

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive Based on joint work with E. Griesenauer and B. Solel

Paul S. Muhly¹

¹Department of Mathematics University of Iowa

> MVOT Technion June 21, 2017

And special thanks to Baruch

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Happy Birthday Baruch

Motivation / Inspiration

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- Arveson's theory of subalgebras of C*-algebras. In particular, his theory of boundary representations.
- Foundations of Free Noncommutative Function Theory by D. Kaliuzhnyi-Verbovetskyi and V. Vinnikov.
- Groucho Marx
- Hermann Weyl

Motivation: Arveson's Boundary Theory

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- 1 ∈ A ⊆ B a unital not-necessarily self-adjoint subalgebra A of a C*-algebra B (same unit).
- $C^*(A) :=$ the C^* -subalgebra of B generated by A.

Definition

A boundary representation of $C^*(A)$ for A is an irreducible C^* -representation $\pi : C^*(A) \to B(H_{\pi})$ with the property that the only completely positive map $\varphi : C^*(A) \to B(H_{\pi})$ such that $\varphi|A = \pi|A$ is π .

• $\partial Rep(C^*(A))$ – all boundary reps of $C^*(A)$ for A.

Motivation: Arveson's Boundary Theory

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- $\bigcap \{ \ker(\pi) \mid \pi \in \partial Rep(C^*(A)) \} := \mathfrak{S}(C^*(A)) \text{the Shilov boundary ideal of } C^*(A).$
- $C^*(A)/\mathfrak{S}(C^*(A)) := C^*_e(A)$ the C^* -envelope.

Theorem (Arveson)

The quotient map $q : C^*(A) \to C^*_e(A)$ is completely isometric on A and allows us to view $A \subseteq C^*_e(A)$. Every completely isometric isomorphism between operator algebras A_1 and A_2 is the restriction of a C*-isomorphism from $C^*_e(A_1)$ to $C^*_e(A_2)$.

The Basic Example

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Example

- $A(\mathbb{D}) \subseteq C(\overline{\mathbb{D}})$, the disc algebra.
- $C^*(A(\mathbb{D})) = C(\overline{\mathbb{D}})$
- $\partial Rep(A(\mathbb{D})) = \mathbb{T}$ the boundary of $\overline{\mathbb{D}}$.
- $C^*_e(A(\mathbb{D})) = C(\mathbb{T})$

Motivation from Free Analysis Definitions

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- M_n^d *d*-tuples of $n \times n$ complex matrices.
- For $\mathfrak{z} \in M_n^d$, write $\mathfrak{z} := (Z_1, Z_2, \cdots, Z_d)$, $Z_i \in M_n$ and set $\mathcal{Z}_k : M_n^d \to M_n$, $\mathcal{Z}_k(\mathfrak{z}) = Z_k$ the k^{th} -matricial coordinate function.
- $\mathbb{G}_0 = \mathbb{G}_0(d, n) :=$ the algebra of M_n -valued functions on M_n^d generated by $\{\mathcal{Z}_k\}_{k=1}^d$ in $M_n(\mathbb{C}[M_n^d])$ – the polynomial algebra of d generic $n \times n$ matrices.
- Why these algebras? Answer: They are the algebras that arise from representing the free algebra ℂ⟨X₁, X₂, · · · , X_d⟩ as functions on its space of *n*-dimensional representations.

Taylor / K-V, V Axioms

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- $\mathcal{M}^d := \coprod_{n \ge 1} M_n^d$
- $\Omega = \coprod_{n \ge 1} \Omega_n \subseteq \mathcal{M}^d$ an open N.C. set, i.e., Ω_n is open in M_n^d and $\Omega_k \oplus \Omega_I \subseteq \Omega_{k+I}$.

Definition

A function $f : \Omega \to \mathcal{M}^1$ ($f = \{f_n\}_{n \ge 1}$) is called a noncommutative function iff

•
$$f_n(\Omega_n) \subseteq M_n$$
, for all n

- $f_n(SXS^{-1}) = Sf_n(X)S^{-1}$, for all $X \in \Omega_n$ and $S \in Gl(n, \mathbb{C})$ such that $SXS^{-1} \in \Omega_n$.

Amazing Fact

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Under anodyne boundedness hypotheses, a noncommutative function f = {f_n} is analytic, i.e., each f_n is analytic.

Motivation from Groucho Marx

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- Recall axioms 2 and 3 for noncommutative functions:
 - (2) $f_{k+l}(X \oplus Y) = f_k(X) \oplus f_l(Y), \quad X \in \Omega_k, Y \in \Omega_l.$ (3) $f_n(SXS^{-1}) = Sf_n(X)S^{-1}$, for all $X \in \Omega_n$ and $S \in Gl(n, \mathbb{C})$ such that $SXS^{-1} \in \Omega_n.$
- Taylor observed that these two axioms can be replaced by this single one: For $X \in \Omega_n$, $Y \in \Omega_m$, and $T \in M_{n \times m}$ such that XT = TY, $f_n(X)T = Tf_m(Y)$, where if $X = (X_1, X_2, \cdots, X_d)$, then $XT = (X_1T, X_2T, \cdots, X_dT)$, similarly for TY.
- My reaction: "Anyone who says he can see through women is missing a lot." (Groucho Marx)

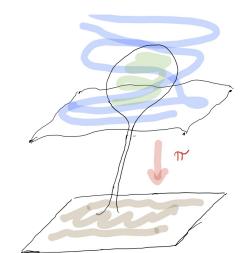
Motivation from Hermann Weyl

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- "I shared his [Felix Klein's] conviction that Riemann surfaces are not merely a device for visualizing the many-valuedness of analytic functions, but rather an indispensable essential component of the theory; not a supplement, more or less artificially distilled from the functions, but their native land, the only soil in which the functions grow and thrive."
- Reflection on the axiom f_n(SXS⁻¹) = Sf_n(X)S⁻¹, for all X ∈ Ω_n and S ∈ Gl(n, C) such that SXS⁻¹ ∈ Ω_n reveals that Ω_n is not the natural domain for f_n.

A Thriving Free Function at Home

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive



An Old Idea

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- R and S two unital rings.
- X := Hom(R, S) unital homomorphisms.
- For $r \in R$, define $\widehat{r} : X \to S$ by

$$\widehat{r}(\varphi) := \varphi(r),$$

and let $\widehat{R} := \{\widehat{r} \mid r \in R\}.$

- Clearly, $r \to \hat{r}$ is a homomorphism (i.e., a representation) of R into \hat{R} .
- What information do these functions carry?
- Dedekind u. Weber, Theorie der algebraischen Functionen einer Veränderlichen, Crelle XCII, Heft 3, 1882, s. 236.

Points of the Riemann Surface

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

1. *Definition*. If *all* the individual elements $\alpha, \beta, \gamma, \ldots$ of the field Ω are replaced by *certain* numerical values, $\alpha_0, \beta_0, \gamma_0 \ldots$, such that

(I.) $\alpha_0 = \alpha$, in the case where α is a constant, and in general

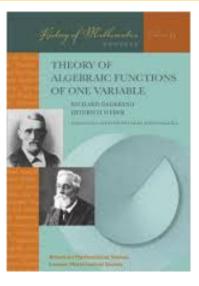
(II.)
$$(\alpha + \beta)_0 = \alpha_0 + \beta_0$$
, (IV.) $(\alpha\beta)_0 = \alpha_0\beta_0$,

(III.)
$$(\alpha - \beta)_0 = \alpha_0 - \beta_0$$
, (V.) $\left(\frac{\alpha}{\beta}\right)_0 = \frac{\alpha_0}{\beta_0}$

then a definite set of values will thus be assigned to a *point* \mathfrak{P} (which one may consider for visualisation as somehow located in space¹), and we say $\alpha = \alpha_0 at$ \mathfrak{P} or α has the value $\alpha_0 at \mathfrak{P}$. Two points are called distinct if and only if there is a function α in Ω which has different values at the two points.

Translation of Dedekind and Weber by John Stillwell History of Mathematics # 39, AMS 2012

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive



An Old Idea Refined

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- Defining $\hat{r}: X \to S$ by $\hat{r}(\varphi) := \varphi(r)$ may have "natural redundancies", especially if S is not commutative.
- Let $G \subseteq Aut(S)$ be a subgroup, e.g. take G = InnAut(S). Then G acts on X as well as on S:

$$\varphi \cdot g(r) := \varphi(r) \cdot g, \qquad r \in R, \varphi \in X, g \in G.$$

Further

$$\widehat{r}(\varphi \cdot g) = (\varphi \cdot g)(r) = \varphi(r) \cdot g = \widehat{r}(\varphi) \cdot g.$$

• Thus each \hat{r} is a "G-concomitant".

Concomitants

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Definition

If a group G acts on two spaces X and Y, then a function $f : X \to Y$ is called a G-concomitant in case

$$f(x \cdot g) = f(x) \cdot g, \qquad g \in G, x \in X.$$

• Concomitants are also called covariants, fixed functions, invariant functions, equivariant functions, intertwiners....

Observation Tautological

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Observation

Suppose G acts on X and Y. Let $\pi_0: X \to X/G$ be the quotient map. Let $X * Y = (X \times Y)/G$ (product action), and define $\pi: X * Y \to X/G$ by $\pi([x, y]) = \pi_0(x)$. Then we are led to think of X * Y as the total space of a fibre bundle over X/G with fibre Y and projection π . Further, if $f: X \to Y$ is a G-concomitant then the map $\sigma_f: X/G \to X * Y$, defined by $\sigma_f([x]) = [x, f(x)]$ is a section of this bundle, i.e. $\pi \circ \sigma_f = id_{X/G}$. Conversely, assuming the action of G on X is free (i.e., $x \cdot g = x$ implies g = e, for any $x \in X$), every section of this bundle is given by a concomitant.

Ineluctable Conclusion

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- If one wants to study a ring R in terms of the similarity classes of its representations in a noncommutative ring S, one is naturally led to study R as sections of the bundle whose base is X/InnAut(S) and whose total space is (X × S)/InnAut(S).
- This observation lies at the center of the theory of moduli.
- Unfortunately, the process is sometimes not straightforward - the quotient space X/InnAut(S) can be problematic.

Generic Matrices as Concomitants

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

• $G := PGL(n, \mathbb{C})$, viewed as the automorphism group of M_n . Write $A \cdot g := g^{-1}Ag$, $A \in M_n$, $g \in G$.

- G acts on M_n^d (the diagonal action): $\mathfrak{z} \cdot g := (Z_1 \cdot g, Z_2 \cdot g, \cdots, Z_d \cdot g).$
- Since Z_k(𝔅 ⋅ 𝑔) = Z_k(𝔅) ⋅ 𝑔, each Z_k is a G-concomitant. Thus 𝔅₀ consists of G-concomitants.
- What does the bundle perspective have to offer for these concomitants?

Important Contributions of Procesi

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

• Polynomial invariants:

$$\mathbb{I}_0 = \mathbb{C}[M_n^d]^G := \{p: M_d^n \xrightarrow{\mathsf{polynomial}} \mathbb{C} \mid p(\mathfrak{z} \cdot g) = p(\mathfrak{z})\}$$

viewed as scalar multiples of I_n .

Trace Algebra S₀ := subalgebra of M_n(ℂ[M^d_n]) generated by I₀ and G₀.

Important Contributions of Procesi

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Theorem (Procesi)

- I₀ is generated by $\mathfrak{z} \to tr(Z^w)$, $|w| \leq 2^n 1$, where $Z^w = Z_{i_1}Z_{i_2}\cdots Z_{i_{|w|}}$ and $w = i_1i_2\cdots i_{|w|}$.
- I₀ = ℑ(S₀) and S₀ is generated as a module over I₀ by Z^w, |w| ≤ 2ⁿ⁻¹.
- $\mathbb{S}_0 = M_n(\mathbb{C}[M_n^d])^G all \ G$ -concomitants in $M_n(\mathbb{C}[M_n^d]).$

The Bundle Perspective for Generic Matrices and Trace Algebras

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- Since elements of the trace algebra are G-concomitants, F : M^d_n → M_n, the base of the bundle should be M^d_n/G.
- The total space is

$$(M_n^d \times M_n)/G = \{[\mathfrak{z}, A] \mid \mathfrak{z} \in M_n^d, A \in M_n\},\$$

which may be identified with $M_n^{(d+1)}/G$.

• The bundle projection: $\pi([\mathfrak{z}, \mathcal{A}]) = [\mathfrak{z}].$

M_n^d/G vs. $M_n^d//G$ Set-Theoretic vs. Categorical Quotients

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

• The set theoretic quotient M_n^d/G is of little use because the *G*-orbits in M_n^d need not be closed.

Example d = 1, n = 2: The G-orbit of the matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is $\left\{ U_1 \begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} U_2 \mid \lambda \neq 0, \quad U_i \in U(2, \mathbb{C}) \right\}$

- Every orbit closure in M_n^d contains a unique closed orbit.
- **GOAL:** Replace the bad quotient space with a useful proxy.

Categorical Quotients Definition

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Definition

Given a category C and an object X of C endowed with an action of a group G (by automorphisms of X in C), a *categorical quotient* for the action is a pair (Y, π) where Y is an object of C and π is a morphism of C mapping Xto Y such that

- π is invariant; i.e., π ∘ σ = π ∘ p₂ where
 σ : G × X → X is the given group action and p₂ is the projection of G × X onto X; and
- (Y, π) has this universal property: any morphism $X \to Z$ satisfying 1) factors uniquely through π .

Categorical Quotients

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

 If a categorical quotient for G acting on X exists, it is unique up to isomorphism (in the given category) and one usually denotes any avatar by X//G.

Proposition

The categorical quotient $M_n^d//G$ in the category of affine *G*-varieties is the (abstract) affine algebraic variety Spec{ $\mathbb{C}[M_n^d]^G$ }. It may be realized concretely as an embedded algebraic variety as follows: Choose a finite set of generators p_1, p_2, \dots, p_e for $\mathbb{C}[M_n^d]^G$ and define $\mathbf{p}: M_n^d \to \mathbb{C}^e$ by $\mathbf{p}(\mathfrak{z}) := (p_1(\mathfrak{z}), p_2(\mathfrak{z}), \dots, p_e(\mathfrak{z}))$. The image of \mathbf{p} is the embedded algebraic variety, \mathbf{V} , that is the common zeros of the polynomial relations among the p_i .

Some Properties of $M_n^d//G$

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- We identify M^d_n//G with V and the quotient map π with p.
- Since every orbit closure contains a unique closed orbit, $M_n//G$ can be thought of as the space of orbit closures, or the space of closed orbits.
- Artin (1969): The orbit of
 3 = (Z₁, · · · , Z_d) is closed if and only if {Z₁, Z₂, · · · , Z_d} generates a semi-simple subalgebra of M_n.
- $\mathcal{V}(d, n) := \{\mathfrak{z} \in M_n^d \mid \{Z_1, Z_2, \cdots, Z_d\}$ generates $M_n\}$. $\mathcal{V}(d, n)$ is called the set of *irreducible points* in M_n^d .

M_n^d is Almost a Principal G-bundle.

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Theorem (Procesi)

 $\mathcal{V}(d, n)$ is the total space of a principal G bundle with bundle map **p** restricted to $\mathcal{V}(d, n)$ and base $Q_0 = Q_0(d, n) := \mathbf{p}(\mathcal{V}(d, n))$ contained in the smooth points of **V**.

\$\mathcal{V}(d, n)\$ is Zariski dense in \$M_n^d\$. If \$n\$ or \$d\$ is greater than 2, then a function holomorphic on \$\mathcal{V}(d, n)\$ extends to be holomorphic on \$M_n^d\$. When \$d = n = 2\$, \$\mathcal{V}(d, n)\$ is a domain of holomorphy.

An Example From J. J. Sylvester, 1883

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

- $\mathfrak{z} = (Z_1, Z_2) \in \mathcal{V}(2, 2)$ if and only if $det[Z_1, Z_2] \neq 0$.
- \mathbb{I}_0 is generated by the following 5 functions: $\mathfrak{z} \to tr(Z_1), \mathfrak{z} \to tr(Z_2), \mathfrak{z} \to tr(Z_1^2), \mathfrak{z} \to tr(Z_2^2),$ and $\mathfrak{z} \to tr(Z_1Z_2).$
- These functions are algebraically independent, so $M_2^2//G = Spec(\mathbb{I}_0)$ is \mathbb{C}^5 .
- $\mathbb{S}_0(2,2) = \mathbb{I}_0 + \mathcal{Z}_1 \mathbb{I}_0 + \mathcal{Z}_2 \mathbb{I}_0 + \mathcal{Z}_1 \mathcal{Z}_2 \mathbb{I}_0.$

Other Categories

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Theorem (Luna)

 (\mathbf{V}, \mathbf{p}) serves also as the categorical quotient $(M_n^d//G, \pi)$ for the action of G on M_n^d in the following categories: T_1 spaces and continuous maps, T_2 spaces and continuous maps, and complex analytic varieties and holomorphic maps.

A More Concrete Model for $M_n^d//G$

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

- $K := PU_n$.
- $\mathcal{HN} = \mathcal{HN}(d, n) := \{\mathfrak{z} \in M_n^d \mid \sum_{k=1}^d [Z_k^*, Z_k] = 0\}$
 - the hypernormal points in M_n^d .

Theorem (Kempf-Ness)

$$\begin{split} \mathcal{HN} &= \{\mathfrak{z} \mid g \rightarrow \|\mathfrak{z} \cdot g\|_2 \text{ achieves its infimum at } g = e\}.\\ (\|\cdot\|_2 &:= \textit{Hilbert-Schmidt norm.}) \mathbf{p} \text{ is a } K\text{-equivariant} \\ map of \mathcal{HN} \text{ onto } M_n^d //G, \text{ inducing a homeomorphism} \\ \mathcal{HN}/K &\simeq M_n^d //G. \end{split}$$

• The Kempf-Ness theorem is an analogue of the fact that every diagonable matrix is similar to a normal matrix.

A replacement for $(M_n^d \times M_n)/G$

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

• For
$$[\mathfrak{z}] \in \mathcal{HN}/K$$
, let

 $\mathfrak{M}([\mathfrak{z}]) := \{[\mathfrak{z}, A] \in (\mathcal{HN} \times M_n) / K \mid A \in \{K_{\mathfrak{z}}\}'\},\$

where $K_{\mathfrak{z}}$ is the isotropy group of \mathfrak{z} in K and $[\mathfrak{z}]$ is the K-orbit of \mathfrak{z} .

Proposition

 $\{\mathfrak{M}([\mathfrak{z}])\}_{[\mathfrak{z}]\in\mathcal{HN}/\mathcal{K}}$ has the structure of a continuous field of C*-algebras over $\mathcal{HN}/\mathcal{K} \simeq M_n^d//G$. A total family of continuous fields is given by $\{[\mathfrak{z}] \rightarrow [\mathfrak{z}, F(\mathfrak{z})]\}$ where F runs over all products of functions of the form $\{\mathcal{Z}_i, \mathcal{Z}_j^*\}_{i,j=1}^d$.

\mathcal{HN} as a reduction of $\mathcal{V}(d,n)$

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Proposition

Paul S. Muhly

Over $Q_0(d, n)$, \mathcal{HN} is a reduction of $\mathcal{V}(d, n)$ to a principal K-bundle.

- For every compact subset X ⊆ M^d_n//G (realized as *HN/K*), the continuous sections of *M* over X, Γ_c(X, *M*), is a C*-algebra that is *n*-homogeneous when X ⊆ Q₀(d, n).
- If $X \subseteq M_n^d//G$, its \mathbb{I}_0 -convex hull, \widehat{X} , is $\{\mathfrak{z} \in M_n^d//G \mid |f(\mathfrak{z})| \leq \sup\{|f(\mathfrak{x})| \mid \mathfrak{x} \in X\}, f \in \mathbb{I}_0\}.$
- A domain $\mathcal{D} \subseteq M_n^d / / G$ is \mathbb{I}_0 -convex, if $\widehat{\overline{\mathcal{D}}} = \overline{\mathcal{D}}$.

The Tracial Function Algebra $\mathbb{S}(X)$

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

The tracial function algebra determined by X is $\mathbb{S}(X) := \overline{\mathbb{S}_0}^{cl}$ in $\Gamma_c(X, \mathfrak{M})$. $\mathbb{I}(X) := \overline{\mathbb{I}_0}^{cl}$ in C(X).

Observation $C^*(\mathbb{S}(X)) = \Gamma_c(X, \mathfrak{M})$

Definition

Theorem (Griesenauer, M, Solel)

Let $\overline{\mathcal{D}} \subseteq Q_0(d, n)$ be \mathbb{I}_0 -convex. Then

- $\overline{\mathcal{D}}$ is the maximal ideal space of $\mathbb{I}(\overline{\mathcal{D}})$.
- **2** $\mathbb{I}(\overline{\mathcal{D}})$ is the center of $\mathbb{S}(\overline{\mathcal{D}})$
- **3** $\mathbb{S}(\overline{D})$ is a rank n^2 -Azumaya algebra over $\mathbb{I}(\overline{D})$.

The Tracial Function Algebra $\mathbb{S}(X)$ (continued)

Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

If D
 be I₀-convex, then ∂D := the Shilov boundary of D
 viewed as the maximal ideal space of I(D
) and ∂_eD denotes its extreme (or Choquet) boundary.

Conjecture

If $\overline{\mathcal{D}}$ is \mathbb{I}_0 -convex, then:

- $c_e^*(\mathbb{S}(\overline{\mathcal{D}})) = \Gamma_c(\partial \mathcal{D}, \mathfrak{M}).$

Theorem (Griesenauer, M, Solel)

If $\overline{\mathcal{D}} \subseteq Q_0(d, n)$ is \mathbb{I}_0 -convex, then:

- $C_e^*(\mathbb{S}(\partial \mathcal{D})) = \Gamma_c(\partial \mathcal{D}, \mathfrak{M}).$

Unfinished Business

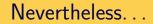
Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

• $\mathbb{G}_0 \subseteq \mathbb{S}_0 \subseteq \Gamma_h(\overline{\mathcal{D}}, \mathfrak{M})$. When is \mathbb{S}_0 dense? \mathbb{G}_0 ?

- Given a compact subset Y ⊆ M^d_n, let S(Y) := the closure of S₀ in C(Y, M_n). When can S(Y) be written as Γ_h(D
 , M) for a suitable domain D in Q₀(d, n)? Be explicit!!
- Tell the story of $\overline{\mathbb{D}(d, n)} := \{\mathfrak{z} \in M_n^d \mid \mathfrak{z}\mathfrak{z}^* \leq I_n\}$. In particular, describe what happens on the fringe of $Q_0(d, n)$ in M_n^d ?

There is a lot more I don't know, but I am out of time to discuss it.



Matrix Bundles in Free Analysis: Where Free Functions Live and Thrive

Paul S. Muhly

Thank You