Matrix Convex Sets and Dilations

Ben Passer, joint with Orr Shalit and Baruch Solel

Technion-Israel Institute of Technology

2017 MVOT Conference for Baruch Solel's 65th Birthday

Compressions and Dilations

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{d}\right) \in B(\mathcal{H})^{d} \\
& N=\left(N_{1}, \ldots, N_{d}\right) \in B(\mathcal{K})^{d}
\end{aligned}
$$

Compressions and Dilations

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{d}\right) \in B(\mathcal{H})^{d} \\
& N=\left(N_{1}, \ldots, N_{d}\right) \in B(\mathcal{K})^{d}
\end{aligned}
$$

Definition

X is a compression of N if for some isometric embedding $V: \mathcal{H} \rightarrow \mathcal{K}$,

Compressions and Dilations

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{d}\right) \in B(\mathcal{H})^{d} \\
& N=\left(N_{1}, \ldots, N_{d}\right) \in B(\mathcal{K})^{d}
\end{aligned}
$$

Definition

X is a compression of N if for some isometric embedding $V: \mathcal{H} \rightarrow \mathcal{K}$,

$$
X_{i}=V^{*} N_{i} V, i=1, \ldots d
$$

Compressions and Dilations

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{d}\right) \in B(\mathcal{H})^{d} \\
& N=\left(N_{1}, \ldots, N_{d}\right) \in B(\mathcal{K})^{d}
\end{aligned}
$$

Definition

X is a compression of N if for some isometric embedding $V: \mathcal{H} \rightarrow \mathcal{K}$,

$$
X_{i}=V^{*} N_{i} V, i=1, \ldots d
$$

Equivalently, N is a dilation of X, denoted $X \prec N$.

Compressions and Dilations

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{d}\right) \in B(\mathcal{H})^{d} \\
& N=\left(N_{1}, \ldots, N_{d}\right) \in B(\mathcal{K})^{d}
\end{aligned}
$$

Definition

X is a compression of N if for some isometric embedding $V: \mathcal{H} \rightarrow \mathcal{K}$,

$$
X_{i}=V^{*} N_{i} V, i=1, \ldots d
$$

Equivalently, N is a dilation of X, denoted $X \prec N$.
Visualizing a dilation:

$$
N_{i}=\left(\begin{array}{cc}
X_{i} & * \\
* & *
\end{array}\right)
$$

Compressions and Dilations

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{d}\right) \in B(\mathcal{H})^{d} \\
& N=\left(N_{1}, \ldots, N_{d}\right) \in B(\mathcal{K})^{d}
\end{aligned}
$$

Definition

X is a compression of N if for some isometric embedding $V: \mathcal{H} \rightarrow \mathcal{K}$,

$$
X_{i}=V^{*} N_{i} V, i=1, \ldots d
$$

Equivalently, N is a dilation of X, denoted $X \prec N$.
Visualizing a dilation:

$$
N_{i}=\left(\begin{array}{cc}
X_{i} & * \\
* & *
\end{array}\right)
$$

We want to start with generic/bad X and reach a "pleasant" dilation N.

A Woefully Incomplete List of Dilation Theorems

A Woefully Incomplete List of Dilation Theorems

Theorem (Sz.-Nagy)
If $T \in B(\mathcal{H})$ is a contraction, then there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ and a unitary $U \in B(\mathcal{K})$ such that

$$
T^{m}=V^{*} U^{m} V \text { for all } m \geq 0
$$

A Woefully Incomplete List of Dilation Theorems

Theorem (Sz.-Nagy)
If $T \in B(\mathcal{H})$ is a contraction, then there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ and a unitary $U \in B(\mathcal{K})$ such that

$$
T^{m}=V^{*} U^{m} V \text { for all } m \geq 0
$$

Theorem (Ando)

For any pair of commuting contractions $T_{1}, T_{2} \in B(\mathcal{H})$, there exist a pair of commuting unitaries $U_{1}, U_{2} \in B(\mathcal{K})$ and an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ with

$$
T_{1}^{m} T_{2}^{n}=V^{*}\left(U_{1}^{m} U_{2}^{n}\right) V \text { for all } m, n \geq 0
$$

A Woefully Incomplete List of Dilation Theorems

Theorem (Sz.-Nagy)
If $T \in B(\mathcal{H})$ is a contraction, then there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ and a unitary $U \in B(\mathcal{K})$ such that

$$
T^{m}=V^{*} U^{m} V \text { for all } m \geq 0
$$

Theorem (Ando)

For any pair of commuting contractions $T_{1}, T_{2} \in B(\mathcal{H})$, there exist a pair of commuting unitaries $U_{1}, U_{2} \in B(\mathcal{K})$ and an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ with

$$
T_{1}^{m} T_{2}^{n}=V^{*}\left(U_{1}^{m} U_{2}^{n}\right) V \text { for all } m, n \geq 0
$$

Theorem (Halmos)
If $T \in B(\mathcal{H})$ is a contraction, then $U:=\left(\begin{array}{cc}T & \sqrt{1-T T^{*}} \\ \sqrt{1-T^{*} T} & -T^{*}\end{array}\right)$ is a unitary dilation of T.

A Woefully Incomplete List of Dilation Theorems

Theorem (Sz.-Nagy)
If $T \in B(\mathcal{H})$ is a contraction, then there is an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ and a unitary $U \in B(\mathcal{K})$ such that

$$
T^{m}=V^{*} U^{m} V \text { for all } m \geq 0
$$

Theorem (Ando)

For any pair of commuting contractions $T_{1}, T_{2} \in B(\mathcal{H})$, there exist a pair of commuting unitaries $U_{1}, U_{2} \in B(\mathcal{K})$ and an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$ with

$$
T_{1}^{m} T_{2}^{n}=V^{*}\left(U_{1}^{m} U_{2}^{n}\right) V \text { for all } m, n \geq 0
$$

Theorem (Halmos)
If $T \in B(\mathcal{H})$ is a contraction, then $U:=\left(\begin{array}{cc}T & \sqrt{1-T T^{*}} \\ \sqrt{1-T^{*} T} & -T^{*}\end{array}\right)$ is a unitary dilation of T. (Bonus: this procedure preserves self-adjointness.)

HKMS Dilation Theorem

Theorem (Helton, Klep, McCullough, Schweighofer)
Fix n and and a real n-dimensional Hilbert space \mathcal{H}.

HKMS Dilation Theorem

Theorem (Helton, Klep, McCullough, Schweighofer)
Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_{n}, a Hilbert space \mathcal{K}, an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$, and a commuting family \mathcal{C} in the unit ball of $B(\mathcal{K})_{\text {sa }}$ such that

HKMS Dilation Theorem

Theorem (Helton, Klep, McCullough, Schweighofer)
Fix n and and a real n-dimensional Hilbert space \mathcal{H}.
There exists a constant ϑ_{n}, a Hilbert space \mathcal{K}, an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$, and a commuting family \mathcal{C} in the unit ball of $B(\mathcal{K})_{\text {sa }}$ such that for every tuple of self-adjoint contractions $A \in B(\mathcal{H})_{\text {sa }}^{d}$, there exists $N \in \mathcal{C}$ with

$$
\frac{1}{\vartheta_{n}} A=V^{*} N V
$$

HKMS Dilation Theorem

Theorem (Helton, Klep, McCullough, Schweighofer)
Fix n and and a real n-dimensional Hilbert space \mathcal{H}.
There exists a constant ϑ_{n}, a Hilbert space \mathcal{K}, an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$, and a commuting family \mathcal{C} in the unit ball of $B(\mathcal{K})_{\text {sa }}$ such that for every tuple of self-adjoint contractions $A \in B(\mathcal{H})_{\text {sa }}^{d}$, there exists $N \in \mathcal{C}$ with

$$
\frac{1}{\vartheta_{n}} A=V^{*} N V
$$

They also show find the optimal ϑ_{n}, and show

$$
\vartheta_{n} \sim \frac{\sqrt{\pi n}}{2} .
$$

HKMS Dilation Theorem

Theorem (Helton, Klep, McCullough, Schweighofer)
Fix n and and a real n-dimensional Hilbert space \mathcal{H}.
There exists a constant ϑ_{n}, a Hilbert space \mathcal{K}, an isometry $V: \mathcal{H} \rightarrow \mathcal{K}$, and a commuting family \mathcal{C} in the unit ball of $B(\mathcal{K})_{\text {sa }}$ such that for every tuple of self-adjoint contractions $A \in B(\mathcal{H})_{\text {sa }}^{d}$, there exists $N \in \mathcal{C}$ with

$$
\frac{1}{\vartheta_{n}} A=V^{*} N V
$$

They also show find the optimal ϑ_{n}, and show

$$
\vartheta_{n} \sim \frac{\sqrt{\pi n}}{2} .
$$

The dimension of matrices is fixed at $n \times n$, but the number of matrices d is NOT fixed.

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem:

DDSS Dilation Setup
 Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d.

DDSS Dilation Setup
 Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

DDSS Dilation Setup
 Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

\mathcal{S}

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \subset
$$

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \subset \bigcup_{n=1}^{\infty}\left(M_{n}(\mathbb{C})\right)_{\text {sa }}^{d}
$$

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \subset \bigcup_{n=1}^{\infty}\left(M_{n}(\mathbb{C})\right)_{\text {sa }}^{d}
$$

Definition

The set \mathcal{S} is matrix convex if both conditions hold:

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \subset \bigcup_{n=1}^{\infty}\left(M_{n}(\mathbb{C})\right)_{s a}^{d}
$$

Definition

The set \mathcal{S} is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \subset \bigcup_{n=1}^{\infty}\left(M_{n}(\mathbb{C})\right)_{s a}^{d}
$$

Definition

The set \mathcal{S} is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$, and V_{1}, \ldots, V_{k} are $m \times n$ matrices with
$\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.

DDSS Dilation Setup

Davidson, Dor-On, Shalit, and Solel considered the opposite problem: allow any size matrices (or operators), but fix the number of operators, d. Their results are best phrased in the language of matrix convex sets:

$$
\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n} \subset \bigcup_{n=1}^{\infty}\left(M_{n}(\mathbb{C})\right)_{\text {sa }}^{d}
$$

Definition

The set \mathcal{S} is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$, and V_{1}, \ldots, V_{k} are $m \times n$ matrices with
$\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.
This implies that \mathcal{S} is an nc set (plus, use $k=1$ to get simultaneous unitary conjugations), and that each level \mathcal{S}_{n} is convex (use $V_{i}=\sqrt{t_{i}} I_{n}$).

DDSS Dilation Setup

Definition

The set $\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n}$ of d-tuples is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$ and V_{1}, \ldots, V_{k} are $m \times n$ matrices with $\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.

DDSS Dilation Setup

Definition

The set $\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n}$ of d-tuples is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$ and V_{1}, \ldots, V_{k} are $m \times n$ matrices with $\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.

A matrix convex set \mathcal{S} is automatically closed under compression.

DDSS Dilation Setup

Definition

The set $\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n}$ of d-tuples is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$ and V_{1}, \ldots, V_{k} are $m \times n$ matrices with $\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.

A matrix convex set \mathcal{S} is automatically closed under compression.
As before, the first level $K=\mathcal{S}_{1} \subset \mathbb{R}^{d}$ is convex (as is every level).

DDSS Dilation Setup

Definition

The set $\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n}$ of d-tuples is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$ and V_{1}, \ldots, V_{k} are $m \times n$ matrices with $\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.

A matrix convex set \mathcal{S} is automatically closed under compression.
As before, the first level $K=\mathcal{S}_{1} \subset \mathbb{R}^{d}$ is convex (as is every level). How much information does K tell you about \mathcal{S} ?

DDSS Dilation Setup

Definition

The set $\mathcal{S}=\bigcup_{n=1}^{\infty} \mathcal{S}_{n}$ of d-tuples is matrix convex if both conditions hold:

1. If $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$, then $A \oplus B \in \mathcal{S}_{m+n}$.
2. If $A^{(1)}, \ldots, A^{(k)} \in \mathcal{S}_{n}$ and V_{1}, \ldots, V_{k} are $m \times n$ matrices with $\sum_{i=1}^{k} V_{i} V_{i}^{*}=I_{m}$, then $\sum_{i=1}^{k} V_{i} A^{(i)} V_{i}^{*} \in \mathcal{S}_{m}$.

A matrix convex set \mathcal{S} is automatically closed under compression.
As before, the first level $K=\mathcal{S}_{1} \subset \mathbb{R}^{d}$ is convex (as is every level).
How much information does K tell you about \mathcal{S} ?
Study the minimal and maximal matrix convex sets with ground level K. We assume K is compact.

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex).

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\min }(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$.

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\text {min }}(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$. $\left(x_{1}, \ldots, x_{d}\right) \in K$

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\text {min }}(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$. $\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K$

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\min }(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$. $\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xrightarrow{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K$

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\min }(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$. $\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xrightarrow{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K \xrightarrow{\text { compression }}$ the current definition.

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\min }(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$. $\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xlongequal{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K \xrightarrow{\text { compression }}$ the current definition. The largest option:

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\text {min }}(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$.
$\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xlongequal{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K \xrightarrow{\text { compression }}$ the current definition.

The largest option:

Definition

$\mathcal{W}^{\max }(K)=\left\{T: \sum a_{i} T_{i} \leq c \cdot /\right.$ for every real linear inequality $\sum a_{i} x_{i} \leq c$ that is satisfied for every $\left.\left(x_{1}, \ldots, x_{d}\right) \in K\right\}$.

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\text {min }}(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$.
$\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xlongequal{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K \xrightarrow{\text { compression }}$ the current definition.

The largest option:

Definition

$\mathcal{W}^{\max }(K)=\left\{T: \sum a_{i} T_{i} \leq c \cdot /\right.$ for every real linear inequality $\sum a_{i} x_{i} \leq c$ that is satisfied for every $\left.\left(x_{1}, \ldots, x_{d}\right) \in K\right\}$.

Violating a linear inequality is detected by a state,

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\text {min }}(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$.
$\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xrightarrow{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K \xrightarrow{\text { compression }}$ the current definition.

The largest option:

Definition

$\mathcal{W}^{\max }(K)=\left\{T: \sum a_{i} T_{i} \leq c \cdot /\right.$ for every real linear inequality $\sum a_{i} x_{i} \leq c$ that is satisfied for every $\left.\left(x_{1}, \ldots, x_{d}\right) \in K\right\}$.

Violating a linear inequality is detected by a state, and matrix convex sets are closed under applications of states,

DDSS Dilation Setup

The ground level of a matrix convex set is $K \subset \mathbb{R}^{d}$ (compact and convex). The smallest option:

Definition

$\mathcal{W}^{\text {min }}(K)=\{T: \exists$ a commuting normal dilation N of $T, \sigma(N) \subset K\}$.
$\left(x_{1}, \ldots, x_{d}\right) \in K \stackrel{\oplus}{\Rightarrow}$ tuples of diagonal matrices, $\sigma \subset K \xlongequal{\text { conjugation }}$ commuting normal tuples, $\sigma \subset K \xrightarrow{\text { compression }}$ the current definition.

The largest option:

Definition

$\mathcal{W}^{\max }(K)=\left\{T: \sum a_{i} T_{i} \leq c \cdot /\right.$ for every real linear inequality $\sum a_{i} x_{i} \leq c$ that is satisfied for every $\left.\left(x_{1}, \ldots, x_{d}\right) \in K\right\}$.

Violating a linear inequality is detected by a state, and matrix convex sets are closed under applications of states, but the first level is exactly K.

DDSS Dilation Theorem

Conclusion: for compact and convex K and L, asking whether

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

DDSS Dilation Theorem

Conclusion: for compact and convex K and L, asking whether

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

(perhaps with L a multiple of K) is a very general matrix dilation problem.

DDSS Dilation Theorem

Conclusion: for compact and convex K and L, asking whether

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

(perhaps with L a multiple of K) is a very general matrix dilation problem. "If a tuple of matrices merely satisfies the linear inequalities that determine K, must it have a commuting normal dilation with joint spectrum in L?"

DDSS Dilation Theorem

Conclusion: for compact and convex K and L, asking whether

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

(perhaps with L a multiple of K) is a very general matrix dilation problem. "If a tuple of matrices merely satisfies the linear inequalities that determine K, must it have a commuting normal dilation with joint spectrum in L?"

Theorem (Davidson, Dor-On, Shalit, Solel)
Suppose that $K \subseteq \mathbb{R}^{d}$ where K has nice symmetry or invariance properties. Then

$$
\mathcal{W}^{\max }(K) \subset d \cdot \mathcal{W}^{\min }(K) .
$$

DDSS Dilation Theorem

Conclusion: for compact and convex K and L, asking whether

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

(perhaps with L a multiple of K) is a very general matrix dilation problem.
"If a tuple of matrices merely satisfies the linear inequalities that determine K, must it have a commuting normal dilation with joint spectrum in L?"

Theorem (Davidson, Dor-On, Shalit, Solel)
Suppose that $K \subseteq \mathbb{R}^{d}$ where K has nice symmetry or invariance properties. Then

$$
\mathcal{W}^{\max }(K) \subset d \cdot \mathcal{W}^{\min }(K) .
$$

This theorem about matrices is not a theorem about matrices.

DDSS Dilation Theorem

Conclusion: for compact and convex K and L, asking whether

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

(perhaps with L a multiple of K) is a very general matrix dilation problem.
"If a tuple of matrices merely satisfies the linear inequalities that determine K, must it have a commuting normal dilation with joint spectrum in L?"

Theorem (Davidson, Dor-On, Shalit, Solel)
Suppose that $K \subseteq \mathbb{R}^{d}$ where K has nice symmetry or invariance properties. Then

$$
\mathcal{W}^{\max }(K) \subset d \cdot \mathcal{W}^{\min }(K)
$$

This theorem about matrices is not a theorem about matrices. It is also a theorem about matrices.

Explanations

This slide should be skipped unless someone asks a question.

Symmetry/invariance properties

There exist k real $d \times d$ matrices $\lambda^{(1)}, \ldots, \lambda^{(k)}$ of rank one such that $I_{d} \in \operatorname{conv}\left\{\lambda^{(1)}, \ldots, \lambda^{(k)}\right\}$ and

$$
\lambda^{(m)} K \subseteq d \cdot K \quad, \quad m=1, \ldots, k
$$

e.g., invariant under permutations and sign changes of coordinates. or more generally: invariant under projections onto orthonormal basis.

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

Examples, still from DDSS

$$
\begin{gathered}
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d} \\
\Delta_{d}=\text { standard } d \text {-simplex: the convex hull of } 0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}
\end{gathered}
$$

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

$\Delta_{d}=$ standard d-simplex: the convex hull of $0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$
$D_{d}=d$-dimensional diamond: the convex hull of $\pm e_{1}, \ldots, \pm e_{d} \in \mathbb{R}^{d}$

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

$\Delta_{d}=$ standard d-simplex: the convex hull of $0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$
$D_{d}=d$-dimensional diamond: the convex hull of $\pm e_{1}, \ldots, \pm e_{d} \in \mathbb{R}^{d}$

Example (Davidson, Dor-On, Shalit, and Solel)

$$
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(\overline{\mathbb{B}}^{d}\right)
$$

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

$\Delta_{d}=$ standard d-simplex: the convex hull of $0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$
$D_{d}=d$-dimensional diamond: the convex hull of $\pm e_{1}, \ldots, \pm e_{d} \in \mathbb{R}^{d}$

Example (Davidson, Dor-On, Shalit, and Solel)

$$
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(\overline{\mathbb{B}}^{d}\right) \quad \mathcal{W}^{\max }(\Delta) \subseteq d \cdot \mathcal{W}^{\min }(\Delta)
$$

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

$\Delta_{d}=$ standard d-simplex: the convex hull of $0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$
$D_{d}=d$-dimensional diamond: the convex hull of $\pm e_{1}, \ldots, \pm e_{d} \in \mathbb{R}^{d}$

Example (Davidson, Dor-On, Shalit, and Solel)

$$
\begin{gathered}
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(\overline{\mathbb{B}}^{d}\right) \quad \mathcal{W}^{\max }(\Delta) \subseteq d \cdot \mathcal{W}^{\min }(\Delta) \\
\forall C, \mathcal{W}^{\max }\left(e_{1}+\overline{\mathbb{B}}^{d}\right) \nsubseteq C \cdot \mathcal{W}^{\min }\left(e_{1}+\overline{\mathbb{B}}^{d}\right)
\end{gathered}
$$

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

$\Delta_{d}=$ standard d-simplex: the convex hull of $0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$
$D_{d}=d$-dimensional diamond: the convex hull of $\pm e_{1}, \ldots, \pm e_{d} \in \mathbb{R}^{d}$

Example (Davidson, Dor-On, Shalit, and Solel)

$$
\begin{aligned}
& \mathcal{W}^{\max }\left(\overline{\mathbb{B}}^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(\overline{\mathbb{B}}^{d}\right) \quad \mathcal{W}^{\max }(\Delta) \subseteq d \cdot \mathcal{W}^{\min }(\Delta) \\
& \forall C, \mathcal{W}^{\max }\left(e_{1}+\overline{\mathbb{B}}^{d}\right) \nsubseteq C \cdot \mathcal{W}^{\min }\left(e_{1}+\overline{\mathbb{B}}^{d}\right) \\
& \mathcal{W}^{\max }\left([-1,1]^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(D_{d}\right)
\end{aligned}
$$

Examples, still from DDSS

$$
\overline{\mathbb{B}}^{d}=\text { closed unit ball of } \ell^{2} \text { space in } \mathbb{R}^{d}
$$

$\Delta_{d}=$ standard d-simplex: the convex hull of $0, e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}$
$D_{d}=d$-dimensional diamond: the convex hull of $\pm e_{1}, \ldots, \pm e_{d} \in \mathbb{R}^{d}$

Example (Davidson, Dor-On, Shalit, and Solel)

$$
\begin{gathered}
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(\overline{\mathbb{B}}^{d}\right) \quad \mathcal{W}^{\max }(\Delta) \subseteq d \cdot \mathcal{W}^{\min }(\Delta) \\
\forall C, \mathcal{W}^{\max }\left(e_{1}+\overline{\mathbb{B}}^{d}\right) \nsubseteq C \cdot \mathcal{W}^{\min }\left(e_{1}+\overline{\mathbb{B}}^{d}\right) \\
\mathcal{W}^{\max }\left([-1,1]^{d}\right) \subseteq d \cdot \mathcal{W}^{\min }\left(D_{d}\right) \quad \mathcal{W}^{\max }\left(D_{d}\right) \subseteq 1 \cdot \mathcal{W}^{\min }\left([-1,1]^{d}\right)
\end{gathered}
$$

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

Moreover, we call a compact convex set L a dilation hull of K if

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

Moreover, we call a compact convex set L a dilation hull of K if

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

and say L is minimal if L cannot be replaced with a proper cc subset.

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

Moreover, we call a compact convex set L a dilation hull of K if

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

and say L is minimal if L cannot be replaced with a proper cc subset.

1. Computed $\theta(\cdot)$ for ℓ^{p}-balls and their positive sections (some proofs include free parameters, so dilations don't have to treat every member of a tuple equally).

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

Moreover, we call a compact convex set L a dilation hull of K if

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

and say L is minimal if L cannot be replaced with a proper cc subset.

1. Computed $\theta(\cdot)$ for ℓ^{p}-balls and their positive sections (some proofs include free parameters, so dilations don't have to treat every member of a tuple equally).
2. Characterized when $K \subseteq \mathbb{R}^{d}$ has $\theta(K)=1$ (with some control).

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

Moreover, we call a compact convex set L a dilation hull of K if

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

and say L is minimal if L cannot be replaced with a proper cc subset.

1. Computed $\theta(\cdot)$ for ℓ^{p}-balls and their positive sections (some proofs include free parameters, so dilations don't have to treat every member of a tuple equally).
2. Characterized when $K \subseteq \mathbb{R}^{d}$ has $\theta(K)=1$ (with some control).
3. Characterized when an ℓ^{2}-ball is a dilation hull for another ℓ^{2}-ball.

What's New?

Definition

$$
\theta(K):=\inf \left\{C>0: \mathcal{W}^{\max }(K) \subseteq C \cdot \mathcal{W}^{\min }(K)\right\}
$$

Moreover, we call a compact convex set L a dilation hull of K if

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\min }(L)
$$

and say L is minimal if L cannot be replaced with a proper cc subset.

1. Computed $\theta(\cdot)$ for ℓ^{p}-balls and their positive sections (some proofs include free parameters, so dilations don't have to treat every member of a tuple equally).
2. Characterized when $K \subseteq \mathbb{R}^{d}$ has $\theta(K)=1$ (with some control).
3. Characterized when an ℓ^{2}-ball is a dilation hull for another ℓ^{2}-ball.
4. Computed some examples of minimal dilation hulls, and made some general conclusions about minimal dilation hulls using the above.

The Main Tool

We make use of anticommutation in our estimates

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements:

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\max }$ is easy.

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\max }$ is easy. But ...

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\text {max }}$ is easy. But \ldots

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\text {max }}$ is easy. But \ldots

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\text {max }}$ is easy. But \ldots

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

These matrices are great

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\text {max }}$ is easy. But \ldots

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

These matrices are great terrible

The Main Tool

We make use of anticommutation in our estimates (fair and balanced).

Lemma

If x_{1}, \ldots, x_{d} are pairwise anticommuting, self-adjoint elements of a C^{*}-algebra, then

$$
\left\|x_{1}+\ldots+x_{d}\right\|=\sqrt{\left\|x_{1}^{2}+\ldots+x_{d}^{2}\right\|} \leq \sqrt{\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{d}\right\|^{2}}
$$

So, linear inequalities are easily satisfied by anticommuting elements: ℓ^{2} estimates are better than ℓ^{1} and membership in $\mathcal{W}^{\text {max }}$ is easy. But \ldots

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

These matrices are great terrible great.

Cube Dilation

Theorem
For $a_{1}, \ldots, a_{d}>0$,

$$
\mathcal{W}^{\max }\left([-1,1]^{d}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times \cdots \times\left[-a_{d}, a_{d}\right]\right)
$$

holds if and only if $\sum \frac{1}{a_{j}^{2}} \leq 1$.

Cube Dilation

Theorem
For $a_{1}, \ldots, a_{d}>0$,

$$
\mathcal{W}^{\max }\left([-1,1]^{d}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times \cdots \times\left[-a_{d}, a_{d}\right]\right)
$$

holds if and only if $\sum \frac{1}{a_{j}^{2}} \leq 1$. In particular, $\theta\left([-1,1]^{d}\right)=\sqrt{d}$.

Cube Dilation

Theorem
For $a_{1}, \ldots, a_{d}>0$,

$$
\mathcal{W}^{\max }\left([-1,1]^{d}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times \cdots \times\left[-a_{d}, a_{d}\right]\right)
$$

holds if and only if $\sum \frac{1}{a_{j}^{2}} \leq 1$. In particular, $\theta\left([-1,1]^{d}\right)=\sqrt{d}$.

Corollary

While there exist minim*al* dilation hulls for K, minim*um* dilation hulls might not exist!

Cube Dilation

Theorem
For $a_{1}, \ldots, a_{d}>0$,

$$
\mathcal{W}^{\max }\left([-1,1]^{d}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times \cdots \times\left[-a_{d}, a_{d}\right]\right)
$$

holds if and only if $\sum \frac{1}{a_{j}^{2}} \leq 1$. In particular, $\theta\left([-1,1]^{d}\right)=\sqrt{d}$.

Corollary

While there exist minim*al* dilation hulls for K, minim*um* dilation hulls might not exist!

Corollary

Let $\overline{\mathbb{B}}_{p}^{d}$ denote the closed unit ball of ℓ^{p}-space in \mathbb{R}^{d}. Then

$$
\theta\left(\overline{\mathbb{B}}_{p}^{d}\right)=d^{1-|1 / 2-1 / p|}
$$

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\text {min }}\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$.

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$.
Let X_{1} and X_{2} be self-adjoint contractions.

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary.

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\text {min }}\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary. This produces conjugation actions of order 2, i.e. decompositions of the Y_{i} into commuting and anticommuting pieces.

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary. This produces conjugation actions of order 2, i.e. decompositions of the Y_{i} into commuting and anticommuting pieces. Correct the anticommutation to making commuting dilations.

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary. This produces conjugation actions of order 2, i.e. decompositions of the Y_{i} into commuting and anticommuting pieces. Correct the anticommutation to making commuting dilations.

$$
N_{1}=\left(\begin{array}{cc}
Y_{1} & \frac{1}{2}\left[Y_{2}, Y_{1}\right] \\
\frac{1}{2}\left[Y_{1}, Y_{2}\right] & Y_{1}
\end{array}\right)
$$

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary. This produces conjugation actions of order 2, i.e. decompositions of the Y_{i} into commuting and anticommuting pieces. Correct the anticommutation to making commuting dilations.

$$
N_{1}=\left(\begin{array}{cc}
Y_{1} & \frac{1}{2}\left[Y_{2}, Y_{1}\right] \\
\frac{1}{2}\left[Y_{1}, Y_{2}\right] & Y_{1}
\end{array}\right) \quad N_{2}=\left(\begin{array}{cc}
Y_{2} & 1 \\
1 & -Y_{2}
\end{array}\right)
$$

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\min }\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary. This produces conjugation actions of order 2, i.e. decompositions of the Y_{i} into commuting and anticommuting pieces. Correct the anticommutation to making commuting dilations.

$$
N_{1}=\left(\begin{array}{cc}
Y_{1} & \frac{1}{2}\left[Y_{2}, Y_{1}\right] \\
\frac{1}{2}\left[Y_{1}, Y_{2}\right] & Y_{1}
\end{array}\right) \quad N_{2}=\left(\begin{array}{cc}
Y_{2} & 1 \\
1 & -Y_{2}
\end{array}\right)
$$

Anticommuting pieces: $\left\|N_{1}\right\| \leq \sqrt{1^{2}+1^{2}}=\sqrt{2},\left\|N_{2}\right\| \leq \sqrt{1^{2}+1^{2}}=\sqrt{2}$.

Explicit Cube Dilation $(d=2$, as $d>2$ is similar)

We seek $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subseteq \mathcal{W}^{\text {min }}\left(\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]\right)$ when $\frac{1}{a_{1}^{2}}+\frac{1}{a_{2}^{2}} \leq 1$. Let X_{1} and X_{2} be self-adjoint contractions. Then

$$
Y_{i}:=\left(\begin{array}{cc}
X_{i} & \sqrt{1-X_{i}^{2}} \\
\sqrt{1-X_{i}^{2}} & -X_{i}
\end{array}\right)
$$

are self-adjoint and unitary. This produces conjugation actions of order 2, i.e. decompositions of the Y_{i} into commuting and anticommuting pieces. Correct the anticommutation to making commuting dilations.

$$
N_{1}=\left(\begin{array}{cc}
Y_{1} & r \cdot \frac{1}{2}\left[Y_{2}, Y_{1}\right] \\
r \cdot \frac{1}{2}\left[Y_{1}, Y_{2}\right] & Y_{1}
\end{array}\right) \quad N_{2}=\left(\begin{array}{cc}
Y_{2} & \frac{1}{r} \cdot 1 \\
\frac{1}{r} \cdot 1 & -Y_{2}
\end{array}\right)
$$

Anticommuting pieces: $\left\|N_{1}\right\| \leq \sqrt{1^{2}+r^{2}}=a_{1} \quad\left\|N_{2}\right\| \leq \sqrt{1^{2}+\frac{1}{r^{2}}}=a_{2}$.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$ if and only if K is a simplex.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$ if and only if K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$ if and only if K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K. We remove the polyhedral assumption, and in doing so produce a bound on the matrix level one needs to check.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$ if and only if K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K. We remove the polyhedral assumption, and in doing so produce a bound on the matrix level one needs to check.

Theorem
Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\text {min }}(K)$ if and only if K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K. We remove the polyhedral assumption, and in doing so produce a bound on the matrix level one needs to check.

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\text {min }}(K)$.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$ if and only if K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K. We remove the polyhedral assumption, and in doing so produce a bound on the matrix level one needs to check.

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\text {min }}(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.

When does $\min =\max$?

In the language of operator systems and cones, Fritz, Netzer, and Thom proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)
Suppose $K \subset \mathbb{R}^{d}$ is polyhedral. Then $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$ if and only if K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K. We remove the polyhedral assumption, and in doing so produce a bound on the matrix level one needs to check.

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\text {min }}(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.
3. K is a simplex.

When does $\min =\max ?$

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.
3. K is a simplex.

When does $\min =\max ?$

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\max }(K)=\mathcal{W}^{\text {min }}(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.
3. K is a simplex.

The key ingredients:
Invertible affine transformations T factor through $\mathcal{W}^{\text {max }}$ and $\mathcal{W}^{\text {min }}$.

When does $\min =\max ?$

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\min }(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.
3. K is a simplex.

The key ingredients:
Invertible affine transformations T factor through $\mathcal{W}^{\text {max }}$ and $\mathcal{W}^{\text {min }}$.
Palmon: If K is not a simplex, then there is an invertible affine transformation T and a constant $0<C<d$ such that $T(K) \subseteq \overline{\mathbb{B}}^{d} \subseteq C \cdot T(K)$.

When does $\min =\max ?$

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\text {min }}(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.
3. K is a simplex.

The key ingredients:
Invertible affine transformations T factor through $\mathcal{W}^{\text {max }}$ and $\mathcal{W}^{\text {min }}$.
Palmon: If K is not a simplex, then there is an invertible affine transformation T and a constant $0<C<d$ such that $T(K) \subseteq \overline{\mathbb{B}}^{d} \subseteq C \cdot T(K)$.
Don't want to contradict that $\theta\left(\overline{\mathbb{B}}^{d}\right)=d$ from DDSS!!

When does $\min =\max ?$

Theorem

Let $K \subset \mathbb{R}^{d}$ be any compact convex set. Then the following are equivalent.

1. $\mathcal{W}^{\text {max }}(K)=\mathcal{W}^{\text {min }}(K)$.
2. $\mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K)$.
3. K is a simplex.

The key ingredients:
Invertible affine transformations T factor through $\mathcal{W}^{\text {max }}$ and $\mathcal{W}^{\text {min }}$.
Palmon: If K is not a simplex, then there is an invertible affine transformation T and a constant $0<C<d$ such that $T(K) \subseteq \overline{\mathbb{B}}^{d} \subseteq C \cdot T(K)$.
Don't want to contradict that $\theta\left(\overline{\mathbb{B}}^{d}\right)=d$ from DDSS!! Plus, matrix dimension 2^{d-1} is the maximum used in that estimate.

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\max }(\Pi)
$$

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\max }(\Pi)=\mathcal{W}^{\min }(\Pi)
$$

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\max }(\Pi)=\mathcal{W}^{\min }(\Pi) \subseteq \mathcal{W}^{\min }(L)
$$

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\max }(\Pi)=\mathcal{W}^{\min }(\Pi) \subseteq \mathcal{W}^{\min }(L)
$$

For what shapes (ball, diamond, cube, etc.) of the sets K and L, is simplex containment the only way a dilation hull is formed?

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\max }(\Pi)=\mathcal{W}^{\min }(\Pi) \subseteq \mathcal{W}^{\min }(L)
$$

For what shapes (ball, diamond, cube, etc.) of the sets K and L, is simplex containment the only way a dilation hull is formed?

Example

We know that $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subset \sqrt{2} \cdot \mathcal{W}^{\text {min }}\left([-1,1]^{2}\right)$, but there is no triangle Π with $[-1,1]^{2} \subseteq \Pi \subseteq \sqrt{2} \cdot[-1,1]^{2}$.

Easy Consequences of Simplex Containment

If Π is a simplex and $K \subseteq \Pi \subseteq L$, then L is a dilation hull for K :

$$
\mathcal{W}^{\max }(K) \subseteq \mathcal{W}^{\max }(\Pi)=\mathcal{W}^{\min }(\Pi) \subseteq \mathcal{W}^{\min }(L)
$$

For what shapes (ball, diamond, cube, etc.) of the sets K and L, is simplex containment the only way a dilation hull is formed?

Example

We know that $\mathcal{W}^{\max }\left([-1,1]^{2}\right) \subset \sqrt{2} \cdot \mathcal{W}^{\text {min }}\left([-1,1]^{2}\right)$, but there is no triangle Π with $[-1,1]^{2} \subseteq \Pi \subseteq \sqrt{2} \cdot[-1,1]^{2}$.

The ball tells a different story:

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Note that $\left(F_{1}, \ldots, F_{d}\right) \in \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ by an anticommutation $\left(\ell^{2}\right)$ norm estimate.

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Note that $\left(F_{1}, \ldots, F_{d}\right) \in \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ by an anticommutation $\left(\ell^{2}\right)$ norm estimate.

Theorem

The following are equivalent.

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Note that $\left(F_{1}, \ldots, F_{d}\right) \in \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ by an anticommutation $\left(\ell^{2}\right)$ norm estimate.

Theorem

The following are equivalent.

$$
\text { 1. } \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right) \subseteq \mathcal{W}^{\text {min }}\left(y+C \cdot \overline{\mathbb{B}}_{2}^{d}\right)
$$

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} l\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Note that $\left(F_{1}, \ldots, F_{d}\right) \in \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ by an anticommutation $\left(\ell^{2}\right)$ norm estimate.

Theorem

The following are equivalent.

$$
\begin{aligned}
& \text { 1. } \mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right) \subseteq \mathcal{W}^{\min }\left(y+C \cdot \overline{\mathbb{B}}_{2}^{d}\right) \\
& \text { 2. } C \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
\end{aligned}
$$

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Note that $\left(F_{1}, \ldots, F_{d}\right) \in \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ by an anticommutation $\left(\ell^{2}\right)$ norm estimate.

Theorem

The following are equivalent.

1. $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right) \subseteq \mathcal{W}^{\text {min }}\left(y+C \cdot \overline{\mathbb{B}}_{2}^{d}\right)$
2. $C \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1$
3. There is a simplex Π with $\overline{\mathbb{B}}_{2}^{d} \subseteq \Pi \subseteq y+C \cdot \overline{\mathbb{B}}_{2}^{d}$

Dilating a ball to a ball

Example

There exists a tuple $\left(F_{1}, \ldots, F_{d}\right)$ of pairwise anticommuting, self-adjoint, unitary, $2^{d-1} \times 2^{d-1}$ matrices such that for any $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$,

$$
\left\|\left(F_{1}-y_{1} I\right) \otimes F_{1}+\ldots+\left(F_{d}-y_{d} I\right) \otimes F_{d}\right\| \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1
$$

Note that $\left(F_{1}, \ldots, F_{d}\right) \in \mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ by an anticommutation $\left(\ell^{2}\right)$ norm estimate.

Theorem

The following are equivalent.

1. $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right) \subseteq \mathcal{W}^{\text {min }}\left(y+C \cdot \overline{\mathbb{B}}_{2}^{d}\right)$
2. $C \geq \sqrt{\|y\|^{2}+(d-1)^{2}}+1$
3. There is a simplex Π with $\overline{\mathbb{B}}_{2}^{d} \subseteq \Pi \subseteq y+C \cdot \overline{\mathbb{B}}_{2}^{d}$

It is easy to add in a shift and scale of the ball $\overline{\mathbb{B}}_{d}^{2}$ on the left side, too.

Consequences about Minimal Dilation Hulls

Corollary

There is no ℓ^{2}-ball which is a minimal dilation hull of another ℓ^{2}-ball.

Consequences about Minimal Dilation Hulls

Corollary

There is no ℓ^{2}-ball which is a minimal dilation hull of another ℓ^{2}-ball. Therefore, minimal dilation hulls of a set K do not have to preserve symmetry or shape properties of K!

Consequences about Minimal Dilation Hulls

Corollary

There is no ℓ^{2}-ball which is a minimal dilation hull of another ℓ^{2}-ball. Therefore, minimal dilation hulls of a set K do not have to preserve symmetry or shape properties of K!

Corollary

The diamond $d \cdot D_{d}=d \cdot \overline{\mathbb{B}}_{1}^{d}$ is a minimal dilation hull for $\overline{\mathbb{B}}_{2}^{d}$.

Consequences about Minimal Dilation Hulls

Corollary

There is no ℓ^{2}-ball which is a minimal dilation hull of another ℓ^{2}-ball. Therefore, minimal dilation hulls of a set K do not have to preserve symmetry or shape properties of K!

Corollary

The diamond $d \cdot D_{d}=d \cdot \overline{\mathbb{B}}_{1}^{d}$ is a minimal dilation hull for $\overline{\mathbb{B}}_{2}^{d}$.

Corollary

The shape of minimal dilation hulls of K is not necessarily unique!

Consequences about Minimal Dilation Hulls

Corollary

There is no ℓ^{2}-ball which is a minimal dilation hull of another ℓ^{2}-ball. Therefore, minimal dilation hulls of a set K do not have to preserve symmetry or shape properties of K!

Corollary

The diamond $d \cdot D_{d}=d \cdot \overline{\mathbb{B}}_{1}^{d}$ is a minimal dilation hull for $\overline{\mathbb{B}}_{2}^{d}$.

Corollary

The shape of minimal dilation hulls of K is not necessarily unique! Is any circumscribing simplex of K a minimal dilation hull of K ?

Consequences about Minimal Dilation Hulls

Corollary

There is no ℓ^{2}-ball which is a minimal dilation hull of another ℓ^{2}-ball. Therefore, minimal dilation hulls of a set K do not have to preserve symmetry or shape properties of K!

Corollary

The diamond $d \cdot D_{d}=d \cdot \overline{\mathbb{B}}_{1}^{d}$ is a minimal dilation hull for $\overline{\mathbb{B}}_{2}^{d}$.

Corollary

The shape of minimal dilation hulls of K is not necessarily unique! Is any circumscribing simplex of K a minimal dilation hull of K ? (We don't even know this when K is the ball!)

A Special Case for Circumscribing Simplices

Definition

$K \subset \mathbb{R}^{d}$ is simplex-pointed at x if $x \in K$ and there is an open set $O \subseteq \mathbb{R}^{d}$ such that $x \in O$ and $\overline{O \cap K}$ is a d-simplex.

Theorem

Suppose that K is simplex-pointed at x, and Δ is a simplex containing K. If x is a vertex of Δ, the edges of Δ based at x point in the same direction as those of $\overline{O \cap K}$, and there is a point $y \in K$ in the interior of the face F of Δ which excludes x, then Δ is a minimal dilation hull of K.

This is a ridiculously specific example of a circumscribing simplex, but it occurs at least once in nature for each $p \geq 1$:

Corollary

Let $\overline{\mathbb{B}}_{p,+}^{d}$ denote the positive section of the ℓ^{p} ball in \mathbb{R}^{d}. Then $d^{1-1 / p} \cdot \overline{\mathbb{B}}_{1,+}^{d}$ is a minimal dilation hull of $\overline{\mathbb{B}}_{p,+}^{d}$. Further, $\theta\left(\overline{\mathbb{B}}_{p,+}^{d}\right)=d^{1-1 / p}$.

Thank you!

(2 Bonus Slides follow - these were not used in the actual talk)

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Recall that
$\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K) \Longleftrightarrow \mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K) \Longleftrightarrow K$ is a simplex.

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Recall that
$\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K) \Longleftrightarrow \mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K) \Longleftrightarrow K$ is a simplex.
. . . but is 2^{d-1} really the smallest level one needs to check?

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Recall that
$\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K) \Longleftrightarrow \mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K) \Longleftrightarrow K$ is a simplex.
. . . but is 2^{d-1} really the smallest level one needs to check?

Corollary

If K is simplex-pointed at some point $x \in K$, then

$$
K \text { is actually a simplex } \Longleftrightarrow \mathcal{W}_{2}^{\max }(K)=\mathcal{W}_{2}^{\min }(K)
$$

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Recall that
$\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K) \Longleftrightarrow \mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K) \Longleftrightarrow K$ is a simplex.
. . . but is 2^{d-1} really the smallest level one needs to check?

Corollary

If K is simplex-pointed at some point $x \in K$, then

$$
K \text { is actually a simplex } \Longleftrightarrow \mathcal{W}_{2}^{\max }(K)=\mathcal{W}_{2}^{\min }(K)
$$

Approximation arguments don't seem to work.

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Recall that
$\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K) \Longleftrightarrow \mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K) \Longleftrightarrow K$ is a simplex.
. . . but is 2^{d-1} really the smallest level one needs to check?

Corollary

If K is simplex-pointed at some point $x \in K$, then

$$
K \text { is actually a simplex } \Longleftrightarrow \mathcal{W}_{2}^{\max }(K)=\mathcal{W}_{2}^{\min }(K) .
$$

Approximation arguments don't seem to work. (Same goes for the method of removing "polyhedral" from FNT - it's not an approximation argument.)

Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive operators, and manipulate dilations of projections with disjoint ranges.

Recall that
$\mathcal{W}^{\max }(K)=\mathcal{W}^{\min }(K) \Longleftrightarrow \mathcal{W}_{2^{d-1}}^{\max }(K)=\mathcal{W}_{2^{d-1}}^{\min }(K) \Longleftrightarrow K$ is a simplex.
. . . but is 2^{d-1} really the smallest level one needs to check?

Corollary

If K is simplex-pointed at some point $x \in K$, then

$$
K \text { is actually a simplex } \Longleftrightarrow \mathcal{W}_{2}^{\max }(K)=\mathcal{W}_{2}^{\min }(K) .
$$

Approximation arguments don't seem to work. (Same goes for the method of removing "polyhedral" from FNT - it's not an approximation argument.)

Bonus Slide 2: An Anticommuting Dilation Problem

Many of the estimates involving $\mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right)$ reduce to the case of these $2^{d-1} \times 2^{d-1}$ self-adjoint pairwise anticommuting unitaries F_{1}, \ldots, F_{d} (Pauli matrices).

Bonus Slide 2: An Anticommuting Dilation Problem

Many of the estimates involving $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ reduce to the case of these $2^{d-1} \times 2^{d-1}$ self-adjoint pairwise anticommuting unitaries F_{1}, \ldots, F_{d} (Pauli matrices).

$$
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right)=\mathcal{W}\left(F_{1}, \ldots, F_{d}\right) \quad ? ? ?
$$

Bonus Slide 2: An Anticommuting Dilation Problem

Many of the estimates involving $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ reduce to the case of these $2^{d-1} \times 2^{d-1}$ self-adjoint pairwise anticommuting unitaries F_{1}, \ldots, F_{d} (Pauli matrices).

$$
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right)=\mathcal{W}\left(F_{1}, \ldots, F_{d}\right) \quad ? ? ?
$$

This is known for $d=2$ (done by HKMS). Note the tuple $\left(F_{1}, \ldots, F_{d}\right)$ is universal for the relations it satisfies.

Bonus Slide 2: An Anticommuting Dilation Problem

Many of the estimates involving $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ reduce to the case of these $2^{d-1} \times 2^{d-1}$ self-adjoint pairwise anticommuting unitaries F_{1}, \ldots, F_{d} (Pauli matrices).

$$
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right)=\mathcal{W}\left(F_{1}, \ldots, F_{d}\right) \quad ? ? ?
$$

This is known for $d=2$ (done by HKMS). Note the tuple $\left(F_{1}, \ldots, F_{d}\right)$ is universal for the relations it satisfies.

By Stinespring dilation, the question is asking "Does every tuple in $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ admit a dilation of self-adjoint pairwise anticommuting unitaries?"

Bonus Slide 2: An Anticommuting Dilation Problem

Many of the estimates involving $\mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right)$ reduce to the case of these $2^{d-1} \times 2^{d-1}$ self-adjoint pairwise anticommuting unitaries F_{1}, \ldots, F_{d} (Pauli matrices).

$$
\mathcal{W}^{\max }\left(\overline{\mathbb{B}}_{2}^{d}\right)=\mathcal{W}\left(F_{1}, \ldots, F_{d}\right) \quad ? ? ?
$$

This is known for $d=2$ (done by HKMS). Note the tuple $\left(F_{1}, \ldots, F_{d}\right)$ is universal for the relations it satisfies.

By Stinespring dilation, the question is asking "Does every tuple in $\mathcal{W}^{\text {max }}\left(\overline{\mathbb{B}}_{2}^{d}\right)$ admit a dilation of self-adjoint pairwise anticommuting unitaries?"'

Other relations? Other finitely presented universal C^{*}-algebras?

