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von Neumann’s Inequality: the basic version

Let p be a complex polynomial and T ∈ B(H), H a Hilbert space. If
‖T‖ ≤ 1, then ‖p(T )‖ ≤ ‖p‖∞, where ‖p‖∞ is the supremum norm of p
over the unit disk D.

From the spectral theorem, it is clear von Neumann’s inequality holds
if T is a unitary operator.

On the other hand, the Sz.-Nagy dilation theorem states that every
contraction T ∈ B(H) has a power dilation U ∈ B(K) for some Hilbert
space K ⊇ H; that is, Tn = PHU

n|H, n = 0, 1, 2, . . ..

Consequently, we obtain the von Neumann inequality as stated.
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Spectral sets

Suppose that Ω is a compact subset of C and σ(T ) ⊂ Ω. Write R(Ω)
for the algebra of functions with poles off of Ω. We say that Ω is a
spectral set for T if for all r ∈ R(Ω), ‖r(T )‖ ≤ ‖r‖∞, the supremum
norm over Ω.

Accordingly, von Neumann’s inequality may be rephrased as stating
that D is a spectral set for any contraction T .

Let K ≥ 1. We will say that Ω is an K-spectral set for T if for all
r ∈ R(Ω), ‖r(T )‖ ≤ K‖r‖∞. So spectral sets are 1-spectral sets.

We call Ω a complete spectral (complete K-spectral set) for T if these
statements hold with R(Ω) replaced by matrix valued rational functions,
so r ∈ R(Ω)⊗Mn for n ∈ N.
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The closed disk as a complete spectral set

There is a “complete” version of von Neumann’s inequality:

If T is a contraction, the D is a complete spectral set for T .

The proof is essentially the same as for von Neumann’s inequality. By
Runge’s theorem, we can uniformly approximate any function in R(D) by
polynomials, and so it suffices to work with polynomials. Again the
spectral theorem allows us to conclude that the result holds whenever T
is a unitary operator. The Sz.-Nagy dilation theorem then gives the result
for general contractions.

Hence we have the following:

T is a contraction ⇔ D is a spectral set for T ⇔
D is a complete spectral set for T ⇔ T dilates to a unitary operator.
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Polynomially bounded operators and K-spectral sets

We say that an operator T is polynomially bounded if it has D as an
K-spectral set for some K ≥ 1. Similarly it is completely polynomially
bounded if D as a complete K-spectral set.

Suppose T is similar to a contraction; that is, there is a contraction S
and an invertible operator X such that T = X−1SX. Then one easily
sees that for any polynomial p,

‖p(T )‖ ≤ ‖X−1‖‖X‖‖p(S)‖;

that is p is polynomially bounded.

In fact, the same reasoning shows that if T is similar to a contraction,
then T is completely polynomially bounded.

Halmos’ question: Is any polynomially bounded operator similar to a
contraction?
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Polynomial boundedness and similarity to a contraction

In the mid 80s, Paulsen showed that an operator is completely
polynomially bounded iff it is similar to a contraction. In this case, T
dilates to an operator which is similar to a unitary operator.

In 1997, Pisier, using lacunary sequences and Foguel-type operators,
constructed an example of a polynomially bounded operator which is not
similar to a contraction.

There is also a nice later proof due to Davidson and Paulsen, and work
by Badea extending the known counterexamples.
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Further results on complete K-spectral sets

I (Douglas-Paulsen, 1986) : If Ω is a finitely connected domain with
analytic boundary components (given by |ϕk(z)| = 1), then there is
a constant K such that whenever T ∈ B(H) satisfies ‖ϕk(T )‖ ≤ 1
for all k, then Ω is a complete K-spectral set for T .

(A variation on a theorem of Arveson then implies that T is similar
to an operator having a normal rational ∂Ω-dilation; that is, T
dilates to N similar to a normal operator with spectrum on ∂Ω.)

I (Badea, Beckermann, Crouzeix, 2009) : Let Dj be disks in Ĉ, the
extended complex plane, and suppose that these are 1-spectral sets
for T . Then Ω =

⋂
Dj is a complete K-spectral set for T , where K

depends only on the number of disks (and not T ).

I (Mascioni, 1994) : Let ϕ be a finite Blaschke product and suppose
that D is a complete K ′-spectral set for ϕ(T ). Then D is a
complete K-spectral set for T .

I (Delyon, Delyon, 1999) : Let Ω be a compact convex set containing
the numerical range of an operator T . Then Ω is a complete
K-spectral set for T .
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Realizations and complete K-sectral sets

I Let X ⊂ Ĉ.
I Let Φ = {ϕj} be a collection of functions analytic on X (the test

functions).
I Define Ω = {z : |ϕj(z)| < 1}, ∂Ω = {z : |ϕj(z)| = 1}.
I The admissible kernels are defined as
KΦ = {k ≥ 0 : ((1− ϕj(x)ϕj(y)∗k(x, y)) ≥ 0}.

I The Agler algebra H∞d (KΦ) of Md(C)-valued analytic functions
with norm uniformly bounded as multipliers on all H2(k), and unit
ball SAd(KΦ) (the Schur-Agler class).

Theorem 1 (Realization theorem).
For d ∈ N, f : Ω→Md(C), and T ∈ B(H) with σ(T ) ⊂ Ω, the

following are equivalent:

I f ∈ SAd(KΦ);

I ‖ϕj(T )‖ < 1 for all k implies ‖f(T )‖ ≤ 1.

In other words, any representation of SA1(KΦ) which is strictly
contractive on the test collection is completely contractive.
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Our problem

Given

I a test collection Φ = {ϕj},
I Ω = {z : |ϕj(z)| < 1},
I T ∈ B(H) with σ(T ) ⊂ Ω,

under what conditions is it the case that

1. If ‖ϕj(T )‖ ≤ 1 for all j (i.e., D is a complete spectral set for ϕj(T ))
or

2. If there exists K ′ such that for all j, D is a complete K ′-spectral set
for ϕj(T )

⇒ there exists K such that Ω is a complete K-spectral set for T .

In the latter case, we say that Φ is a strong test collection. If K does
not depend on T , Φ is called a uniform (strong) test collection.
Otherwise it is non-uniform.
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Some observations:

I When σ(T ) ∩ ∂Ω 6= ∅, things become more difficult!

I If Φ = {ϕ}, a uniform test collection is automatically a strong
uniform test collection, since then there exists an invertible operator
S such that Sϕ(T )S−1 = ϕ(STS−1) is a contraction.

I Φ is always a non-uniform strong test collection for Ω (Rota for D,
Herrero & Voiculescu in general).



Some examples of test collections

I The intersection of finitely many disks in Ĉ (Badea, Beckerman,
Crouzeix) : uniform test collection;

I The numerical range of T , W (T ) = {〈Tx, x〉 : ‖x‖ = 1} is a convex
set which is the intersection of (generally infinitely many) closed half
planes. The test collection is comprised of the associated linear
functionals (Delyon-Delyon and Putinar-Sandberg) : uniform test
collection;

I More generally, ρ-contractions, Tn = ρPHU
n|H, n = 1, 2, . . . , the

intersection of (generally infinitely many) closed disks : uniform test
collection;

I Nice n-holed domains (Douglas-Paulsen) : uniform strong test
collection;

I Φ = {ϕ}, where ϕ is a finite Blaschke product, Ω = D (Mascioni) :
non-uniform strong test collection;

I Φ = {ϕ}, where ϕ is an infinite Blaschke product with zeros {λi}
satisfying

∑
i(1− |λi|2)1/2 <∞, Ω = D\P , P the poles of ϕ

(Stessin) : non-uniform strong test collection;



Admissible function families

Let Ω ⊂ C be a domain whose boundary is a disjoint finite union of
piecewise analytic Jordan curves such that the interior angles of the
“corners” of ∂Ω are in (0, π]. We will say that an analytic function
Φ = (ϕ1, . . . , ϕn) : Ω→ Dn is admissible if ϕj ∈ A(Ω), for k = 1, . . . , n,
and there is a collection of closed analytic arcs {Jj}nk=1 of ∂Ω and a
constant α, 0 < α ≤ 1, such that the following conditions are satisfied:

(a) The arcs Jj cover all ∂Ω.

(b) |ϕj | = 1 in Jj , for k = 1, . . . , n.

(c) For each j, . . . and ϕ′j is of class Hölder α in Ωj ⊃ Ω.

(d) A sector condition on the common endpoints of the arcs.

(e) |ϕ′j | ≥ C > 0 in Jj , for each j.

(f) ϕj(ζ) 6= ϕj(z) if ζ ∈ Jj and z ∈ Ω, z 6= ζ.



Admissible function families, the picture

Figure: The geometric properties of an admissible function



Some of our results

Theorem 2.
Let Ω be a simply connected domain and ϕ = (ϕ1, . . . , ϕn) : Ω→ Dn

be admissible. Suppose that T ∈ B(H), and σ(T ) ⊂ Ω.

(i) Φ = {ϕj} is a strong test collection for Ω (the constant K can
depend on T );

(ii) if additionally, ϕ is injective and ϕ′ does not vanish on Ω, then
Φ = {ϕj} is a strong test collection (that is, K does not depend on
T ).

In particular, if we take Φ to be the collection of conformal Riemann
maps of the Ωjs, then this says Φ is a uniform strong test collection.

Theorem 3.
Let Ω be a domain (not necessarily connected) and

ϕ = (ϕ1, . . . , ϕn) : Ω→ Dn be admissible, with ϕ injective and ϕ′ not
vanishing on Ω. Then ϕ is a strong test collection.
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Havin–Nersessian–Ortega-Cerdà decomposition

I Let Ω1, . . . ,Ωn be simply connected domains with transversally
intersecting Ω =

⋂
Ωj . Then every f ∈ H∞(Ω) has the form

f = f1 + · · ·+ fn, fj ∈ H∞(Ωj).

I In particular, we can write

f = g1 ◦ ϕ1 + · · ·+ gn ◦ ϕn, gj ∈ H∞(D),

where ϕj is the Riemann map for Ωj (take gj = fj ◦ ϕ−1
j ).



A modified HNO-C decomposition

Suppose ϕj maps the boundary section Jj bijectively to an arc in T,
but is not necessarily bijective in the interior of Ωj . If

ϕ = (ϕ1, . . . , ϕn) : Ω→ Dn is admissible, there are bounded operators
Fj : H∞(Ω)→ H∞(D) such that the operator

f 7→ f −
∑
j

Fj(f) ◦ ϕj

is compact with range in A(Ω) (H∞(Ω) functions which are continuous
on ∂Ω). Also, each Fj maps A(Ω) to A(D).



The algebras Hϕ and Aϕ

For ϕ = (ϕ1, . . . , ϕn) as before, define

Hϕ =


m∑
j=1

n∏
k=1

fjk ◦ ϕj : fjk ∈ H∞(D)


Aϕ =


m∑
j=1

n∏
k=1

fjk ◦ ϕj : fjk ∈ A(D)



These are in general non-closed subalgebras of H∞(Ω) and A(Ω),
respectively.

What conditions on Ω ensure equality, or more generally, that these are
closed subalgebras of finite codimension?
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An answer

Theorem 4.
If Ω and ϕ are admissible, then Hϕ and Aϕ are closed subalgebras of

finite codimension in H∞(Ω) and A(Ω), respectively.

Proof: Let Gf :=
∑
j Fj(f) ◦ ϕj on H∞(Ω). So G− I is compact,

which implies that GH∞(Ω) ⊂ Hϕ is a closed, finite codimensional
subspace in H∞(Ω). Restrict G to A(Ω) for Aϕ.

If in addition, ϕ is injective and ϕ′ does not vanish, we get equality.
The proof uses Banach algebra techniques and a classification of the
one-codimensional closed unital subalgebras of a unital Banach algebra
due to Gorin.
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Extensions of functions from analytic curves in Dn

For ϕ = (ϕ1, . . . , ϕn) : Ω→ Dn, the set V = ϕ(Ω) is an analytic curve
in Dn. We look at H∞(V) and A(V). For f ∈ H∞(V), define
ϕ∗f := f ◦ ϕ.

If Ω and ϕ are admissible, ϕ∗H∞(V) = Hϕ and ϕ∗A(V) = Aϕ.

Theorem 5.
There is a C ≥ 1 such that every f ∈ H∞(V) extends to F ∈ SA(Dn)

with ‖F‖ ≤ C‖f‖.

The proof uses the modified HNC-O theorem.
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Similarity to normal operators

Stampfli proved in 1969 that if

I Γ ⊂ C is a smooth curve,

I T ∈ B(H) with spectrum σ(T ) contained in Γ, and

I U a neighborhood of Γ such that ‖(T − λ)−1‖ ≤ dist(λ,Γ)−1 for all
λ ∈ U \ Γ,

then T is normal.

I If Γ is not smooth, a result of this kind need no longer be true.

I Even if Γ is a circle, the condition ‖(T − λ)−1‖ ≤ Cdist(λ,Γ)−1,
λ ∈ C \ Γ, where C > 1, is not sufficient for T to be similar to a
normal operator; that is, for some invertible S and normal operator
N , to have T = SNS−1.

Nevertheless, the hypothesis in Stampfli’s theorem can be successfully
weakened.
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Similarity to normal operators

We proved the following:

Theorem 6.
Let Γ ⊂ C be a C1+α Jordan curve, and Ω the domain it bounds. Let

T ∈ B(H) be an operator with σ(T ) ⊂ Γ. Assume that

‖(T − λ)−1‖ ≤ 1

dist(λ,Γ)
, λ ∈ U \ Ω,

for some open set U containing ∂Ω, and

‖(T − λ)−1‖ ≤ C

dist(λ,Γ)
, λ ∈ Ω,

for some constant C. Then T is similar to a normal operator.

The same conclusion holds if, vice versa, these estimates hold with
with constant 1 inside Ω and with constant C outside Ω.

Other theorems on similarity to normal operators involving resolvent
estimates have been proved by van Casteren and Naboko, and we have
versions of these as well.
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Idea of the proof

The key technical tool is a generalization of the Riesz-Dunford
functional calculus due to Dynkin.

We also use the following variation on a theorem stated earlier:

Theorem 7.
Let T ∈ B(H) and Ω a Jordan domain of class C1+α. Assume there is

some R > 0 such that for every λ ∈ ∂Ω there is some point
µk(λ) ∈ C \ Ω such that dist(µk(λ), ∂Ω) = |µk(λ)− λ| = R and
‖(T − µk(λ))−1‖ ≤ R−1. Then Ω is a complete K-spectral set for some
K > 0.

In other words, the conclusion is that there exists a constant K ≥ 1
such that

‖f(T )‖ ≤ K‖f‖H∞(Ω),

for every (matrix-valued) rational function f with poles off of Ω (and
hence for every f which is continuous in Ω and analytic in Ω).

In fact, under the circumstances, we only need to know that Ω is a
K-spectral set. However, once we know that T is similar to a normal
operator, it follows that Ω is a complete K-spectral set.
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