Michael Hartz joint work with Alexandru Aleman, John M^cCarthy and Stefan Richter

Washington University in St. Louis

Multivariable Operator Theory at the Technion

Interpolating sequences

Let

$$H^{\infty} = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic and bounded} \}.$$

Definition

A sequence (z_n) in \mathbb{D} is interpolating for H^{∞} if for every sequence $(\lambda_n) \in \ell^{\infty}$, there exists $f \in H^{\infty}$ with

$$f(z_n) = \lambda_n \quad (n \in \mathbb{N}).$$

Write (z_n) satisfies (IS).

```
A sequence (z_n) in \mathbb{D}
```

(SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $f_k \in H^{\infty}$ with $||f_k||_{\infty} \leq 1$ and $f_k(z_j) = \varepsilon \delta_{kj}$.

A sequence (z_n) in \mathbb{D}

- (SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $f_k \in H^{\infty}$ with $||f_k||_{\infty} \leq 1$ and $f_k(z_j) = \varepsilon \delta_{kj}$.
- (WS) is weakly separated if there exists $\varepsilon > 0$ such that whenever $j \neq k$, there exists $f_{kj} \in H^{\infty}$ with $||f_{kj}||_{\infty} \leq 1$ and $f_{kj}(z_j) = 0$ and $f_{kj}(z_k) = \varepsilon$.

A sequence (z_n) in \mathbb{D}

- (SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $f_k \in H^{\infty}$ with $||f_k||_{\infty} \leq 1$ and $f_k(z_j) = \varepsilon \delta_{kj}$.
- (WS) is weakly separated if there exists $\varepsilon > 0$ such that whenever $j \neq k$, there exists $f_{kj} \in H^{\infty}$ with $||f_{kj}||_{\infty} \leq 1$ and $f_{kj}(z_j) = 0$ and $f_{kj}(z_k) = \varepsilon$.
 - (C) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j (1-|z_j|^2) |f(z_j)|^2 \leq M \int_{\partial \mathbb{D}} |f|^2 \, dm$$

for all $f \in \mathbb{C}[z]$.

A sequence (z_n) in \mathbb{D}

- (SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $f_k \in H^{\infty}$ with $||f_k||_{\infty} \leq 1$ and $f_k(z_j) = \varepsilon \delta_{kj}$.
- (WS) is weakly separated if there exists $\varepsilon > 0$ such that whenever $j \neq k$, there exists $f_{kj} \in H^{\infty}$ with $||f_{kj}||_{\infty} \leq 1$ and $f_{kj}(z_j) = 0$ and $f_{kj}(z_k) = \varepsilon$.
 - (C) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j (1-|z_j|^2) |f(z_j)|^2 \leq M \int_{\partial \mathbb{D}} |f|^2 \, dm$$

for all $f \in \mathbb{C}[z]$.

Theorem (Carleson, 1958)

For a sequence (z_n) in \mathbb{D} , (IS) \Leftrightarrow (SS) \Leftrightarrow (WS) + (C).

Why study interpolating sequences? The maximal ideal space of H^{∞}

Let

 $\mathfrak{M} = \{\rho: H^{\infty} \to \mathbb{C} : \rho \text{ is linear, multiplicative}\} \setminus \{0\}$

and identify $\mathbb{D} \subset \mathfrak{M}$ via point evaluations.

Why study interpolating sequences? The maximal ideal space of H^{∞}

Let

 $\mathfrak{M} = \{\rho: H^{\infty} \to \mathbb{C} : \rho \text{ is linear, multiplicative}\} \setminus \{\mathbf{0}\}$

and identify $\mathbb{D}\subset\mathfrak{M}$ via point evaluations.

Proposition

If (z_n) is an interpolating sequence, then $\overline{\{z_n : n \in \mathbb{N}\}} \subset \mathfrak{M}$ is homeomorphic to $\beta \mathbb{N}$. In particular, \mathfrak{M} is not metrizable and has cardinality $2^{2^{\aleph_0}}$.

Why study interpolating sequences? The maximal ideal space of H^{∞}

Let

 $\mathfrak{M} = \{\rho: H^{\infty} \to \mathbb{C} : \rho \text{ is linear, multiplicative}\} \setminus \{\mathbf{0}\}$

and identify $\mathbb{D}\subset\mathfrak{M}$ via point evaluations.

Proposition

If (z_n) is an interpolating sequence, then $\overline{\{z_n : n \in \mathbb{N}\}} \subset \mathfrak{M}$ is homeomorphic to $\beta \mathbb{N}$. In particular, \mathfrak{M} is not metrizable and has cardinality $2^{2^{\aleph_0}}$.

An analytic disc in \mathfrak{M} is the image of a continuous injection $L : \mathbb{D} \to \mathfrak{M}$ such that $f \circ L$ is analytic for every $f \in H^{\infty}$.

Theorem (Hoffman, 1967)

A point $m \in \mathfrak{M}$ lies in an analytic disc if and only if it belongs to the closure of an interpolating sequence.

Why study interpolating sequences? Algebras between H^{∞} and L^{∞}

Let $L^{\infty} = L^{\infty}(\partial \mathbb{D})$ and identify $H^{\infty} \hookrightarrow L^{\infty}$ via radial boundary values.

Douglas problem (1969)

Characterize closed algebras A with $H^{\infty} \subset A \subset L^{\infty}$.

Why study interpolating sequences? Algebras between H^{∞} and L^{∞}

Let $L^{\infty} = L^{\infty}(\partial \mathbb{D})$ and identify $H^{\infty} \hookrightarrow L^{\infty}$ via radial boundary values.

Douglas problem (1969)

Characterize closed algebras A with $H^{\infty} \subset A \subset L^{\infty}$.

A function $f \in H^{\infty}$ is inner if |f| = 1 a.e. on $\partial \mathbb{D}$.

Theorem (Chang-Marshall, 1976)

If A is a closed algebra with $H^{\infty} \subset A \subset L^{\infty}$, then there is a set B of inner functions such that

$$A = \overline{\mathsf{alg}}(H^{\infty} \cup \{\overline{b} : b \in B\}).$$

Why study interpolating sequences? Algebras between H^{∞} and L^{∞}

Let $L^{\infty} = L^{\infty}(\partial \mathbb{D})$ and identify $H^{\infty} \hookrightarrow L^{\infty}$ via radial boundary values.

Douglas problem (1969)

Characterize closed algebras A with $H^{\infty} \subset A \subset L^{\infty}$.

A function $f \in H^{\infty}$ is inner if |f| = 1 a.e. on $\partial \mathbb{D}$.

Theorem (Chang-Marshall, 1976)

If A is a closed algebra with $H^{\infty} \subset A \subset L^{\infty}$, then there is a set B of inner functions such that

$$A = \overline{\mathsf{alg}}(H^{\infty} \cup \{\overline{b} : b \in B\}).$$

The functions in B can be chosen to be Blaschke products whose zeros are interpolating sequences.

H^{∞} as a multiplier algebra

Let

$$H^{2} = \Big\{ f = \sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{O}(\mathbb{D}) : ||f||^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2} < \infty \Big\}.$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^2$ and $w \in \mathbb{D}$,

$$f(w) = \langle f, K(\cdot, w) \rangle_{H^2},$$

where

$$K(z,w)=rac{1}{1-z\overline{w}}.$$

H^{∞} as a multiplier algebra

Let

$$H^{2} = \Big\{ f = \sum_{n=0}^{\infty} a_{n} z^{n} \in \mathcal{O}(\mathbb{D}) : ||f||^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2} < \infty \Big\}.$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^2$ and $w \in \mathbb{D}$,

$$f(w) = \langle f, K(\cdot, w) \rangle_{H^2},$$

where

$$K(z,w)=rac{1}{1-z\overline{w}}.$$

The multiplier algebra is

$$\mathsf{Mult}(H^2) = \{ \varphi : \mathbb{D} \to \mathbb{C} : \varphi \cdot f \in H^2 \text{ for all } f \in H^2 \},\$$

equipped with the multiplier norm $||\varphi||_{\mathsf{Mult}(H^2)} = ||f \mapsto \varphi \cdot f||_{\mathcal{B}(H^2)}$.

Fact

$$\mathsf{Mult}(H^2)=H^\infty$$
 with equality of norms.

Using Hilbert function spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, based on:

Lemma (Shapiro-Shields)

A sequence (z_n) in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto\left(f(z_n)\sqrt{1-|z_n|^2}\right)$$

maps H^2 onto ℓ^2 .

Using Hilbert function spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, based on:

Lemma (Shapiro-Shields)

A sequence (z_n) in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto\left(f(z_n)\sqrt{1-|z_n|^2}\right)$$

maps H^2 onto ℓ^2 .

Bishop, Marshall–Sundberg (1994): Characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$\mathcal{D} = \{ f \in \mathcal{O}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}.$$

Using Hilbert function spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, based on:

Lemma (Shapiro-Shields)

A sequence (z_n) in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto\left(f(z_n)\sqrt{1-|z_n|^2}\right)$$

maps H^2 onto ℓ^2 .

Bishop, Marshall–Sundberg (1994): Characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$\mathcal{D} = \{ f \in \mathcal{O}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}.$$

Key property

 H^2 and ${\mathcal D}$ are complete Pick spaces.

Michael Hartz (Washington University in St. Louis)

Interpolating sequences in complete Pick spaces

Interpolating sequences for H^∞	Complete Pick spaces	Main resu
	000000	

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in H^{\infty}$ with

 $f(z_i) = \lambda_i \text{ for } 1 \leq i \leq n \quad \text{ and } \quad ||f||_{\infty} \leq 1$

if and only if the matrix

$$\left[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n$$

is positive.

Interpolating sequences for H^∞	Complete Pick spaces	Main resu
	000000	

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in Mult(H^2)$ with

 $f(z_i) = \lambda_i ext{ for } 1 \leq i \leq n \quad ext{ and } \quad ||f||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n$$

is positive.

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in Mult(H^2)$ with

 $f(z_i) = \lambda_i ext{ for } 1 \leq i \leq n \quad ext{ and } \quad ||f||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n = \left[(1-\lambda_i\overline{\lambda_j})K(z_i,z_j)\right]_{i,j=1}^n$$

is positive. Here $K(z, w) = (1 - z\overline{w})^{-1}$ is the reproducing kernel of H^2 .

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in Mult(H^2)$ with

 $f(z_i) = \lambda_i ext{ for } 1 \leq i \leq n \quad ext{ and } \quad ||f||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n$$

is positive. Here $K(z, w) = (1 - z\overline{w})^{-1}$ is the reproducing kernel of H^2 .

Muhly–Solel (2003): far-reaching generalization to Hardy algebras of W^* -correspondences.

Complete Pick spaces

Let \mathcal{H} be a reproducing kernel Hilbert space on a set X with kernel K. Given $z_1, \ldots, z_n \in X$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, does there exist $f \in Mult(\mathcal{H})$ with

 $f(z_i) = \lambda_i$ for $1 \le i \le n$ and $||f||_{\mathsf{Mult}(\mathcal{H})} \le 1$?

Let \mathcal{H} be a reproducing kernel Hilbert space on a set X with kernel K. Given $z_1, \ldots, z_n \in X$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, does there exist $f \in Mult(\mathcal{H})$ with

$$f(z_i) = \lambda_i \quad ext{ for } 1 \leq i \leq n \quad ext{ and } \quad ||f||_{\mathsf{Mult}(\mathcal{H})} \leq 1?$$

A necessary condition is that the matrix

$$\left[K(z_i, z_j)(1 - \lambda_i \overline{\lambda_j})\right]_{i,j=1}^n$$

is positive.

Definition

 \mathcal{H} is called a Pick space if this condition is sufficient. \mathcal{H} is called a complete Pick space if the analogue of this condition for matrix valued functions is sufficient.

Examples

• The Hardy space H^2 is a complete Pick space.

Interpolating	sequences	for	H^{∞}

Examples

- The Hardy space H^2 is a complete Pick space.
- ▶ The Bergman space $L^2_a = O(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.

Examples

- The Hardy space H^2 is a complete Pick space.
- ▶ The Bergman space $L^2_a = O(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- The Dirichlet space

$$\mathcal{D} = \{ f \in \mathcal{O}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \},$$

with norm $||f||_{\mathcal{D}}^2 = ||f'||_{L^2(\mathbb{D})}^2 + ||f||_{H^2}^2$ is a complete Pick space (Agler, 1988).

Examples

- The Hardy space H^2 is a complete Pick space.
- ▶ The Bergman space $L^2_a = O(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- The Dirichlet space

$$\mathcal{D} = \{ f \in \mathcal{O}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \},\$$

with norm $||f||_{\mathcal{D}}^2 = ||f'||_{L^2(\mathbb{D})}^2 + ||f||_{H^2}^2$ is a complete Pick space (Agler, 1988).

► The Drury-Arveson space H²_d is the reproducing kernel Hilbert space on B_d, the open unit ball in C^d, with kernel

$$\mathcal{K}(z,w)=rac{1}{1-\langle z,w
angle}.$$

This is a complete Pick space.

Interpolating sequences for H^∞	Complete Pick spaces	Main result
	000000	

Let \mathcal{H} be a complete Pick space on X with kernel K. A sequence (z_n) in X

(IS) is an interpolating sequence if for every sequence $(\lambda_n) \in \ell^{\infty}$, there exists $\varphi \in Mult(\mathcal{H})$ with

$$\varphi(z_n) = \lambda_n \quad (n \in \mathbb{N}).$$

Interpolating sequences for H^{∞} Co	omplete Pick spaces	Main result.
000000 00	00000	0000000

Let \mathcal{H} be a complete Pick space on X with kernel K. A sequence (z_n) in X(IS) is an interpolating sequence if for every sequence $(\lambda_n) \in \ell^{\infty}$, there exists $\varphi \in Mult(\mathcal{H})$ with

$$\varphi(z_n) = \lambda_n \quad (n \in \mathbb{N}).$$

(SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $\varphi_k \in \text{Mult}(\mathcal{H})_1$ with $\varphi_k(z_j) = \varepsilon \delta_{kj}$.

Interpolating sequences for H^∞	Complete Pick spaces
	000000

Let \mathcal{H} be a complete Pick space on X with kernel K. A sequence (z_n) in X(IS) is an interpolating sequence if for every sequence $(\lambda_n) \in \ell^{\infty}$, there exists $\varphi \in Mult(\mathcal{H})$ with

$$\varphi(z_n) = \lambda_n \quad (n \in \mathbb{N}).$$

Main result

- (SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $\varphi_k \in \text{Mult}(\mathcal{H})_1$ with $\varphi_k(z_j) = \varepsilon \delta_{kj}$.
- (WS) is weakly separated if there exists $\varepsilon > 0$ such that whenever $j \neq k$ there exists $\varphi_{kj} \in \text{Mult}(\mathcal{H})_1$ with $\varphi_{kj}(z_j) = 0$ and $f_{kj}(z_k) = \varepsilon$.

Let *H* be a complete Pick space on *X* with kernel *K*. A sequence (*z_n*) in *X*(IS) is an interpolating sequence if for every sequence (λ_n) ∈ ℓ[∞], there exists φ ∈ Mult(*H*) with

$$\varphi(z_n) = \lambda_n \quad (n \in \mathbb{N}).$$

- (SS) is strongly separated if there exists $\varepsilon > 0$ such that for all $k \in \mathbb{N}$, there exists $\varphi_k \in \text{Mult}(\mathcal{H})_1$ with $\varphi_k(z_j) = \varepsilon \delta_{kj}$.
- (WS) is weakly separated if there exists $\varepsilon > 0$ such that whenever $j \neq k$ there exists $\varphi_{kj} \in \text{Mult}(\mathcal{H})_1$ with $\varphi_{kj}(z_j) = 0$ and $f_{kj}(z_k) = \varepsilon$.
 - (C) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j rac{|f(z_j)|^2}{K(z_j,z_j)} \leq M ||f||^2_{\mathcal{H}} \quad ext{ for all } f \in \mathcal{H}.$$

Weak separation

Define a metric on X by

$$d_{\mathcal{H}}(z,w) = \sqrt{1 - rac{|\mathcal{K}(z,w)|^2}{\mathcal{K}(z,z)\mathcal{K}(w,w)}} \qquad (z,w\in X).$$

Weak separation

Define a metric on X by

$$d_{\mathcal{H}}(z,w) = \sqrt{1 - rac{|\mathcal{K}(z,w)|^2}{\mathcal{K}(z,z)\mathcal{K}(w,w)}} \qquad (z,w\in X).$$

Example

If $\mathcal{H} = H^2$, then

$$d_{H^2}(z,w) = \left| \frac{z-w}{1-\overline{z}w} \right|$$

is the pseudohyperbolic metric on \mathbb{D} .

Weak separation

Define a metric on X by

$$d_{\mathcal{H}}(z,w) = \sqrt{1 - rac{|\mathcal{K}(z,w)|^2}{\mathcal{K}(z,z)\mathcal{K}(w,w)}} \qquad (z,w\in X).$$

Example

If $\mathcal{H} = H^2$, then

$$d_{H^2}(z,w) = \left| \frac{z-w}{1-\overline{z}w} \right|$$

is the pseudohyperbolic metric on \mathbb{D} .

Lemma

If \mathcal{H} is a complete Pick space, then a sequence (z_n) in X satisfies (WS) if and only if there exists $\varepsilon > 0$ such that

$$d_{\mathcal{H}}(z_n, z_m) \geq \varepsilon$$
 whenever $n \neq m$.

Easy facts

In general, (IS) \Rightarrow (SS) and (IS) \Rightarrow (WS) + (C).

Easy facts In general, (IS) \Rightarrow (SS) and (IS) \Rightarrow (WS) + (C).

Theorem (Bishop, Marshall–Sundberg, 1994) For the Dirichlet space, (WS) + (C) \Leftrightarrow (IS), but (SS) \Rightarrow (IS).

Easy facts In general, (IS) \Rightarrow (SS) and (IS) \Rightarrow (WS) + (C).

Theorem (Bishop, Marshall–Sundberg, 1994) For the Dirichlet space, (WS) + (C) \Leftrightarrow (IS), but (SS) \neq (IS).

Theorem (Bøe, 2005) (WS) + (C) \Leftrightarrow (IS) for every space on the unit ball \mathbb{B}_d with kernel

$${\mathcal K}(z,w)=rac{1}{(1-\langle z,w
angle)^lpha}, \hspace{1em} ext{where} \hspace{1em} lpha\in(0,1).$$

Easy facts In general, (IS) \Rightarrow (SS) and (IS) \Rightarrow (WS) + (C).

Theorem (Bishop, Marshall–Sundberg, 1994) For the Dirichlet space, (WS) + (C) \Leftrightarrow (IS), but (SS) \neq (IS).

Theorem (Bøe, 2005) (WS) + (C) \Leftrightarrow (IS) for every space on the unit ball \mathbb{B}_d with kernel

$${\mathcal K}(z,w)=rac{1}{(1-\langle z,w
angle)^lpha}, \hspace{1em} ext{where} \hspace{1em} lpha\in(0,1).$$

Theorem (Agler–M^cCarthy, 2002)

(WS) + (C) \Rightarrow (SS) for every complete Pick space.

The main result

Theorem (Aleman, H., M^cCarthy, Richter) In every complete Pick space, (WS) + (C) \Leftrightarrow (IS).

The main result

Theorem (Aleman, H., M^cCarthy, Richter)

In every complete Pick space, (WS) + (C) \Leftrightarrow (IS).

In this case, there exists a linear operator of operator of interpolation, i.e.

$$\operatorname{Mult}(\mathcal{H}) \to \ell^{\infty}, \quad \varphi \mapsto (\varphi(z_n)),$$

has a bounded linear right-inverse.

Grammians

Let \mathcal{H} be a complete Pick space on X with kernel K, let (z_n) be a sequence in X. Let $k_i = K(\cdot, z_i)$ and let

$$G[(z_n)] = \left[\left\langle \frac{k_i}{||k_i||}, \frac{k_j}{||k_j||} \right\rangle \right]_{i,j}$$

be the Grammian.

Proposition (z_n) satisfies (C) iff $G[(z_n)]$ is bounded.

Grammians

Let \mathcal{H} be a complete Pick space on X with kernel K, let (z_n) be a sequence in X. Let $k_i = K(\cdot, z_i)$ and let

$$G[(z_n)] = \left[\left\langle \frac{k_i}{||k_i||}, \frac{k_j}{||k_j||} \right\rangle\right]_{i,j}$$

be the Grammian.

Proposition (z_n) satisfies (C) iff $G[(z_n)]$ is bounded.

Theorem (Marshall-Sundberg, 1994)

 (z_n) satisfies (IS) iff $G[(z_n)]$ is bounded and bounded below.

Kadison–Singer

Theorem (Marcus-Spielman-Srivastava, 2013)

Let (v_n) be a sequence of unit vectors in a Hilbert space and let $G = [\langle v_i, v_j \rangle]_{i,j}$ be the Grammian. If G is bounded, then (v_n) is a finite union of sequences whose Grammian is bounded and bounded below.

Kadison–Singer

Theorem (Marcus-Spielman-Srivastava, 2013)

Let (v_n) be a sequence of unit vectors in a Hilbert space and let $G = [\langle v_i, v_j \rangle]_{i,j}$ be the Grammian. If G is bounded, then (v_n) is a finite union of sequences whose Grammian is bounded and bounded below.

Corollary

If (z_n) satisfies (C), then (z_n) is a finite union of sequences that satisfy (IS).

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Let

$$\begin{bmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \mu_1 & 0 \\ \mu_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Let

$$\begin{bmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

Theorem 1 (Agler–M^cCarthy, 2002)

 $G[(x_n)]$ is bounded below iff there exists a sequence (φ_n) in $Mult(\mathcal{H})$ such that $[M_{\varphi_1} M_{\varphi_2} \cdots]$ is bounded and such that $\varphi_k(x_n) = \delta_{nk}$.

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Let

$$\begin{bmatrix} [\varphi_1 \quad \varphi_2 \cdots] [\psi_1 \quad \psi_2 \cdots] \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $\varphi_n(x_n) = 1 = \psi_n(y_n)$

Theorem 1 (Agler–M^cCarthy, 2002)

 $G[(x_n)]$ is bounded below iff there exists a sequence (φ_n) in $Mult(\mathcal{H})$ such that $[M_{\varphi_1} M_{\varphi_2} \cdots]$ is bounded and such that $\varphi_k(x_n) = \delta_{nk}$.

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Let

$$\begin{bmatrix} [\varphi_1 \quad \varphi_2 \cdots] [\psi_1 \quad \psi_2 \cdots] \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $\varphi_n(x_n) = 1 = \psi_n(y_n)$

Theorem 2 (Agler–M^cCarthy, 2002)

 (z_n) satisfies (WS) + (C) iff there exists a sequence (φ_n) in Mult (\mathcal{H}) such that $[M_{\varphi_1} M_{\varphi_2} \cdots]^T$ is bounded and such that $\varphi_k(z_n) = \delta_{nk}$.

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

.

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Let

$$\varphi = \begin{bmatrix} [\varphi_1 \quad \varphi_2 \cdots] [\psi_1 \quad \psi_2 \cdots] \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \mu_1 & 0 & \cdots \\ 0 \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \end{bmatrix}$$

where $\varphi_n(x_n) = 1 = \psi_n(y_n)$ and $\theta_k(x_n) = \delta_{nk}$ and $\omega_k(x_n) = 0$.

Theorem 2 (Agler–M^cCarthy, 2002)

 (z_n) satisfies (WS) + (C) iff there exists a sequence (φ_n) in Mult (\mathcal{H}) such that $[M_{\varphi_1} M_{\varphi_2} \cdots]^T$ is bounded and such that $\varphi_k(z_n) = \delta_{nk}$.

,

Idea of the proof of (WS) + (C) \Rightarrow (IS)

Assume (x_n) and (y_n) satisfy (IS), their union satisfies (WS) + (C).

Goal

If $(\lambda_n), (\mu_n) \in \ell^{\infty}$, find $\varphi \in Mult(\mathcal{H})$ with $\varphi(x_n) = \lambda_n$ and $\varphi(y_n) = \mu_n$.

Let

$$\varphi = \begin{bmatrix} [\varphi_1 \quad \varphi_2 \cdots] [\psi_1 \quad \psi_2 \cdots] \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots \\ 0 & \lambda_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 0 \\ \mu_1 & 0 & \cdots \\ 0 & \mu_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \end{bmatrix}$$
where $\varphi_n(x_n) = 1 = \psi_n(y_n)$ and $\theta_k(x_n) = \delta_{nk}$ and $\omega_k(x_n) = 0$.
Then $\varphi \in Mult(\mathcal{H})$ with

$$\varphi(x_n) = \lambda_n$$
 and $\varphi(y_n) = \mu_n$.

Column multipliers and row multipliers

The proof does not require the Marcus–Spielman–Srivastava theorem for every space \mathcal{H} with the following property:

 $\mathsf{Property}\;(\mathsf{BC}) \Rightarrow (\mathsf{BR})$

For all sequences (φ_n) in Mult (\mathcal{H}) ,

$$\begin{bmatrix} M_{\varphi_1} \\ M_{\varphi_2} \\ \vdots \end{bmatrix} \text{ bounded } \Rightarrow [M_{\varphi_1} M_{\varphi_2} \cdots] \text{ bounded.}$$

This property is satisfied by the Dirichlet space (Trent) and H_d^2 ($d < \infty$).

Column multipliers and row multipliers

The proof does not require the Marcus–Spielman–Srivastava theorem for every space \mathcal{H} with the following property:

Property (BC) \Rightarrow (BR)

For all sequences (φ_n) in Mult (\mathcal{H}) ,

$$\begin{bmatrix} M_{\varphi_1} \\ M_{\varphi_2} \\ \vdots \end{bmatrix} \text{ bounded } \Rightarrow [M_{\varphi_1} M_{\varphi_2} \cdots] \text{ bounded.}$$

This property is satisfied by the Dirichlet space (Trent) and H_d^2 ($d < \infty$).

Question

Does every complete Pick space satisfy $(BC) \Rightarrow (BR)$?

Non-essentially normal multipliers

An operator $T \in \mathcal{B}(\mathcal{H})$ is essentially normal if $TT^* - T^*T$ is compact.

Easy fact

There exists a multiplication operator M_{φ} on H^2 which is an isometry with infinite dimensional cokernel. In particular, M_{φ} is not essentially normal.

Non-essentially normal multipliers

An operator $T \in \mathcal{B}(\mathcal{H})$ is essentially normal if $TT^* - T^*T$ is compact.

Easy fact

There exists a multiplication operator M_{φ} on H^2 which is an isometry with infinite dimensional cokernel. In particular, M_{φ} is not essentially normal.

Theorem (Lech, 1995)

There exists a multiplication operator on the Dirichlet space ${\cal D}$ which is not essentially normal.

Non-essentially normal multipliers

An operator $T \in \mathcal{B}(\mathcal{H})$ is essentially normal if $TT^* - T^*T$ is compact.

Easy fact

There exists a multiplication operator M_{φ} on H^2 which is an isometry with infinite dimensional cokernel. In particular, M_{φ} is not essentially normal.

Theorem (Lech, 1995)

There exists a multiplication operator on the Dirichlet space ${\mathcal D}$ which is not essentially normal.

There exist complete Pick spaces (e.g. of continuous functions on $\overline{\mathbb{D}}$) in which every multiplication operator is essentially normal.

Proposition (Aleman, H., M^cCarthy, Richter)

Let \mathcal{H} be a complete Pick space on a connected topological space X with jointly continuous kernel K. If K is unbounded, then there exists a multiplication operator which is not essentially normal.

Proposition (Aleman, H., M^cCarthy, Richter)

Let \mathcal{H} be a complete Pick space on a connected topological space X with jointly continuous kernel K. If K is unbounded, then there exists a multiplication operator which is not essentially normal.

Idea of the proof.

Our characterization of interpolating sequences yields two sequences (x_n) and (y_n) whose union is interpolating such that

$$d_{\mathcal{H}}(x_n, y_n) \leq \frac{1}{2} \quad (n \in \mathbb{N}).$$

Proposition (Aleman, H., M^cCarthy, Richter)

Let \mathcal{H} be a complete Pick space on a connected topological space X with jointly continuous kernel K. If K is unbounded, then there exists a multiplication operator which is not essentially normal.

Idea of the proof.

Our characterization of interpolating sequences yields two sequences (x_n) and (y_n) whose union is interpolating such that

$$d_{\mathcal{H}}(x_n, y_n) \leq \frac{1}{2} \quad (n \in \mathbb{N}).$$

Let φ be a multiplier with

$$\varphi(x_n) = 0$$
 and $\varphi(y_n) = 1$ $(n \in \mathbb{N})$.

Then M_{φ} is not essentially normal.

Proposition (Aleman, H., McCarthy, Richter)

Let \mathcal{H} be a complete Pick space on a connected topological space X with jointly continuous kernel K. If K is unbounded, then there exists a multiplication operator which is not essentially normal.

Idea of the proof.

Our characterization of interpolating sequences yields two sequences (x_n) and (y_n) whose union is interpolating such that

$$d_{\mathcal{H}}(x_n, y_n) \leq \frac{1}{2} \quad (n \in \mathbb{N}).$$

Let φ be a multiplier with

$$\varphi(x_n) = 0$$
 and $\varphi(y_n) = 1$ $(n \in \mathbb{N})$.

Then M_{ω} is not essentially normal. Pairs of spaces

Thank you and Happy Birthday to Baruch!

Let \mathcal{H}_{K_1} and \mathcal{H}_{K_2} be two RKHS on X with kernels K_1, K_2 , respectively.

Easy observation

If $\varphi \in \mathsf{Mult}(\mathcal{H}_{\mathcal{K}_1}, \mathcal{H}_{\mathcal{K}_2})$, then $|\varphi(z)| \leq ||\varphi||_M \frac{\mathcal{K}_2(z, z)^{1/2}}{\mathcal{K}_1(z, z)^{1/2}}$.

Let \mathcal{H}_{K_1} and \mathcal{H}_{K_2} be two RKHS on X with kernels K_1, K_2 , respectively.

Easy observation

$$\mathsf{lf} \; \varphi \in \mathsf{Mult}(\mathcal{H}_{\mathcal{K}_1}, \mathcal{H}_{\mathcal{K}_2}) \mathsf{, then } |\varphi(z)| \leq ||\varphi||_M \frac{\mathcal{K}_2(z, z)^{1/2}}{\mathcal{K}_1(z, z)^{1/2}}.$$

Definition

A sequence (z_n) in X is $Mult(\mathcal{H}_{K_1}, \mathcal{H}_{K_2})$ -interpolating if for all $(\lambda_n) \in \ell^{\infty}$, there exists $\varphi \in Mult(\mathcal{H}_{K_1}, \mathcal{H}_{K_2})$ with $\varphi(z_n) = \frac{K_2(z_n, z_n)^{1/2}}{K_1(z_n, z_n)^{1/2}}\lambda_n$ for all n.

Let \mathcal{H}_{K_1} and \mathcal{H}_{K_2} be two RKHS on X with kernels K_1, K_2 , respectively.

Definition

A sequence (z_n) in X is $Mult(\mathcal{H}_{K_1}, \mathcal{H}_{K_2})$ -interpolating if for all $(\lambda_n) \in \ell^{\infty}$, there exists $\varphi \in Mult(\mathcal{H}_{K_1}, \mathcal{H}_{K_2})$ with $\varphi(z_n) = \frac{K_2(z_n, z_n)^{1/2}}{K_1(z_n, z_n)^{1/2}}\lambda_n$ for all n.

Theorem (Aleman, H., M^cCarthy, Richter)

Let $\mathcal{H}_{K_1}, \mathcal{H}_{K_2}$ be two complete Pick spaces on X and let $t \geq 1$. Suppose that $K_2/K_1 \geq 0$. Then a sequence is $\text{Mult}(\mathcal{H}_{K_1}, \mathcal{H}_{K_2^t})$ interpolating if and only if it satisfies the \mathcal{H}_{K_1} -Carleson condition and is \mathcal{H}_{K_2} - weakly separated.

Let \mathcal{H}_{K_1} and \mathcal{H}_{K_2} be two RKHS on X with kernels K_1, K_2 , respectively.

Definition

A sequence (z_n) in X is $Mult(\mathcal{H}_{K_1}, \mathcal{H}_{K_2})$ -interpolating if for all $(\lambda_n) \in \ell^{\infty}$, there exists $\varphi \in Mult(\mathcal{H}_{K_1}, \mathcal{H}_{K_2})$ with $\varphi(z_n) = \frac{K_2(z_n, z_n)^{1/2}}{K_1(z_n, z_n)^{1/2}}\lambda_n$ for all n.

Theorem (Aleman, H., M^cCarthy, Richter)

Let $\mathcal{H}_{K_1}, \mathcal{H}_{K_2}$ be two complete Pick spaces on X and let $t \geq 1$. Suppose that $K_2/K_1 \geq 0$. Then a sequence is $\text{Mult}(\mathcal{H}_{K_1}, \mathcal{H}_{K_2}^t)$ interpolating if and only if it satisfies the \mathcal{H}_{K_1} -Carleson condition and is \mathcal{H}_{K_2} - weakly separated.

Corollary

If $\mathcal{H}_{\mathcal{K}}$ is a complete Pick space, then the Mult $(\mathcal{H}_{\mathcal{K}})$ and the Mult $(\mathcal{H}_{\mathcal{K}}, \mathcal{H}_{\mathcal{K}^t})$ -interpolating sequences agree for $t \geq 1$.

Thank you and Happy Birthday to Baruch!