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Interpolating sequences

Let
H∞ = {f : D→ C : f is analytic and bounded}.

Definition
A sequence (zn) in D is interpolating for H∞ if for every sequence
(λn) ∈ `∞, there exists f ∈ H∞ with

f (zn) = λn (n ∈ N).

Write (zn) satisfies (IS).
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Carleson’s interpolation theorem

A sequence (zn) in D
(SS) is strongly separated if there exists ε > 0 such that for all k ∈ N, there

exists fk ∈ H∞ with ||fk ||∞ ≤ 1 and fk(zj) = εδkj .

(WS) is weakly separated if there exists ε > 0 such that whenever j 6= k ,
there exists fkj ∈ H∞ with ||fkj ||∞ ≤ 1 and fkj(zj) = 0 and fkj(zk) = ε.

(C) satisfies the Carleson measure condition if there exists M > 0 such
that ∑

j

(1− |zj |2)|f (zj)|2 ≤ M
∫
∂D
|f |2 dm

for all f ∈ C[z ].

Theorem (Carleson, 1958)

For a sequence (zn) in D, (IS) ⇔ (SS) ⇔ (WS) + (C).
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Why study interpolating sequences?
The maximal ideal space of H∞

Let
M = {ρ : H∞ → C : ρ is linear, multiplicative} \ {0}

and identify D ⊂M via point evaluations.

Proposition

If (zn) is an interpolating sequence, then {zn : n ∈ N} ⊂M is
homeomorphic to βN. In particular, M is not metrizable and has
cardinality 22ℵ0 .

An analytic disc in M is the image of a continuous injection L : D→M
such that f ◦ L is analytic for every f ∈ H∞.

Theorem (Hoffman, 1967)

A point m ∈M lies in an analytic disc if and only if it belongs to the
closure of an interpolating sequence.
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Why study interpolating sequences?
Algebras between H∞ and L∞

Let L∞ = L∞(∂D) and identify H∞ ↪→ L∞ via radial boundary values.

Douglas problem (1969)

Characterize closed algebras A with H∞ ⊂ A ⊂ L∞.

A function f ∈ H∞ is inner if |f | = 1 a.e. on ∂D.

Theorem (Chang–Marshall, 1976)

If A is a closed algebra with H∞ ⊂ A ⊂ L∞, then there is a set B of inner
functions such that

A = alg(H∞ ∪ {b : b ∈ B}).

The functions in B can be chosen to be Blaschke products whose zeros are
interpolating sequences.
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H∞ as a multiplier algebra
Let

H2 =
{

f =
∞∑

n=0

anzn ∈ O(D) : ||f ||2 =
∞∑

n=0

|an|2 <∞
}
.

This is a reproducing kernel Hilbert space on D: For all f ∈ H2 and w ∈ D,

f (w) = 〈f ,K (·,w)〉H2 ,

where
K (z ,w) =

1
1− zw

.

The multiplier algebra is

Mult(H2) = {ϕ : D→ C : ϕ · f ∈ H2 for all f ∈ H2},

equipped with the multiplier norm ||ϕ||Mult(H2) = ||f 7→ ϕ · f ||B(H2).

Fact

Mult(H2) = H∞ with equality of norms.
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Using Hilbert function spaces
Shapiro–Shields (1962): Different proof of Carleson’s theorem, based on:

Lemma (Shapiro–Shields)

A sequence (zn) in D is interpolating for H∞ if and only if the operator

f 7→
(

f (zn)
√

1− |zn|2
)

maps H2 onto `2.

Bishop, Marshall–Sundberg (1994): Characterize interpolating sequences
for the multiplier algebra of the Dirichlet space

D = {f ∈ O(D) : f ′ ∈ L2(D)}.

Key property

H2 and D are complete Pick spaces.
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Nevanlinna–Pick interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let z1, . . . , zn ∈ D and λ1, . . . , λn ∈ C. There exists f ∈ H∞ with

f (zi ) = λi for 1 ≤ i ≤ n and ||f ||∞ ≤ 1

if and only if the matrix[1− λiλj

1− zizj

]n
i ,j=1

=
[
(1− λiλj)K (zi , zj)

]n
i ,j=1

is positive.

Here K (z ,w) = (1− zw)−1 is the reproducing kernel of H2.

Muhly–Solel (2003): far-reaching generalization to Hardy algebras of
W ∗-correspondences.
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Complete Pick spaces

Let H be a reproducing kernel Hilbert space on a set X with kernel K .
Given z1, . . . , zn ∈ X and λ1, . . . , λn ∈ C, does there exist f ∈ Mult(H)
with

f (zi ) = λi for 1 ≤ i ≤ n and ||f ||Mult(H) ≤ 1?

A necessary condition is that the matrix[
K (zi , zj)(1− λiλj)

]n
i ,j=1

is positive.

Definition
H is called a Pick space if this condition is sufficient. H is called a
complete Pick space if the analogue of this condition for matrix valued
functions is sufficient.
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Examples

I The Hardy space H2 is a complete Pick space.

I The Bergman space L2
a = O(D) ∩ L2(D) is not a Pick space.

I The Dirichlet space

D = {f ∈ O(D) : f ′ ∈ L2(D)},

with norm ||f ||2D = ||f ′||2L2(D) + ||f ||
2
H2 is a complete Pick space

(Agler, 1988).
I The Drury-Arveson space H2

d is the reproducing kernel Hilbert space
on Bd , the open unit ball in Cd , with kernel

K (z ,w) =
1

1− 〈z ,w〉
.

This is a complete Pick space.
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Interpolating sequences for complete Pick spaces
Let H be a complete Pick space on X with kernel K . A sequence (zn) in X
(IS) is an interpolating sequence if for every sequence (λn) ∈ `∞, there

exists ϕ ∈ Mult(H) with

ϕ(zn) = λn (n ∈ N).

(SS) is strongly separated if there exists ε > 0 such that for all k ∈ N, there
exists ϕk ∈ Mult(H)1 with ϕk(zj) = εδkj .

(WS) is weakly separated if there exists ε > 0 such that whenever j 6= k
there exists ϕkj ∈ Mult(H)1 with ϕkj(zj) = 0 and fkj(zk) = ε.

(C) satisfies the Carleson measure condition if there exists M > 0 such
that ∑

j

|f (zj)|2

K (zj , zj)
≤ M||f ||2H for all f ∈ H.
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Weak separation
Define a metric on X by

dH(z ,w) =

√
1− |K (z ,w)|2

K (z , z)K (w ,w)
(z ,w ∈ X ).

Example

If H = H2, then

dH2(z ,w) =

∣∣∣∣ z − w
1− zw

∣∣∣∣
is the pseudohyperbolic metric on D.

Lemma
If H is a complete Pick space, then a sequence (zn) in X satisfies (WS) if
and only if there exists ε > 0 such that

dH(zn, zm) ≥ ε whenever n 6= m.
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Known results about interpolating sequences

Easy facts

In general, (IS) ⇒ (SS) and (IS) ⇒ (WS) + (C).

Theorem (Bishop, Marshall–Sundberg, 1994)

For the Dirichlet space, (WS) + (C) ⇔ (IS), but (SS) 6⇒ (IS).

Theorem (Bøe, 2005)

(WS) + (C) ⇔ (IS) for every space on the unit ball Bd with kernel

K (z ,w) =
1

(1− 〈z ,w〉)α
, where α ∈ (0, 1).

Theorem (Agler–McCarthy, 2002)

(WS) + (C) ⇒ (SS) for every complete Pick space.
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The main result

Theorem (Aleman, H., McCarthy, Richter)

In every complete Pick space, (WS) + (C) ⇔ (IS).

In this case, there exists a linear operator of operator of interpolation, i.e.

Mult(H)→ `∞, ϕ 7→ (ϕ(zn)),

has a bounded linear right-inverse.
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Grammians

Let H be a complete Pick space on X with kernel K , let (zn) be a
sequence in X . Let ki = K (·, zi ) and let

G [(zn)] =
[〈 ki

||ki ||
,

kj

||kj ||

〉]
i ,j

be the Grammian.

Proposition

(zn) satisfies (C) iff G [(zn)] is bounded.

Theorem (Marshall–Sundberg, 1994)

(zn) satisfies (IS) iff G [(zn)] is bounded and bounded below.
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Kadison–Singer

Theorem (Marcus–Spielman–Srivastava, 2013)

Let (vn) be a sequence of unit vectors in a Hilbert space and let
G = [〈vi , vj〉]i ,j be the Grammian. If G is bounded, then (vn) is a finite
union of sequences whose Grammian is bounded and bounded below.

Corollary

If (zn) satisfies (C), then (zn) is a finite union of sequences that satisfy (IS).
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Idea of the proof of (WS) + (C) ⇒ (IS)
Assume (xn) and (yn) satisfy (IS), their union satisfies (WS) + (C).

Goal
If (λn), (µn) ∈ `∞, find ϕ ∈ Mult(H) with ϕ(xn) = λn and ϕ(yn) = µn.

Let

ϕ =
[
[ϕ1 ϕ2 · · ·] [ψ1 ψ2 · · ·]

]



λ1 0 · · ·
0 λ2 · · ·
...

...
. . .

 0

0
µ1 0 · · ·
0 µ2 · · ·
...

...
. . .







θ1θ2
...


ω1
ω2
...




,

where ϕn(xn) = 1 = ψn(yn) and θk(xn) = δnk and ωk(xn) = 0.

Michael Hartz (Washington University in St. Louis) Interpolating sequences in complete Pick spaces



Interpolating sequences for H∞ Complete Pick spaces Main result

Idea of the proof of (WS) + (C) ⇒ (IS)
Assume (xn) and (yn) satisfy (IS), their union satisfies (WS) + (C).

Goal
If (λn), (µn) ∈ `∞, find ϕ ∈ Mult(H) with ϕ(xn) = λn and ϕ(yn) = µn.

Let

ϕ =
[
[ϕ1 ϕ2 · · ·] [ψ1 ψ2 · · ·]

]



λ1 0 · · ·
0 λ2 · · ·
...

...
. . .

 0

0
µ1 0 · · ·
0 µ2 · · ·
...

...
. . .







θ1θ2
...


ω1
ω2
...




,

where ϕn(xn) = 1 = ψn(yn) and θk(xn) = δnk and ωk(xn) = 0.

Michael Hartz (Washington University in St. Louis) Interpolating sequences in complete Pick spaces



Interpolating sequences for H∞ Complete Pick spaces Main result

Idea of the proof of (WS) + (C) ⇒ (IS)
Assume (xn) and (yn) satisfy (IS), their union satisfies (WS) + (C).

Goal
If (λn), (µn) ∈ `∞, find ϕ ∈ Mult(H) with ϕ(xn) = λn and ϕ(yn) = µn.

Let

ϕ =
[
[ϕ1 ϕ2 · · ·] [ψ1 ψ2 · · ·]

]



λ1 0 · · ·
0 λ2 · · ·
...

...
. . .

 0

0
µ1 0 · · ·
0 µ2 · · ·
...

...
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ω2
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,

where ϕn(xn) = 1 = ψn(yn) and θk(xn) = δnk and ωk(xn) = 0.

Theorem 1 (Agler–McCarthy, 2002)

G [(xn)] is bounded below iff there exists a sequence (ϕn) in Mult(H) such
that [Mϕ1 Mϕ2 · · · ] is bounded and such that ϕk(xn) = δnk .
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θ1θ2
...


ω1
ω2
...




,

where ϕn(xn) = 1 = ψn(yn)

and θk(xn) = δnk and ωk(xn) = 0.

Theorem 2 (Agler–McCarthy, 2002)

(zn) satisfies (WS) + (C) iff there exists a sequence (ϕn) in Mult(H) such
that [Mϕ1 Mϕ2 · · · ]T is bounded and such that ϕk(zn) = δnk .
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Idea of the proof of (WS) + (C) ⇒ (IS)
Assume (xn) and (yn) satisfy (IS), their union satisfies (WS) + (C).

Goal
If (λn), (µn) ∈ `∞, find ϕ ∈ Mult(H) with ϕ(xn) = λn and ϕ(yn) = µn.

Let

ϕ =
[
[ϕ1 ϕ2 · · ·] [ψ1 ψ2 · · ·]

]


λ1 0 · · ·
0 λ2 · · ·
...

...
. . .

 0

0
µ1 0 · · ·
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. . .







θ1θ2
...


ω1
ω2
...




,

where ϕn(xn) = 1 = ψn(yn) and θk(xn) = δnk and ωk(xn) = 0.

Then ϕ ∈ Mult(H) with

ϕ(xn) = λn and ϕ(yn) = µn.
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Column multipliers and row multipliers

The proof does not require the Marcus–Spielman–Srivastava theorem for
every space H with the following property:

Property (BC) ⇒ (BR)

For all sequences (ϕn) in Mult(H),Mϕ1

Mϕ2
...

 bounded ⇒ [Mϕ1Mϕ2 · · · ] bounded.

This property is satisfied by the Dirichlet space (Trent) and H2
d (d <∞).

Question
Does every complete Pick space satisfy (BC) ⇒ (BR)?
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Non-essentially normal multipliers

An operator T ∈ B(H) is essentially normal if TT ∗ − T ∗T is compact.

Easy fact

There exists a multiplication operator Mϕ on H2 which is an isometry with
infinite dimensional cokernel. In particular, Mϕ is not essentially normal.

Theorem (Lech, 1995)

There exists a multiplication operator on the Dirichlet space D which is not
essentially normal.

There exist complete Pick spaces (e.g. of continuous functions on D) in
which every multiplication operator is essentially normal.
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Non-essentially normal multipliers: a general result
Proposition (Aleman, H., McCarthy, Richter)

Let H be a complete Pick space on a connected topological space X with
jointly continuous kernel K . If K is unbounded, then there exists a
multiplication operator which is not essentially normal.

Idea of the proof.

Our characterization of interpolating sequences yields two sequences (xn)
and (yn) whose union is interpolating such that

dH(xn, yn) ≤ 1
2 (n ∈ N).

Let ϕ be a multiplier with

ϕ(xn) = 0 and ϕ(yn) = 1 (n ∈ N).

Then Mϕ is not essentially normal. Pairs of spaces
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Thank you and Happy Birthday to Baruch!
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Pairs of spaces
Let HK1 and HK2 be two RKHS on X with kernels K1,K2, respectively.

Easy observation

If ϕ ∈ Mult(HK1 ,HK2), then |ϕ(z)| ≤ ||ϕ||M
K2(z,z)1/2

K1(z,z)1/2 .

Definition
A sequence (zn) in X is Mult(HK1 ,HK2)-interpolating if for all (λn) ∈ `∞,
there exists ϕ ∈ Mult(HK1 ,HK2) with ϕ(zn) =

K2(zn,zn)1/2

K1(zn,zn)1/2λn for all n.

Theorem (Aleman, H., McCarthy, Richter)

Let HK1 ,HK2 be two complete Pick spaces on X and let t ≥ 1. Suppose
that K2/K1 ≥ 0. Then a sequence is Mult(HK1 ,HK t

2
) interpolating if and

only if it satisfies the HK1-Carleson condition and is HK2- weakly separated.

Corollary

If HK is a complete Pick space, then the Mult(HK ) and the
Mult(HK ,HK t )-interpolating sequences agree for t ≥ 1.
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