is a C*-algebra that is a dual space.

W*-correspondence

A W*-correspondence E over a W*-algebra M is

@ a Hilbert C*-module over M

@ self-dual

@ equipped with a faithful, normal *-homomorphism
¢ : M — Z(E) that gives the left action of M on E.
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Definitions

Examples of W*-correspondences

o M=E=C
@ a-c-b=acb
° C,d>—fd
e M=C,E=C"
c acib
° a -b=
Cn ac,b
a] a1
(==
Cn d,
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Definitions

Examples cont.
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Definitions

W*-correspondence setting

Given

o M, a W*-algebra

e E, a W*-correspondence over M
define

o the Fock space .7 (E) to be the ultraweak direct sum
oo E®*, where E®0 = M, viewed as a bimodule over itself

@ the von Neumann algebra of bounded operators .Z(.% (E)) on
the Fock space of E
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Definitions

Operators on the Fock space .% (E)

Define the left action operator ¢, : M — £ (% (E)) by

a

o(a)
#oo(3) = p2(a)

where ¢, (a) : E®K — E®K is given by

pr(a)(§1®@ &L ® ... &) = (p(a)é1) ® & @ .. . &k
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Definitions

Operators on the Fock space .#(E) cont.

For { € E, define the left creation operator T, : #(E) — F(E)
by Te(n) =&®m, ie.,

where Tg(k) - E®k—1  E®k s given by

k
TE( )(771®...®17k,1):§®771®...®17k,1.
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Definitions

Subalgebras of £ (.7 (E))

Tensor algebra of E

The tensor algebra of E, denoted .7, (E), is the norm-closed
subalgebra of .Z(.7(E)) generated by {ps(a) |a € M} and
{Te |€ € E}.
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Definitions

Subalgebras of £ (.7 (E))

Tensor algebra of E

The tensor algebra of E, denoted .7, (E), is the norm-closed
subalgebra of .Z(.7(E)) generated by {ps(a) |a € M} and

{Te [€ € E}

| A\

Hardy algebra of E

The Hardy algebra of E, denoted H*°(E), is the ultraweak
closure of .7, (E) in Z(.Z(E)).
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Definitions

The o-dual E?

Given
o M, a W*-algebra
e E, a W*-correspondence

@ 0 : M — B(H), a faithful, normal representation of M on a
Hilbert space H,

define

e £E7:={ne B(H,E®, H) |no(a) = (¢(a) ® In)n¥a € M}.
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Definitions

E? is a W*-correspondence over o(M)’

E? :={n € B(H,E ®@; H) [no(a) = (p(a) ® In)nVa € M}
E? is a W*-correspondence over o(M)":
@a-n-b:=(lg®a)b

o (&) :=n"¢
Construct H®(E?).
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Definitions

Cauchy kernel

E? :={n e B(H,E ®; H) [no(a) = (¢(a) @ In)nVa € M}

For n € E? with ||n|| <1 and k € N, define
o the kth tensorial power n(¥) € B(H, E®* @, H) by

") = (lger1 ©n)(lger—2 @n) -~ (Ig @ n)n
e the Cauchy kernel C(n) € B(H, . #(E) ®, H) by

Cm)=[h n n® n® .7
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Definitions

Spectral radius in the W*-correspondence setting

Spectral radius

For n € E?, define the spectral radius of 7 by

r(n) = inf [[n{|[H/%.
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Definitions

Spectral radius in the W*-correspondence setting

Spectral radius

For n € E?, define the spectral radius of 7 by

r(n) = inf [[n{|[H/%.

Proposition
Forn € E?, C(n) € B(H,.Z(E) ®, H) if and only if r(n) < 1.
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Definitions

Spectral radius in the W*-correspondence setting

Spectral radius

For n € E?, define the spectral radius of 7 by

r(n) = inf [[n{|[H/%.

Proposition
Forn € E?, C(n) € B(H,.Z(E) ®, H) if and only if r(n) < 1.

Forn € E?, ||n]| < 1 implies r(n) < 1, but the converse is not true.
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Definitions

Point evaluation

Define U : F(E°)®, H— F(E) ®, H by

Um@--@n®h) = (lggk-1 @m1) -+ (Ie @ nx—1)nkh.
Define p : H(E?) = B(F(E) ®o H) by

p(X) =UX® Iy)U*.
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Definitions

Point evaluation

Define U : F(E°)®, H— F(E) ®, H by
Um@--@n®h) = (lggk-1 @m1) -+ (Ie @ nx—1)nkh.
Define p : H(E?) — B(Z(E) ®, H) by

p(X) =UX® Iy)U*.

Point evaluation

For X € H**(E?) and n € E” with r(n) < 1, define the point
evaluation X(n) by

A

X(n) = C(0)*p(X)"C(n).
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Definitions

Remarks about the point evaluation

Point evaluation

For X € H*(E?) and n € E? with r(n) < 1, define the point
evaluation X(7n) by

X(n) = C(0)"p(X)*C(n).

o X(n) € a(MY
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Definitions

Remarks about the point evaluation

Point evaluation

For X € H*(E?) and n € E? with r(n) < 1, define the point
evaluation X(7n) by

X(n) = C(0)"p(X)*C(n).

o X(n) € a(MY
e Not multiplicative, i.e., W(n) + )A((n) \A/(n)
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Definitions

Remarks about the point evaluation

Point evaluation

For X € H*(E?) and n € E? with r(n) < 1, define the point
evaluation X(7n) by

X(n) = C(0)"p(X)*C(n).

o X(n) € a(MY
e Not multiplicative, i.e., W(n) + )A((n) \A/(n)

@ Induces an algebra antihomomorphism from H*°(E?) into the
completely bounded maps on o(M)’
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Definitions

Mubhly-Solel point evaluation

Muhly-Solel point evaluation (Muhly-Solel 2004)

For Y € H*(E) and n € E” with [|n|| <1, define the point
evaluation Y(n*) by

A

Y(n") = (C(0)"(Y* @ In)C(n))".
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Definitions

Mubhly-Solel point evaluation

Muhly-Solel point evaluation (Muhly-Solel 2004)

For Y € H*(E) and n € E” with [|n|| <1, define the point
evaluation Y(n*) by

Y (n*) = (C0)"(Y* ® In)C(n))"

o Y(n*) € B(H)
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Definitions

Mubhly-Solel point evaluation

Muhly-Solel point evaluation (Muhly-Solel 2004)

For Y € H*(E) and n € E” with [|n|| <1, define the point
evaluation Y(n*) by

Y (n*) = (C0)"(Y* ® In)C(n))"

o V(") € B(H)
e Multiplicative, i.e., i\\/(n*) = X(n*)Y (")
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Generalized Nevanlinna-Pick theorem

Generalized Nevanlinna-Pick theorem

Theorem (N.)

Let 31,...,3n be N distinct elements of E7 with r(3;) < 1 for all /,
and let A1,..., Ay € o(M)'. There exists X € H>°(E?) with
IIX]] <1 such that

XGi) =N, i=1,...,N,

if and only if the operator matrix

Ax = [CGi)*(Ize) © (Ih — NA))CGE)]

ij=1

is positive semidefinite.
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Generalized Nevanlinna-Pick theorem

Corollary: Classical Nevanlinna-Pick theorem

If

e M=E=C

@ 0: M — B(C) is given by o(a) = a
then

e E90=C

e o(M) =C

@ we recover the classical Nevanlinna-Pick theorem
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Generalized Nevanlinna-Pick theorem

Corollary: Constantinescu-Johnson's theorem

If

o M=C,E=Cn

e 0: M — B(H) is given by o(a) = aly
then

e E7 = Cy(B(H))

e o(M) = B(H)

@ we recover Constantinescu-Johnson’s theorem
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Generalized Nevanlinna-Pick theorem

Displacement equation

A displacement equation is an equation of the form

(Is(y — 0)(A) = B,

where A, B € B(H) and 6 : B(H) — B(H).
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Generalized Nevanlinna-Pick theorem

Displacement equation

A displacement equation is an equation of the form

(Is(y — 0)(A) = B,

where A, B € B(H) and 6 : B(H) — B(H).
Given 6 and B, and assuming (/g(t) — )~ exists, solve for A:

A= (Ig(y — 0)~ Z 0%(B
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Generalized Nevanlinna-Pick theorem

Displacement equation

A displacement equation is an equation of the form

(Is(y — 0)(A) = B,

where A, B € B(H) and 6 : B(H) — B(H).
Given 6 and B, and assuming (/g(t) — )~ exists, solve for A:

A= (Ig(y — 0)~ Z 0%(B

We are interested in the case when 6 is completely positive. In this
case, (Ig(H) — 6)~! is completely positive as well.
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Generalized Nevanlinna-Pick theorem

Proof of (N.)

Step 1

31 In A
Let 3 = ,U=1]:],and V= | : |. Form the

3N Iy Ay
displacement equation

(Is(ry — 0;)(A) = UU* — VW7,

where A € B(H) and 0;(A) = 3*(Ie ® A);.
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Generalized Nevanlinna-Pick theorem

Proof cont.

Observe
@ The Pick matrix is the unique solution of the displacement
equation, i.e.,
A=Ay
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Generalized Nevanlinna-Pick theorem

Proof cont.

Observe

@ The Pick matrix is the unique solution of the displacement
equation, i.e.,

A=Ay
@ We can rewrite the Pick matrix as Ay = U Uso — V3, Vo,
where U, = [C(31) -+ C(3n)] and
Voo = [(lz(e) ® M)C(G1) -+ (Ize) ® Aw) C(an)]-
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Generalized Nevanlinna-Pick theorem

Proof cont.

Lemma (Step 3)

An = UL Uso — VI Vi is positive semidefinite if and only if there
exists X € H*(E?) with ||X|| < 1 such that p(X)*Ux = V.
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Generalized Nevanlinna-Pick theorem

Proof cont.

Lemma (Step 3)

An = UL Uso — VI Vi is positive semidefinite if and only if there
exists X € H*(E?) with ||X|| < 1 such that p(X)*Ux = V.

p(X)*Use = Vi if and only if X(3;) = A; for all .
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Generalized Nevanlinna-Pick theorem

Proof of lemma

Apn = Ul Uso — VI Vi is positive semidefinite if and only if there
exists X € H*(E?) with ||X|| < 1 such that p(X)"Usx = V.

Proof: (=)
o Ay >0 = 3L e c(M(M) such that Ay = LL*

@ Displacement equation becomes A*A = B*B
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Generalized Nevanlinna-Pick theorem

Proof of lemma cont.

o Douglas's lemma = d! partial isometry Q such that
s A=QB i
o Inn(R2) C Range(B)
@ Define matrix T in terms of the entries of €2 so that
TUs = V.

@ There exists X € H>*°(E?) with || X|| <1 such that
T = p(X)*, and p(X)*Uso = Vio.
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Generalized Nevanlinna-Pick theorem

Proof of lemma cont.

( <) If there exists X € H>(E?) such that ||X|| <1 and
p(X)*Uso = Voo, then

Ay = UUso — ViV
UsoUso = USp(X)p(X)* Use
= UL( = p(X)p(X)*)Uss
> 0

since || X|| <1 and p is an isometry.
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Comparison with Popescu’s theorem

Popescu’s setting

M=C

E=C"

o: M — B(H) is given by o(a) = aly
E7 = Cy(B(H))

o(M)' = B(H)
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Comparison with Popescu’s theorem

Popescu’s setting

@ 0: M — B(H) is given by o(a) = aly
e £7 = Cy(B(H))
e o(M) = B(H)

For3=1[Z1 --- Z,] € B(H)", the spectral radius of ; is given
by
1/2k

r(3) = inf Y Zu(Z)*

o=k

v
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Comparison with Popescu’s theorem

Popescu’s setting

@ 0: M — B(H) is given by o(a) = aly
e £7 = Cy(B(H))
e o(M) = B(H)

For3=1[Z1 --- Z,] € B(H)", the spectral radius of ; is given
by
1/2k
= inf Z,(Z,)" = inf [|3* | M* = r(5%).
() =in ||Zk (Za) inf [l % = r(5")

v
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Comparison with Popescu’s theorem

Popescu’s setting cont.

Let S51,...,5, be the left creation operators on the Fock space
of C". For & € H*(C")®B(H), we can write

d = Z Sa ®A(a)7 A(a) € B(H)

acF;’

Point evaluation
Define the point evaluation of ® =3 /S, ® A, at
3=1[Z4 -+ Z,] with r(3) <1 by

OG) = Y ZzAw),

acF;f

where & denotes the reverse of . )
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Comparison with Popescu’s theorem

Nontangential version of Popescu’s theorem

Theorem (Popescu 2003)

Fori=1,....,N, let3=[Z1 --- Zn] € B(H)" with r(3;) <1,
and let A; € B(H). There exists & € H*(C")®B(H) such that
||| <1 and

(D(j,'):/\,', iZl,...,N,

if and only if the operator matrix

N
Ap = | X720 Zjajmk Ziall = Nl (Zia)'|

ij=1

is positive semidefinite.
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Comparison with Popescu’s theorem

Proof via the displacement equation

@ Given the data in Popescu’s theorem, (N.) implies that there
exists X € H>(E?) such that ||X| <1 and X(37) = Af for all
i if and only if the Pick matrix Aps is positive semidefinite.
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Comparison with Popescu’s theorem

Proof via the displacement equation

@ Given the data in Popescu’s theorem, (N.) implies that there
exists X € H>(E?) such that ||X| <1 and X(37) = Af for all
i if and only if the Pick matrix Aps is positive semidefinite.

@ The Pick matrices Ap and Ay are equal.
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Comparison with Popescu’s theorem

Proof via the displacement equation

@ Given the data in Popescu’s theorem, (N.) implies that there
exists X € H>(E?) such that ||X| <1 and X(37) = Af for all
i if and only if the Pick matrix Aps is positive semidefinite.

@ The Pick matrices Ap and Ay are equal.

@ There exists X € H®(E?) such that || X|| <1 and X(37) = A}
if and only if there exists ® € H*°(C")®B(H) such that
”‘DH <1 and <D(3,-) = /\,‘.
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Comparison with Popescu’s theorem

Proof via the displacement equation

@ Given the data in Popescu’s theorem, (N.) implies that there
exists X € H>(E?) such that ||X| <1 and X(37) = Af for all
i if and only if the Pick matrix Aps is positive semidefinite.

@ The Pick matrices Ap and Ay are equal.

@ There exists X € H®(E?) such that || X|| <1 and X(37) = A}
if and only if there exists ® € H*°(C")®B(H) such that
|®|l <1and &(3;) =A;. Hint: & = (U Iy)p(X)(J @ Iy),
where J : .Z(C") — F(C") is given by
J(e,-1®---®e,-k):e,-k®---®e,-1.
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Comparison with Muhly-Solel’s theorem

Muhly-Solel's theorem

Theorem (Muhly-Solel 2004)

Let 31,...,3n be N distinct points of E with [|3;|| < 1 for all /,
and let Aq,..., Ay € B(H). There exists Y € H*(E) with
|| <1 such that

A

YGi)=AN, i=1,...,N,

if and only if the map from Mpy(a(M)’) to My(B(H)) defined by
B (I —Wp)o (I —6,)"Y(B)

is completely positive, where A = diag[A;], 3 = diag[i],
WA(C) = A*CA, and 6,(C) = 3*(Ig ® C); for all C € My(a(M)).
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Comparison with Muhly-Solel’s theorem

Muhly-Solel's theorem

Theorem (Muhly-Solel 2004)

Let 31,...,3n be N distinct points of EZ with ||3;|| < 1 for all i,
and let Aq,..., Ay € B(H). There exists Y € H*(E) with
|| <1 such that

A

YGi)=N;, i=1,...,N,

if and only if the map from Mpy(a(M)’) to My(B(H)) defined by
B s (I —Wp)o(l—6,)7Y(B)

is completely positive, where A = diag[A;], 3 = diag[i],
WA(C) = A*CA, and 6,(C) = 3*(Ig ® C); for all C € My(a(M)).
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Comparison with Muhly-Solel’s theorem

An implication

Suppose the Muhly-Solel Pick matrix map (I — Wp) o (I — 93)_1 is
completely positive.
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Comparison with Muhly-Solel’s theorem

An implication

Suppose the Muhly-Solel Pick matrix map (I — Wp) o (I — 93)_1 is
completely positive.
= (I —6;)71 o (I — Wp) is completely positive.
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Comparison with Muhly-Solel’s theorem

An implication

Suppose the Muhly-Solel Pick matrix map (I — Wp) o (I — 93)_1 is
completely positive.

= (I —6;)71 o (I — Wp) is completely positive.

= Ay = (I - 0,)"1(UU* — vw*)
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Comparison with Muhly-Solel’s theorem

An implication

Suppose the Muhly-Solel Pick matrix map (I — Wp) o (I — 93)_1 is
completely positive.
= (I —6;)71 o (I — Wp) is completely positive.
= Ay = (I - 0,)"1(UU* — vw*)
Iy - Iy
=(I=8) to(l=wa)| |: ] =0

Iy -y
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Comparison with Muhly-Solel’s theorem

An implication

Suppose the Muhly-Solel Pick matrix map (I —Wp) o (I —6;)7 1 is
completely positive.
= (I —6;)71 o (I — Wp) is completely positive.
= Ay = (I - 0,)"1(UU* — vw*)
Iy - Iy
=(I=0) o (I=Wa) [ | 1] =0
Iy - Iy
Moral: Interpolation in the sense of Muhly-Solel’'s theorem implies
interpolation in the sense of (N.). However, a simple example
shows that the converse is not true.
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Comparison with Muhly-Solel’s theorem

Comparison theorem

Theorem (N. 2017)

Let 31,...,3n be N distinct elements of 3(E7) with [[3;]] < 1 for all
i, and let Ag,..., Ay € 3(a(M)").
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Comparison with Muhly-Solel’s theorem

Comparison theorem

Theorem (N. 2017)

Let 31,...,3n be N distinct elements of 3(E7) with [[3;]] < 1 for all
i, and let A1,..., Ay € 3(c(M)’). The following are equivalent:

@ There exists Y € H>(3(E)) with || Y]] <1 such that

YGH=A, i=1,...,N

in the sense of (Muhly-Solel 2004).
@ There exists X € H>(3(E7)) with || X]|| < 1 such that

X(j,‘):/\,’, iZl,...,N

in the sense of (N.).
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Comparison with Muhly-Solel’s theorem

Definitions

Center of a W*-correspondence

3(E)={€cE|a-£E=&-a Vae M}

If (M, E) is a W*-correspondence, then (3(M), 3(E)) is a
W*-correspondence.
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Comparison with Muhly-Solel’s theorem

Definitions

Center of a W*-correspondence

3(E)={€cE|a-£E=&-a Vae M}

If (M, E) is a W*-correspondence, then (3(M), 3(E)) is a
W*-correspondence.

Isomorphism of W*-correspondences
An isomorphism from (My, E1) to (Ma, E3) is a pair (o, V) such
that

@ 0: My — M, is an isomorphism of W*-algebras

@ V: E; — E; is a vector space isomorphism

o forall e,f € E; and a, b € My,
V(a-e-b)=oc(a) V(e) o(b) and (V(e), ¥(f)) = c((e,f)).
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Comparison with Muhly-Solel’s theorem

Isomorphic centers

Define v : 3(E) = 3(E“) by v(§) = L¢, where L : H = E ®, H is
given by L¢(h) = £ ® h.

Proposition (Muhly-Solel 2008)

The pair (0,7) is an isomorphism of (3(M), 3(E)) onto
(3(c(M)'), 3(E7)).
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Comparison with Muhly-Solel’s theorem

Isomorphic centers

Define v : 3(E) = 3(E“) by v(§) = L¢, where L : H = E ®, H is
given by L¢(h) = £ ® h.

Proposition (Muhly-Solel 2008)

The pair (0,7) is an isomorphism of (3(M), 3(E)) onto
(3(c(M)'), 3(E7)).

Proposition
The map defined on the generators of H*(3(E)) by

Tg — T,y(g), §€3(E)
po(a) = ¢l(0(a)), ae3(M)

extends to an isomorphism I from H*°(3(E)) onto H*(3(E?)).

v
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Comparison with Muhly-Solel’s theorem

Comparison theorem revisited

Theorem (N. 2017)

Let 31,...,3n be N distinct elements of 3(E?) with [[3;]] < 1 for all
i, and let A1,..., Ay € 3(c(M)’). The following are equivalent:

@ There exists Y € H>(3(E)) with || Y]] <1 such that

YGH=A, i=1,...,N

in the sense of (Muhly-Solel 2004).
@ There exists X =T(Y) € H*(3(E?)) with || X]|| <1 such that

X(j,‘):/\,’, iZl,...,N

in the sense of (N.).
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Comparison with Muhly-Solel’s theorem

Reflections on the displacement equation approach

The displacement equation approach ...
@ avoids commutant lifting.

@ can be used to recover the nontangential version of Popescu's
theorem.

@ does not capture all the information in Muhly-Solel's theorem.

@ does not extend well to left-tangential Nevanlinna-Pick
theorems.
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