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Motivation / Inspiration

Arveson’s theory of subalgebras of C ∗-algebras. In
particular, his theory of boundary representations.

Foundations of Free Noncommutative Function
Theory by D. Kaliuzhnyi-Verbovetskyi and V.
Vinnikov.

Groucho Marx

Hermann Weyl
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Motivation: Arveson’s Boundary Theory

1 ∈ A ⊆ B - a unital not-necessarily self-adjoint
subalgebra A of a C ∗-algebra B (same unit).

C ∗(A) := the C ∗-subalgebra of B generated by A.

Definition

A boundary representation of C ∗(A) for A is an
irreducible C ∗-representation π : C ∗(A)→ B(Hπ) with
the property that the only completely positive map
ϕ : C ∗(A)→ B(Hπ) such that ϕ|A = π|A is π.

∂Rep(C ∗(A)) – all boundary reps of C ∗(A) for A.
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Motivation: Arveson’s Boundary Theory

⋂
{ker(π) | π ∈ ∂Rep(C ∗(A))} := S(C ∗(A)) – the

Shilov boundary ideal of C ∗(A).

C ∗(A)/S(C ∗(A)) := C ∗e (A) – the C ∗-envelope.

Theorem (Arveson)

The quotient map q : C ∗(A)→ C ∗e (A) is completely
isometric on A and allows us to view A ⊆ C ∗e (A). Every
completely isometric isomorphism between operator
algebras A1 and A2 is the restriction of a C ∗-isomorphism
from C ∗e (A1) to C ∗e (A2).
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The Basic Example

Example

A(D) ⊆ C (D), the disc algebra.

C ∗(A(D)) = C (D)

∂Rep(A(D)) = T the boundary of D.

C ∗e (A(D)) = C (T)
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Motivation from Free Analysis
Definitions

Md
n - d-tuples of n × n complex matrices.

For z ∈ Md
n , write z := (Z1,Z2, · · ·Zd), Zi ∈ Mn and

set Zk : Md
n → Mn, Zk(z) = Zk - the k th-matricial

coordinate function.

G0 = G0(d , n) := the algebra of Mn-valued
functions on Md

n generated by {Zk}dk=1 in
Mn(C[Md

n ]) – the polynomial algebra of d generic
n × n matrices.

Why these algebras? Answer: They are the algebras
that arise from representing the free algebra
C〈X1,X2, · · · ,Xd〉 as functions on its space of
n-dimensional representations.
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Taylor / K-V, V Axioms

Md :=
∐

n≥1M
d
n

Ω =
∐

n≥1 Ωn ⊆Md - an open N.C. set, i.e., Ωn is

open in Md
n and Ωk ⊕ Ωl ⊆ Ωk+l .

Definition

A function f : Ω→M1 (f = {fn}n≥1) is called a
noncommutative function iff

1 fn(Ωn) ⊆ Mn, for all n

2 fk+l(X ⊕ Y ) = fk(X )⊕ fl(Y ), X ∈ Ωk , Y ∈ Ωl .

3 fn(SXS−1) = Sfn(X )S−1, for all X ∈ Ωn and
S ∈ Gl(n,C) such that SXS−1 ∈ Ωn.
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Amazing Fact

Under anodyne boundedness hypotheses, a
noncommutative function f = {fn} is analytic, i.e.,
each fn is analytic.
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Motivation from Groucho Marx

Recall axioms 2 and 3 for noncommutative
functions:

(2) fk+l(X ⊕ Y ) = fk(X )⊕ fl(Y ), X ∈ Ωk , Y ∈ Ωl .
(3) fn(SXS−1) = Sfn(X )S−1, for all X ∈ Ωn and

S ∈ Gl(n,C) such that SXS−1 ∈ Ωn.

Taylor observed that these two axioms can be
replaced by this single one: For X ∈ Ωn, Y ∈ Ωm,
and T ∈ Mn×m such that XT = TY ,
fn(X )T = Tfm(Y ), where if X = (X1,X2, · · · ,Xd),
then XT = (X1T ,X2T , · · · ,XdT ), similarly for TY .

My reaction: “Anyone who says he can see through
women is missing a lot.” (Groucho Marx)
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Motivation from Hermann Weyl

“I shared his [Felix Klein’s] conviction that Riemann
surfaces are not merely a device for visualizing the
many-valuedness of analytic functions, but rather an
indispensable essential component of the theory; not
a supplement, more or less artificially distilled from
the functions, but their native land, the only soil in
which the functions grow and thrive.”

Reflection on the axiom fn(SXS−1) = Sfn(X )S−1,
for all X ∈ Ωn and S ∈ Gl(n,C) such that
SXS−1 ∈ Ωn reveals that Ωn is not the natural
domain for fn.
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A Thriving Free Function at Home
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An Old Idea

R and S two unital rings.

X := Hom(R , S) – unital homomorphisms.

For r ∈ R , define r̂ : X → S by

r̂(ϕ) := ϕ(r),

and let R̂ := {r̂ | r ∈ R}.
Clearly, r → r̂ is a homomorphism (i.e., a

representation) of R into R̂ .

What information do these functions carry?

Dedekind u. Weber, Theorie der algebraischen
Functionen einer Veränderlichen, Crelle XCII, Heft
3, 1882, s. 236.
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Points of the Riemann Surface
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Translation of Dedekind and Weber by

John Stillwell
History of Mathematics # 39, AMS 2012

Figure: John Stillwell
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An Old Idea Refined

Defining r̂ : X → S by r̂(ϕ) := ϕ(r) may have
“natural redundancies”, especially if S is not
commutative.

Let G ⊆ Aut(S) be a subgroup, e.g. take
G = InnAut(S). Then G acts on X as well as on S :

ϕ · g(r) := ϕ(r) · g , r ∈ R , ϕ ∈ X , g ∈ G .

Further

r̂(ϕ · g) = (ϕ · g)(r) = ϕ(r) · g = r̂(ϕ) · g .

Thus each r̂ is a “G -concomitant”.
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Concomitants

Definition

If a group G acts on two spaces X and Y , then a
function f : X → Y is called a G -concomitant in case

f (x · g) = f (x) · g , g ∈ G , x ∈ X .

Concomitants are also called covariants, fixed
functions, invariant functions, equivariant functions,
intertwiners. . . .
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Observation
Tautological

Observation

Suppose G acts on X and Y . Let π0 : X → X/G be the
quotient map. Let X ∗Y = (X ×Y )/G (product action),
and define π : X ∗ Y → X/G by π([x , y ]) = π0(x).Then
we are led to think of X ∗ Y as the total space of a fibre
bundle over X/G with fibre Y and projection π. Further,
if f : X → Y is a G-concomitant then the map
σf : X/G → X ∗ Y , defined by σf ([x ]) = [x , f (x)] is a
section of this bundle, i.e. π ◦ σf = idX/G . Conversely,
assuming the action of G on X is free (i.e., x · g = x
implies g = e, for any x ∈ X), every section of this
bundle is given by a concomitant.
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Ineluctable Conclusion

If one wants to study a ring R in terms of the
similarity classes of its representations in a
noncommutative ring S , one is naturally led to
study R̂ as sections of the bundle whose base is
X/InnAut(S) and whose total space is
(X × S)/InnAut(S).

This observation lies at the center of the theory of
moduli.

Unfortunately, the process is sometimes not
straightforward - the quotient space X/InnAut(S)
can be problematic.
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Generic Matrices as Concomitants

G := PGL(n,C), viewed as the automorphism group
of Mn. Write A · g := g−1Ag , A ∈ Mn, g ∈ G .

G acts on Md
n (the diagonal action):

z · g := (Z1 · g ,Z2 · g , · · · ,Zd · g).

Since Zk(z · g) = Zk(z) · g , each Zk is a
G -concomitant. Thus G0 consists of
G -concomitants.

What does the bundle perspective have to offer for
these concomitants?
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Important Contributions of Procesi

Polynomial invariants:

I0 = C[Md
n ]G := {p : Mn

d

polynomial−−−−−→ C | p(z·g) = p(z)}

viewed as scalar multiples of In.

Trace Algebra S0 := subalgebra of Mn(C[Md
n ])

generated by I0 and G0.



Matrix Bundles in
Free Analysis:
Where Free

Functions Live
and Thrive

Paul S. Muhly

Important Contributions of Procesi

Theorem (Procesi)

1 I0 is generated by z→ tr(Zw ), |w | ≤ 2n − 1, where
Zw = Zi1Zi2 · · ·Zi|w| and w = i1i2 · · · i|w |.

2 I0 = Z(S0) and S0 is generated as a module over I0
by Zw , |w | ≤ 2n−1.

3 S0 = Mn(C[Md
n ])G – all G -concomitants in

Mn(C[Md
n ]).
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The Bundle Perspective for Generic

Matrices and Trace Algebras

Since elements of the trace algebra are
G -concomitants, F : Md

n → Mn, the base of the
bundle should be Md

n /G .

The total space is

(Md
n ×Mn)/G = {[z,A] | z ∈ Md

n , A ∈ Mn},

which may be identified with M
(d+1)
n /G .

The bundle projection: π([z,A]) = [z].
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Md
n /G vs. Md

n //G Set-Theoretic vs.

Categorical Quotients

The set theoretic quotient Md
n /G is of little use

because the G -orbits in Md
n need not be closed.

Example

d = 1, n = 2: The G -orbit of the matrix

[
0 1
0 0

]
is{

U1

[
0 λ
0 0

]
U2 | λ 6= 0, Ui ∈ U(2,C)

}
Every orbit closure in Md

n contains a unique closed
orbit.

GOAL: Replace the bad quotient space with a
useful proxy.
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Categorical Quotients
Definition

Definition

Given a category C and an object X of C endowed with
an action of a group G (by automorphisms of X in C), a
categorical quotient for the action is a pair (Y , π) where
Y is an object of C and π is a morphism of C mapping X
to Y such that

1 π is invariant; i.e., π ◦ σ = π ◦ p2 where
σ : G × X → X is the given group action and p2 is
the projection of G × X onto X ; and

2 (Y , π) has this universal property: any morphism
X → Z satisfying 1) factors uniquely through π .
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Categorical Quotients

If a categorical quotient for G acting on X exists, it
is unique up to isomorphism (in the given category)
and one usually denotes any avatar by X//G .

Proposition

The categorical quotient Md
n //G in the category of affine

G-varieties is the (abstract) affine algebraic variety
Spec{C[Md

n ]G}. It may be realized concretely as an
embedded algebraic variety as follows: Choose a finite
set of generators p1, p2, · · · , pe for C[Md

n ]G and define
p : Md

n → Ce by p(z) := (p1(z), p2(z), · · · , pe(z)). The
image of p is the embedded algebraic variety, V, that is
the common zeros of the polynomial relations among the
pi .
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Some Properties of Md
n //G

We identify Md
n //G with V and the quotient map π

with p.

Since every orbit closure contains a unique closed
orbit, Mn//G can be thought of as the space of
orbit closures, or the space of closed orbits.

Artin (1969): The orbit of z = (Z1, · · · ,Zd) is
closed if and only if {Z1,Z2, · · · ,Zd} generates a
semi-simple subalgebra of Mn.

V(d , n) := {z ∈ Md
n |

{Z1,Z2, · · · ,Zd} generates Mn}. V(d , n) is called
the set of irreducible points in Md

n .
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Md
n is Almost a Principal G -bundle.

Theorem (Procesi)

V(d , n) is the total space of a principal G bundle with
bundle map p restricted to V(d , n) and base
Q0 = Q0(d , n) := p(V(d , n)) contained in the smooth
points of V.

V(d , n) is Zariski dense in Md
n . If n or d is greater

than 2, then a function holomorphic on V(d , n)
extends to be holomorphic on Md

n . When
d = n = 2, V(d , n) is a domain of holomorphy.
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An Example
From J. J. Sylvester, 1883

z = (Z1,Z2) ∈ V(2, 2) if and only if det[Z1,Z2] 6= 0.

I0 is generated by the following 5 functions:
z→ tr(Z1), z→ tr(Z2), z→ tr(Z 2

1 ), z→ tr(Z 2
2 ),

and z→ tr(Z1Z2).

These functions are algebraically independent, so
M2

2//G = Spec(I0) is C5.

S0(2, 2) = I0 + Z1I0 + Z2I0 + Z1Z2I0.
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Other Categories

Theorem (Luna)

(V,p) serves also as the categorical quotient
(Md

n //G , π) for the action of G on Md
n in the following

categories: T1 spaces and continuous maps, T2 spaces
and continuous maps, and complex analytic varieties and
holomorphic maps.
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A More Concrete Model for Md
n //G

K := PUn.

HN = HN (d , n) := {z ∈ Md
n |
∑d

k=1[Z ∗k ,Zk ] = 0}
- the hypernormal points in Md

n .

Theorem (Kempf-Ness)

HN = {z | g → ‖z · g‖2 achieves its infimum at g = e}.
(‖ · ‖2 := Hilbert-Schmidt norm.) p is a K-equivariant
map of HN onto Md

n //G, inducing a homeomorphism
HN /K ' Md

n //G.

The Kempf-Ness theorem is an analogue of the fact
that every diagonable matrix is similar to a normal
matrix.



Matrix Bundles in
Free Analysis:
Where Free

Functions Live
and Thrive

Paul S. Muhly

A replacement for (Md
n ×Mn)/G

For [z] ∈ HN /K , let

M([z]) := {[z,A] ∈ (HN ×Mn)/K | A ∈ {Kz}′},

where Kz is the isotropy group of z in K and [z] is
the K -orbit of z.

Proposition

{M([z])}[z]∈HN/K has the structure of a continuous field
of C ∗-algebras over HN /K ' Md

n //G. A total family of
continuous fields is given by {[z]→ [z,F (z)]} where F
runs over all products of functions of the form
{Zi ,Z∗j }di ,j=1.
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HN as a reduction of V(d , n)

Proposition

Over Q0(d , n), HN is a reduction of V(d , n) to a
principal K-bundle.

For every compact subset X ⊆ Md
n //G (realized as

HN /K ), the continuous sections of M over X ,
Γc(X ,M), is a C ∗-algebra that is n-homogeneous
when X ⊆ Q0(d , n).

If X ⊆ Md
n //G , its I0-convex hull, X̂ , is

{z ∈ Md
n //G | |f (z)| ≤ sup{|f (x)| | x ∈ X}, f ∈ I0}.

A domain D ⊆ Md
n //G is I0-convex, if D̂ = D.
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The Tracial Function Algebra S(X )

Definition

The tracial function algebra determined by X is

S(X ) := S0
cl

in Γc(X ,M). I(X ) := I0
cl

in C (X ).

Observation

C ∗(S(X )) = Γc(X ,M)

Theorem (Griesenauer, M, Solel)

Let D ⊆ Q0(d , n) be I0-convex. Then

1 D is the maximal ideal space of I(D).

2 I(D) is the center of S(D)

3 S(D) is a rank n2-Azumaya algebra over I(D).
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The Tracial Function Algebra S(X )

(continued)

If D be I0-convex, then ∂D := the Shilov boundary
of D viewed as the maximal ideal space of I(D) and
∂eD denotes its extreme (or Choquet) boundary.

Conjecture

If D is I0-convex, then:

1 ∂Rep(C ∗(S(D))) = ∂eD
2 C ∗e (S(D)) = Γc(∂D,M).

Theorem (Griesenauer, M, Solel)

If D ⊆ Q0(d , n) is I0-convex, then:

1 ∂Rep(C ∗(S(∂D))) ⊇ ∂eD
2 C ∗e (S(∂D)) = Γc(∂D,M).
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Unfinished Business

G0 ⊆ S0 ⊆ Γh(D,M). When is S0 dense? G0?

Given a compact subset Y ⊆ Md
n , let S(Y ) := the

closure of S0 in C (Y ,Mn). When can S(Y ) be
written as Γh(D,M) for a suitable domain D in
Q0(d , n)? Be explicit!!

Tell the story of D(d , n) := {z ∈ Md
n | zz∗ ≤ In}. In

particular, describe what happens on the fringe of
Q0(d , n) in Md

n ?

There is a lot more I don’t know, but I am out of time to
discuss it.
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Nevertheless. . .

Thank You


