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Classical Nevanlinna-Pick theorem

Let H∞(D) = {f : D→ C | f is bounded and analytic}.

Theorem (Pick 1915)

Given N distinct points z1, . . . , zN ∈ D and N points
λ1, . . . , λN ∈ C, there exists f ∈ H∞(D) such that ||f ||∞ ≤ 1 and

f (zi ) = λi , i = 1, . . . ,N,

if and only if the Pick matrix[
1−λiλj
1−zizj

]N
i ,j=1

is positive semidefinite.
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Early generalizations

(Nagy-Koranyi 1956) λi ∈ Mn(C).

(Sarason 1967) Commutant lifting in H∞(D) implies classical
Nevanlinna-Pick theorem and Nagy-Koranyi theorem.

(Ball-Gohberg 1985) Commutant lifting in the set of block
upper triangular matrices implies Nevanlinna-Pick theorem for
zi ∈ Mn(C) and λi ∈ Mm(C).
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Generalizations of interest

Two main strategies for proving generalized noncommutative
Nevanlinna-Pick theorems since 1967:

displacement equation

commutant lifting

Goal:

Understand the relationship between these two approaches
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Two main strategies for proving generalized noncommutative
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Definitions

W ∗-algebra

A W ∗-algebra M is a C ∗-algebra that is a dual space.

W ∗-correspondence

A W ∗-correspondence E over a W ∗-algebra M is

a Hilbert C ∗-module over M

self-dual

equipped with a faithful, normal ∗-homomorphism
ϕ : M → L (E ) that gives the left action of M on E .
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Examples of W ∗-correspondences

M = E = C
a · c · b = acb
〈c , d〉 = cd

M = C, E = Cn

a ·

c1

...
cn

 · b =

ac1b
...

acnb


〈c1

...
cn

 ,
d1

...
dn

〉 =
∑

cidi
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Examples cont.

G = (G 0,G 1, r , s), M = C (G 0), E = C (G 1)

(a · ξ · b)(e) = a(r(e))ξ(e)b(s(e))

〈ξ, η〉(v) =
∑

s(e)=v

ξ(e)η(e)
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W ∗-correspondence setting

Given

M, a W∗-algebra

E , a W∗-correspondence over M

define

the Fock space F (E ) to be the ultraweak direct sum⊕∞
k=0 E

⊗k , where E⊗0 = M, viewed as a bimodule over itself

the von Neumann algebra of bounded operators L (F (E )) on
the Fock space of E
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Operators on the Fock space F (E )

Define the left action operator ϕ∞ : M → L (F (E )) by

ϕ∞(a) =


a

ϕ(a)
ϕ2(a)

. . .


where ϕk(a) : E⊗k → E⊗k is given by

ϕk(a)(ξ1 ⊗ ξ2 ⊗ . . . ξk) = (ϕ(a)ξ1)⊗ ξ2 ⊗ . . . ξk .
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Operators on the Fock space F (E ) cont.

For ξ ∈ E , define the left creation operator Tξ : F (E )→ F (E )
by Tξ(η) = ξ ⊗ η, i.e.,

Tξ =


0

T
(1)
ξ 0

T
(2)
ξ 0

. . .
. . .


where T

(k)
ξ : E⊗k−1 → E⊗k is given by

T
(k)
ξ (η1 ⊗ . . .⊗ ηk−1) = ξ ⊗ η1 ⊗ . . .⊗ ηk−1.
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Subalgebras of L (F (E ))

Tensor algebra of E

The tensor algebra of E , denoted T+(E ), is the norm-closed
subalgebra of L (F (E )) generated by {ϕ∞(a) | a ∈ M} and
{Tξ | ξ ∈ E}.

Hardy algebra of E

The Hardy algebra of E , denoted H∞(E ), is the ultraweak
closure of T+(E ) in L (F (E )).
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The σ-dual E σ

Given

M, a W ∗-algebra

E , a W ∗-correspondence

σ : M → B(H), a faithful, normal representation of M on a
Hilbert space H,

define

Eσ := {η ∈ B(H,E ⊗σ H) | ησ(a) = (ϕ(a)⊗ IH)η ∀a ∈ M}.
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E σ is a W ∗-correspondence over σ(M)′

Eσ := {η ∈ B(H,E ⊗σ H) | ησ(a) = (ϕ(a)⊗ IH)η ∀a ∈ M}

Eσ is a W ∗-correspondence over σ(M)′:

a · η · b := (IE ⊗ a)ηb

〈η, ξ〉 := η∗ξ

Construct H∞(Eσ).
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Cauchy kernel

Eσ := {η ∈ B(H,E ⊗σ H) | ησ(a) = (ϕ(a)⊗ IH)η ∀a ∈ M}

For η ∈ Eσ with ‖η‖ < 1 and k ∈ N, define

the kth tensorial power η(k) ∈ B(H,E⊗k ⊗σ H) by

η(k) = (IE⊗k−1 ⊗ η)(IE⊗k−2 ⊗ η) · · · (IE ⊗ η)η

the Cauchy kernel C (η) ∈ B(H,F (E )⊗σ H) by

C (η) =
[
IH η η(2) η(3) · · ·

]T
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Spectral radius in the W ∗-correspondence setting

Spectral radius

For η ∈ Eσ, define the spectral radius of η by

r(η) := inf
k
‖η(k)‖1/k .

Proposition

For η ∈ Eσ, C (η) ∈ B(H,F (E )⊗σ H) if and only if r(η) < 1.

For η ∈ Eσ, ‖η‖ < 1 implies r(η) < 1, but the converse is not true.
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Point evaluation

Define U : F (Eσ)⊗ι H → F (E )⊗σ H by

U(η1 ⊗ · · · ⊗ ηk ⊗ h) = (IE⊗k−1 ⊗ η1) · · · (IE ⊗ ηk−1)ηkh.

Define ρ : H∞(Eσ)→ B(F (E )⊗σ H) by

ρ(X ) = U(X ⊗ IH)U∗.

Point evaluation

For X ∈ H∞(Eσ) and η ∈ Eσ with r(η) < 1, define the point
evaluation X̂ (η) by

X̂ (η) = C (0)∗ρ(X )∗C (η).
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Remarks about the point evaluation

Point evaluation

For X ∈ H∞(Eσ) and η ∈ Eσ with r(η) < 1, define the point
evaluation X̂ (η) by

X̂ (η) = C (0)∗ρ(X )∗C (η).

X̂ (η) ∈ σ(M)′

Not multiplicative, i.e., X̂Y (η) 6= X̂ (η)Ŷ (η)

Induces an algebra antihomomorphism from H∞(Eσ) into the
completely bounded maps on σ(M)′

Rachael M. Norton Pick interpolation and the displacement equation
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Muhly-Solel point evaluation

Muhly-Solel point evaluation (Muhly-Solel 2004)

For Y ∈ H∞(E ) and η ∈ Eσ with ‖η‖ < 1, define the point
evaluation Ŷ (η∗) by

Ŷ (η∗) = (C (0)∗(Y ∗ ⊗ IH)C (η))∗ .

Ŷ (η∗) ∈ B(H)

Multiplicative, i.e., X̂Y (η∗) = X̂ (η∗)Ŷ (η∗)
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Ŷ (η∗) ∈ B(H)

Multiplicative, i.e., X̂Y (η∗) = X̂ (η∗)Ŷ (η∗)
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Generalized Nevanlinna-Pick theorem

Theorem (N.)

Let z1, . . . , zN be N distinct elements of Eσ with r(zi ) < 1 for all i ,
and let Λ1, . . . ,ΛN ∈ σ(M)′. There exists X ∈ H∞(Eσ) with
‖X‖ ≤ 1 such that

X̂ (zi ) = Λi , i = 1, . . . ,N,

if and only if the operator matrix

AN =
[
C (zi )

∗(IF (E) ⊗ (IH − Λ∗i Λj))C (zj)
]N
i ,j=1

is positive semidefinite.
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Corollary: Classical Nevanlinna-Pick theorem

If

M = E = C
σ : M → B(C) is given by σ(a) = a

then

Eσ = C
σ(M)′ = C
we recover the classical Nevanlinna-Pick theorem

Rachael M. Norton Pick interpolation and the displacement equation



Definitions
Generalized Nevanlinna-Pick theorem
Comparison with Popescu’s theorem

Comparison with Muhly-Solel’s theorem

Corollary: Constantinescu-Johnson’s theorem

If

M = C,E = Cn

σ : M → B(H) is given by σ(a) = aIH

then

Eσ = Cn(B(H))

σ(M)′ = B(H)

we recover Constantinescu-Johnson’s theorem
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Displacement equation

A displacement equation is an equation of the form

(IB(H) − θ)(A) = B,

where A,B ∈ B(H) and θ : B(H)→ B(H).

Given θ and B, and assuming (IB(H) − θ)−1 exists, solve for A:

A = (IB(H) − θ)−1(B) =
∞∑
k=0

θk(B).

We are interested in the case when θ is completely positive. In this
case, (IB(H) − θ)−1 is completely positive as well.

Rachael M. Norton Pick interpolation and the displacement equation
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Proof of (N.)

Step 1

Let z =

z1

. . .

zN

 ,U =

IH...
IH

 , and V =

Λ∗1
...

Λ∗N

. Form the

displacement equation

(IB(H) − θz)(A) = UU∗ − VV ∗,

where A ∈ B(H) and θz(A) = z∗(IE ⊗ A)z.
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Proof cont.

Step 2

Observe

The Pick matrix is the unique solution of the displacement
equation, i.e.,

A = AN

We can rewrite the Pick matrix as AN = U∗∞U∞ − V ∗∞V∞,
where U∞ =

[
C (z1) · · · C (zN)

]
and

V∞ =
[
(IF (E) ⊗ Λ1)C (z1) · · · (IF (E) ⊗ ΛN)C (zN)

]
.
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Proof cont.

Lemma (Step 3)

AN = U∗∞U∞ − V ∗∞V∞ is positive semidefinite if and only if there
exists X ∈ H∞(Eσ) with ‖X‖ ≤ 1 such that ρ(X )∗U∞ = V∞.

Step 4

ρ(X )∗U∞ = V∞ if and only if X̂ (zi ) = Λi for all i .
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Proof of lemma

Lemma

AN = U∗∞U∞ − V ∗∞V∞ is positive semidefinite if and only if there
exists X ∈ H∞(Eσ) with ‖X‖ ≤ 1 such that ρ(X )∗U∞ = V∞.

Proof: ( =⇒ )

AN ≥ 0 =⇒ ∃L ∈ σ(N)(M)′ such that AN = LL∗

Displacement equation becomes Â∗Â = B̂∗B̂
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Proof of lemma cont.

Douglas’s lemma =⇒ ∃! partial isometry Ω such that

Â = ΩB̂
Inn(Ω) ⊆ Range(B̂)

Define matrix T in terms of the entries of Ω so that
TU∞ = V∞.

There exists X ∈ H∞(Eσ) with ‖X‖ ≤ 1 such that
T = ρ(X )∗, and ρ(X )∗U∞ = V∞.

Rachael M. Norton Pick interpolation and the displacement equation
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Proof of lemma cont.

(⇐= ) If there exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and
ρ(X )∗U∞ = V∞, then

AN = U∗∞U∞ − V ∗∞V∞

= U∗∞U∞ − U∗∞ρ(X )ρ(X )∗U∞

= U∗∞(I − ρ(X )ρ(X )∗)U∞

≥ 0

since ‖X‖ ≤ 1 and ρ is an isometry.
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Popescu’s setting

M = C
E = Cn

σ : M → B(H) is given by σ(a) = aIH
Eσ = Cn(B(H))

σ(M)′ = B(H)

Spectral radius

For z =
[
Z1 · · · Zn

]
∈ B(H)n, the spectral radius of z is given

by

r(z) := inf
k

∥∥∥∥∥∥
∑
|α|=k

Zα(Zα)∗

∥∥∥∥∥∥
1/2k

= inf
k
‖z∗(k)‖1/k = r(z∗).
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Popescu’s setting cont.

Let S1, . . . ,Sn be the left creation operators on the Fock space
of Cn. For Φ ∈ H∞(Cn)⊗B(H), we can write

Φ =
∑
α∈F+

n

Sα ⊗ A(α), A(α) ∈ B(H).

Point evaluation

Define the point evaluation of Φ =
∑

α∈F+
n
Sα ⊗ A(α) at

z =
[
Z1 · · · Zn

]
with r(z) < 1 by

Φ(z) :=
∑
α∈F+

n

Zα̃A(α),

where α̃ denotes the reverse of α.
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Nontangential version of Popescu’s theorem

Theorem (Popescu 2003)

For i = 1, . . . ,N, let zi =
[
Zi1 · · · Zin

]
∈ B(H)n with r(zi ) < 1,

and let Λi ∈ B(H). There exists Φ ∈ H∞(Cn)⊗B(H) such that
‖Φ‖ ≤ 1 and

Φ(zi ) = Λi , i = 1, . . . ,N,

if and only if the operator matrix

AP =
[∑∞

k=0

∑
|α|=k Ziα(IH − ΛiΛ

∗
j )(Zjα)∗

]N
i ,j=1

is positive semidefinite.
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Proof via the displacement equation

1 Given the data in Popescu’s theorem, (N.) implies that there
exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i for all
i if and only if the Pick matrix AN is positive semidefinite.

2 The Pick matrices AP and AN are equal.

3 There exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i
if and only if there exists Φ ∈ H∞(Cn)⊗B(H) such that
‖Φ‖ ≤ 1 and Φ(zi ) = Λi . Hint: Φ = (J ⊗ IH)ρ(X )(J ⊗ IH),
where J : F (Cn)→ F (Cn) is given by
J(ei1 ⊗ · · · ⊗ eik ) = eik ⊗ · · · ⊗ ei1 .

Rachael M. Norton Pick interpolation and the displacement equation



Definitions
Generalized Nevanlinna-Pick theorem
Comparison with Popescu’s theorem

Comparison with Muhly-Solel’s theorem

Proof via the displacement equation

1 Given the data in Popescu’s theorem, (N.) implies that there
exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i for all
i if and only if the Pick matrix AN is positive semidefinite.

2 The Pick matrices AP and AN are equal.

3 There exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i
if and only if there exists Φ ∈ H∞(Cn)⊗B(H) such that
‖Φ‖ ≤ 1 and Φ(zi ) = Λi . Hint: Φ = (J ⊗ IH)ρ(X )(J ⊗ IH),
where J : F (Cn)→ F (Cn) is given by
J(ei1 ⊗ · · · ⊗ eik ) = eik ⊗ · · · ⊗ ei1 .

Rachael M. Norton Pick interpolation and the displacement equation



Definitions
Generalized Nevanlinna-Pick theorem
Comparison with Popescu’s theorem

Comparison with Muhly-Solel’s theorem

Proof via the displacement equation

1 Given the data in Popescu’s theorem, (N.) implies that there
exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i for all
i if and only if the Pick matrix AN is positive semidefinite.

2 The Pick matrices AP and AN are equal.

3 There exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i
if and only if there exists Φ ∈ H∞(Cn)⊗B(H) such that
‖Φ‖ ≤ 1 and Φ(zi ) = Λi .

Hint: Φ = (J ⊗ IH)ρ(X )(J ⊗ IH),
where J : F (Cn)→ F (Cn) is given by
J(ei1 ⊗ · · · ⊗ eik ) = eik ⊗ · · · ⊗ ei1 .

Rachael M. Norton Pick interpolation and the displacement equation



Definitions
Generalized Nevanlinna-Pick theorem
Comparison with Popescu’s theorem

Comparison with Muhly-Solel’s theorem

Proof via the displacement equation

1 Given the data in Popescu’s theorem, (N.) implies that there
exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i for all
i if and only if the Pick matrix AN is positive semidefinite.

2 The Pick matrices AP and AN are equal.

3 There exists X ∈ H∞(Eσ) such that ‖X‖ ≤ 1 and X̂ (z∗i ) = Λ∗i
if and only if there exists Φ ∈ H∞(Cn)⊗B(H) such that
‖Φ‖ ≤ 1 and Φ(zi ) = Λi . Hint: Φ = (J ⊗ IH)ρ(X )(J ⊗ IH),
where J : F (Cn)→ F (Cn) is given by
J(ei1 ⊗ · · · ⊗ eik ) = eik ⊗ · · · ⊗ ei1 .

Rachael M. Norton Pick interpolation and the displacement equation



Definitions
Generalized Nevanlinna-Pick theorem
Comparison with Popescu’s theorem

Comparison with Muhly-Solel’s theorem

Muhly-Solel’s theorem

Theorem (Muhly-Solel 2004)

Let z1, . . . , zN be N distinct points of Eσ with ‖zi‖ < 1 for all i ,
and let Λ1, . . . ,ΛN ∈ B(H). There exists Y ∈ H∞(E ) with
‖Y ‖ ≤ 1 such that

Ŷ (z∗i ) = Λ∗i , i = 1, . . . ,N,

if and only if the map from MN(σ(M)′) to MN(B(H)) defined by

B 7→ (I −ΨΛ) ◦ (I − θz)−1(B)

is completely positive, where Λ = diag [Λi ], z = diag [zi ],
ΨΛ(C ) = Λ∗CΛ, and θz(C ) = z∗(IE ⊗ C )z for all C ∈ MN(σ(M)′).
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An implication

Suppose the Muhly-Solel Pick matrix map (I −ΨΛ) ◦ (I − θz)−1 is
completely positive.

=⇒ (I − θz)−1 ◦ (I −ΨΛ) is completely positive.
=⇒ AN = (I − θz)−1(UU∗ − VV ∗)

= (I − θz)−1 ◦ (I −ΨΛ)


IH · · · IH

...
...

IH · · · IH


 ≥ 0.

Moral: Interpolation in the sense of Muhly-Solel’s theorem implies
interpolation in the sense of (N.). However, a simple example
shows that the converse is not true.
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Comparison theorem

Theorem (N. 2017)

Let z1, . . . , zN be N distinct elements of Z(Eσ) with ‖zi‖ < 1 for all
i , and let Λ1, . . . ,ΛN ∈ Z(σ(M)′).

The following are equivalent:

1 There exists Y ∈ H∞(Z(E )) with ‖Y ‖ ≤ 1 such that

Ŷ (z∗i ) = Λ∗i , i = 1, . . . ,N

in the sense of (Muhly-Solel 2004).

2 There exists X ∈ H∞(Z(Eσ)) with ‖X‖ ≤ 1 such that

X̂ (zi ) = Λi , i = 1, . . . ,N

in the sense of (N.).
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Definitions

Center of a W ∗-correspondence

Z(E ) := {ξ ∈ E | a · ξ = ξ · a ∀a ∈ M}

If (M,E ) is a W ∗-correspondence, then (Z(M),Z(E )) is a
W ∗-correspondence.

Isomorphism of W ∗-correspondences

An isomorphism from (M1,E1) to (M2,E2) is a pair (σ,Ψ) such
that

σ : M1 → M2 is an isomorphism of W ∗-algebras

Ψ : E1 → E2 is a vector space isomorphism

for all e, f ∈ E1 and a, b ∈ M1,
Ψ(a · e · b) = σ(a) ·Ψ(e) · σ(b) and 〈Ψ(e),Ψ(f )〉 = σ(〈e, f 〉).
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Isomorphic centers

Define γ : Z(E )→ Z(Eσ) by γ(ξ) = Lξ, where Lξ : H → E ⊗σ H is
given by Lξ(h) = ξ ⊗ h.

Proposition (Muhly-Solel 2008)

The pair (σ, γ) is an isomorphism of (Z(M),Z(E )) onto
(Z(σ(M)′),Z(Eσ)).

Proposition

The map defined on the generators of H∞(Z(E )) by

Tξ 7→ Tγ(ξ), ξ ∈ Z(E )

ϕ∞(a) 7→ ϕσ∞(σ(a)), a ∈ Z(M)

extends to an isomorphism Γ from H∞(Z(E )) onto H∞(Z(Eσ)).
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Comparison theorem revisited

Theorem (N. 2017)

Let z1, . . . , zN be N distinct elements of Z(Eσ) with ‖zi‖ < 1 for all
i , and let Λ1, . . . ,ΛN ∈ Z(σ(M)′). The following are equivalent:

1 There exists Y ∈ H∞(Z(E )) with ‖Y ‖ ≤ 1 such that

Ŷ (z∗i ) = Λ∗i , i = 1, . . . ,N

in the sense of (Muhly-Solel 2004).

2 There exists X = Γ(Y ) ∈ H∞(Z(Eσ)) with ‖X‖ ≤ 1 such that

X̂ (zi ) = Λi , i = 1, . . . ,N

in the sense of (N.).
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Reflections on the displacement equation approach

The displacement equation approach . . .

avoids commutant lifting.

can be used to recover the nontangential version of Popescu’s
theorem.

does not capture all the information in Muhly-Solel’s theorem.

does not extend well to left-tangential Nevanlinna-Pick
theorems.
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