
Matrix Convex Sets and Dilations

Ben Passer, joint with Orr Shalit and Baruch Solel

Technion-Israel Institute of Technology

2017 MVOT Conference
for Baruch Solel’s 65th Birthday

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

Compressions and Dilations

X = (X1, . . . ,Xd) ∈ B(H)d

N = (N1, . . . ,Nd) ∈ B(K)d

Definition
X is a compression of N if for some isometric embedding V : H → K,

Xi = V ∗NiV , i = 1, . . . d .

Equivalently, N is a dilation of X , denoted X ≺ N.

Visualizing a dilation:

Ni =

(
Xi ∗
∗ ∗

)
We want to start with generic/bad X and reach a “pleasant” dilation N.
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Background

A Woefully Incomplete List of Dilation Theorems

Theorem (Sz.-Nagy)

If T ∈ B(H) is a contraction, then there is an isometry V : H → K and a
unitary U ∈ B(K) such that

Tm = V ∗UmV for all m ≥ 0

Theorem (Ando)

For any pair of commuting contractions T1,T2 ∈ B(H), there exist a pair
of commuting unitaries U1,U2 ∈ B(K) and an isometry V : H → K with

Tm
1 T n

2 = V ∗(Um
1 Un

2 )V for all m, n ≥ 0

Theorem (Halmos)

If T ∈ B(H) is a contraction, then U :=

(
T

√
1− TT ∗√

1− T ∗T −T ∗
)

is a

unitary dilation of T . (Bonus: this procedure preserves self-adjointness.)

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

A Woefully Incomplete List of Dilation Theorems
Theorem (Sz.-Nagy)

If T ∈ B(H) is a contraction, then there is an isometry V : H → K and a
unitary U ∈ B(K) such that

Tm = V ∗UmV for all m ≥ 0

Theorem (Ando)

For any pair of commuting contractions T1,T2 ∈ B(H), there exist a pair
of commuting unitaries U1,U2 ∈ B(K) and an isometry V : H → K with

Tm
1 T n

2 = V ∗(Um
1 Un

2 )V for all m, n ≥ 0

Theorem (Halmos)

If T ∈ B(H) is a contraction, then U :=

(
T

√
1− TT ∗√

1− T ∗T −T ∗
)

is a

unitary dilation of T . (Bonus: this procedure preserves self-adjointness.)

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

A Woefully Incomplete List of Dilation Theorems
Theorem (Sz.-Nagy)

If T ∈ B(H) is a contraction, then there is an isometry V : H → K and a
unitary U ∈ B(K) such that

Tm = V ∗UmV for all m ≥ 0

Theorem (Ando)

For any pair of commuting contractions T1,T2 ∈ B(H), there exist a pair
of commuting unitaries U1,U2 ∈ B(K) and an isometry V : H → K with

Tm
1 T n

2 = V ∗(Um
1 Un

2 )V for all m, n ≥ 0

Theorem (Halmos)

If T ∈ B(H) is a contraction, then U :=

(
T

√
1− TT ∗√

1− T ∗T −T ∗
)

is a

unitary dilation of T . (Bonus: this procedure preserves self-adjointness.)

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

A Woefully Incomplete List of Dilation Theorems
Theorem (Sz.-Nagy)

If T ∈ B(H) is a contraction, then there is an isometry V : H → K and a
unitary U ∈ B(K) such that

Tm = V ∗UmV for all m ≥ 0

Theorem (Ando)

For any pair of commuting contractions T1,T2 ∈ B(H), there exist a pair
of commuting unitaries U1,U2 ∈ B(K) and an isometry V : H → K with

Tm
1 T n

2 = V ∗(Um
1 Un

2 )V for all m, n ≥ 0

Theorem (Halmos)

If T ∈ B(H) is a contraction, then U :=

(
T

√
1− TT ∗√

1− T ∗T −T ∗
)

is a

unitary dilation of T .

(Bonus: this procedure preserves self-adjointness.)

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

A Woefully Incomplete List of Dilation Theorems
Theorem (Sz.-Nagy)

If T ∈ B(H) is a contraction, then there is an isometry V : H → K and a
unitary U ∈ B(K) such that

Tm = V ∗UmV for all m ≥ 0

Theorem (Ando)

For any pair of commuting contractions T1,T2 ∈ B(H), there exist a pair
of commuting unitaries U1,U2 ∈ B(K) and an isometry V : H → K with

Tm
1 T n

2 = V ∗(Um
1 Un

2 )V for all m, n ≥ 0

Theorem (Halmos)

If T ∈ B(H) is a contraction, then U :=

(
T

√
1− TT ∗√

1− T ∗T −T ∗
)

is a

unitary dilation of T . (Bonus: this procedure preserves self-adjointness.)

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

HKMS Dilation Theorem

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space H.

There exists a constant ϑn, a Hilbert space K, an isometry V : H → K,
and a commuting family C in the unit ball of B(K)sa such that for every
tuple of self-adjoint contractions A ∈ B(H)dsa, there exists N ∈ C with

1
ϑn

A = V ∗NV

They also show find the optimal ϑn, and show

ϑn ∼
√
πn

2
.

The dimension of matrices is fixed at n × n, but the number of matrices d
is NOT fixed.
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Background

DDSS Dilation Setup
Davidson, Dor-On, Shalit, and Solel considered the opposite problem:

allow
any size matrices (or operators), but fix the number of operators, d .
Their results are best phrased in the language of matrix convex sets:

S =
∞⋃
n=1

Sn ⊂
∞⋃
n=1

(Mn(C))dsa

Definition
The set S is matrix convex if both conditions hold:

1. If A ∈ Sm and B ∈ Sn, then A⊕ B ∈ Sm+n.
2. If A(1), . . . ,A(k) ∈ Sn, and V1, . . . ,Vk are m × n matrices with
k∑

i=1
ViV

∗
i = Im, then

k∑
i=1

ViA
(i)V ∗i ∈ Sm.

This implies that S is an nc set (plus, use k = 1 to get simultaneous
unitary conjugations), and that each level Sn is convex (use Vi =

√
ti In).
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Background

DDSS Dilation Setup

Definition

The set S =
∞⋃
n=1
Sn of d-tuples is matrix convex if both conditions hold:

1. If A ∈ Sm and B ∈ Sn, then A⊕ B ∈ Sm+n.
2. If A(1), . . . ,A(k) ∈ Sn and V1, . . . ,Vk are m × n matrices with
k∑

i=1
ViV

∗
i = Im, then

k∑
i=1

ViA
(i)V ∗i ∈ Sm.

A matrix convex set S is automatically closed under compression.

As before, the first level K = S1 ⊂ Rd is convex (as is every level).

How much information does K tell you about S?

Study the minimal and maximal matrix convex sets with ground level K .
We assume K is compact.
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Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).

The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K

⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K

compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state,

and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states,

but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Setup
The ground level of a matrix convex set is K ⊂ Rd (compact and convex).
The smallest option:

Definition

Wmin(K ) = {T : ∃ a commuting normal dilation N of T , σ(N) ⊂ K}.

(x1, . . . , xd) ∈ K
⊕
=⇒ tuples of diagonal matrices, σ ⊂ K

conjugation
======⇒

commuting normal tuples, σ ⊂ K
compression
=======⇒ the current definition.

The largest option:

Definition
Wmax(K ) = {T :

∑
aiTi ≤ c · I for every real linear inequality

∑
aixi ≤ c

that is satisfied for every (x1, . . . , xd) ∈ K}.

Violating a linear inequality is detected by a state, and matrix convex sets
are closed under applications of states, but the first level is exactly K .

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations



Background

DDSS Dilation Theorem
Conclusion: for compact and convex K and L, asking whether

Wmax(K ) ⊆ Wmin(L)

(perhaps with L a multiple of K ) is a very general matrix dilation problem.

“If a tuple of matrices merely satisfies the linear inequalities that determine
K , must it have a commuting normal dilation with joint spectrum in L?”

Theorem (Davidson, Dor-On, Shalit, Solel)

Suppose that K ⊆ Rd where K has nice symmetry or invariance properties.
Then

Wmax(K ) ⊂ d · Wmin(K ).

This theorem about matrices is not a theorem about matrices. It is also a
theorem about matrices.

Ben Passer, joint with Orr Shalit and Baruch Solel Matrix Convex Sets and Dilations
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Background

Explanations

This slide should be skipped unless someone asks a question.

Symmetry/invariance properties

There exist k real d × d matrices λ(1), . . . , λ(k) of rank one such that
Id ∈ conv{λ(1), . . . , λ(k)} and

λ(m)K ⊆ d · K , m = 1, . . . , k

e.g., invariant under permutations and sign changes of coordinates.
or more generally: invariant under projections onto orthonormal basis.
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Background

Examples, still from DDSS

Bd
= closed unit ball of `2 space in Rd

∆d = standard d-simplex: the convex hull of 0, e1, . . . , ed ∈ Rd

Dd = d-dimensional diamond: the convex hull of ± e1, . . . ,±ed ∈ Rd

Example (Davidson, Dor-On, Shalit, and Solel)

Wmax(Bd
) ⊆ d · Wmin(Bd

) Wmax(∆) ⊆ d · Wmin(∆)

∀C , Wmax(e1 + Bd
) 6⊆ C · Wmin(e1 + Bd

)

Wmax([−1, 1]d) ⊆ d · Wmin(Dd) Wmax(Dd) ⊆ 1 · Wmin([−1, 1]d)
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Main Results

What’s New?
Definition

θ(K ) := inf{C > 0 :Wmax(K ) ⊆ C · Wmin(K )}

Moreover, we call a compact convex set L a dilation hull of K if

Wmax(K ) ⊆ Wmin(L)

and say L is minimal if L cannot be replaced with a proper cc subset.

1. Computed θ(·) for `p-balls and their positive sections (some proofs
include free parameters, so dilations don’t have to treat every member
of a tuple equally).
2. Characterized when K ⊆ Rd has θ(K ) = 1 (with some control).
3. Characterized when an `2-ball is a dilation hull for another `2-ball.
4. Computed some examples of minimal dilation hulls, and made some
general conclusions about minimal dilation hulls using the above.
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Main Results

The Main Tool
We make use of anticommutation in our estimates

(fair and balanced).

Lemma
If x1, . . . , xd are pairwise anticommuting, self-adjoint elements of a
C ∗-algebra, then

||x1 + . . .+ xd || =
√
||x2

1 + . . .+ x2
d || ≤

√
||x1||2 + . . .+ ||xd ||2

So, linear inequalities are easily satisfied by anticommuting elements: `2

estimates are better than `1 and membership in Wmax is easy. But . . .

Example

There exists a tuple (F1, . . . ,Fd) of pairwise anticommuting, self-adjoint,
unitary, 2d−1 × 2d−1 matrices such that for any (y1, . . . , yd) ∈ Rd ,

||(F1 − y1I )⊗ F1 + . . .+ (Fd − yd I )⊗ Fd || ≥
√
||y ||2 + (d − 1)2 + 1.

These matrices are great terrible great.
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Main Results

Cube Dilation
Theorem
For a1, . . . , ad > 0,

Wmax([−1, 1]d) ⊆ Wmin([−a1, a1]× · · · × [−ad , ad ])

holds if and only if
∑ 1

a2
j
≤ 1.

In particular, θ([−1, 1]d) =
√
d .

Corollary

While there exist minim*al* dilation hulls for K , minim*um* dilation hulls
might not exist!

Corollary

Let Bd
p denote the closed unit ball of `p-space in Rd . Then

θ(Bd
p) = d1−|1/2−1/p|
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Main Results

Explicit Cube Dilation (d = 2, as d > 2 is similar)

We seek Wmax([−1, 1]2) ⊆ Wmin([−a1, a1]× [−a2, a2]) when 1
a2
1

+ 1
a2
2
≤ 1.

Let X1 and X2 be self-adjoint contractions. Then

Yi :=

 Xi

√
1− X 2

i√
1− X 2

i −Xi


are self-adjoint and unitary. This produces conjugation actions of order 2,
i.e. decompositions of the Yi into commuting and anticommuting pieces.
Correct the anticommutation to making commuting dilations.

N1 =

(
Y1

1
2 [Y2,Y1]

1
2 [Y1,Y2] Y1

)
N2 =

(
Y2 I
I −Y2

)
Anticommuting pieces: ||N1|| ≤

√
12 + 12 =

√
2, ||N2|| ≤

√
12 + 12 =

√
2.
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Main Results

When does min = max?
In the language of operator systems and cones, Fritz, Netzer, and Thom
proved the following.

Theorem (Fritz, Netzer, and Thom + translation into MCS setting)

Suppose K ⊂ Rd is polyhedral. Then Wmax(K ) =Wmin(K ) if and only if
K is a simplex.

Their proof uses induction, focusing on the vertices and faces of K . We
remove the polyhedral assumption, and in doing so produce a bound on the
matrix level one needs to check.

Theorem

Let K ⊂ Rd be any compact convex set. Then the following are equivalent.
1. Wmax(K ) =Wmin(K ).
2. Wmax

2d−1(K ) =Wmin
2d−1(K ).

3. K is a simplex.
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Main Results

When does min = max?

Theorem

Let K ⊂ Rd be any compact convex set. Then the following are equivalent.
1. Wmax(K ) =Wmin(K ).
2. Wmax

2d−1(K ) =Wmin
2d−1(K ).

3. K is a simplex.

The key ingredients:
Invertible affine transformations T factor through Wmax and Wmin.
Palmon: If K is not a simplex, then there is an invertible affine
transformation T and a constant 0 < C < d such that
T (K ) ⊆ Bd ⊆ C · T (K ).

Don’t want to contradict that θ(Bd
) = d from DDSS!! Plus, matrix

dimension 2d−1 is the maximum used in that estimate.
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Main Results

Easy Consequences of Simplex Containment

If Π is a simplex and K ⊆ Π ⊆ L, then L is a dilation hull for K :

Wmax(K ) ⊆ Wmax(Π) =Wmin(Π) ⊆ Wmin(L)

For what shapes (ball, diamond, cube, etc.) of the sets K and L, is simplex
containment the only way a dilation hull is formed?

Example

We know that Wmax([−1, 1]2) ⊂
√
2 · Wmin([−1, 1]2), but there is no

triangle Π with [−1, 1]2 ⊆ Π ⊆
√
2 · [−1, 1]2.

The ball tells a different story:
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Main Results

Dilating a ball to a ball

Example

There exists a tuple (F1, . . . ,Fd) of pairwise anticommuting, self-adjoint,
unitary, 2d−1 × 2d−1 matrices such that for any (y1, . . . , yd) ∈ Rd ,

||(F1 − y1I )⊗ F1 + . . .+ (Fd − yd I )⊗ Fd || ≥
√
||y ||2 + (d − 1)2 + 1.

Note that (F1, . . . ,Fd) ∈ Wmax(Bd
2 ) by an anticommutation (`2) norm

estimate.

Theorem
The following are equivalent.

1. Wmax(Bd
2 ) ⊆ Wmin(y + C · Bd

2 )

2. C ≥
√
||y ||2 + (d − 1)2 + 1

3. There is a simplex Π with Bd
2 ⊆ Π ⊆ y + C · Bd

2

It is easy to add in a shift and scale of the ball B2
d on the left side, too.
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Main Results

Consequences about Minimal Dilation Hulls

Corollary

There is no `2-ball which is a minimal dilation hull of another `2-ball.

Therefore, minimal dilation hulls of a set K do not have to preserve
symmetry or shape properties of K !

Corollary

The diamond d · Dd = d · Bd
1 is a minimal dilation hull for Bd

2 .

Corollary
The shape of minimal dilation hulls of K is not necessarily unique!

Is any circumscribing simplex of K a minimal dilation hull of K? (We don’t
even know this when K is the ball!)
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Main Results

A Special Case for Circumscribing Simplices
Definition

K ⊂ Rd is simplex-pointed at x if x ∈ K and there is an open set O ⊆ Rd

such that x ∈ O and O ∩ K is a d-simplex.

Theorem
Suppose that K is simplex-pointed at x , and ∆ is a simplex containing K .
If x is a vertex of ∆, the edges of ∆ based at x point in the same direction
as those of O ∩ K , and there is a point y ∈ K in the interior of the face F
of ∆ which excludes x , then ∆ is a minimal dilation hull of K .

This is a ridiculously specific example of a circumscribing simplex, but it
occurs at least once in nature for each p ≥ 1:

Corollary

Let Bd
p,+ denote the positive section of the `p ball in Rd . Then

d1−1/p ·Bd
1,+ is a minimal dilation hull of Bd

p,+. Further, θ(Bd
p,+) = d1−1/p.
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Thank you!

(2 Bonus Slides follow - these were not used in the actual talk)
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Bonus Slide 1: Proof Idea and a Consequence

Main idea of proof: use an affine transformation to talk about positive
operators, and manipulate dilations of projections with disjoint ranges.

Recall that

Wmax(K ) =Wmin(K ) ⇐⇒ Wmax
2d−1(K ) =Wmin

2d−1(K ) ⇐⇒ K is a simplex.

. . . but is 2d−1 really the smallest level one needs to check?

Corollary
If K is simplex-pointed at some point x ∈ K , then

K is actually a simplex ⇐⇒ Wmax
2 (K ) =Wmin

2 (K ).

Approximation arguments don’t seem to work. (Same goes for the method
of removing “polyhedral” from FNT - it’s not an approximation argument.)
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2 (K ) =Wmin

2 (K ).

Approximation arguments don’t seem to work. (Same goes for the method
of removing “polyhedral” from FNT - it’s not an approximation argument.)
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Bonus Slide 2: An Anticommuting Dilation Problem

Many of the estimates involving Wmax(Bd
2 ) reduce to the case of these

2d−1 × 2d−1 self-adjoint pairwise anticommuting unitaries F1, . . . ,Fd
(Pauli matrices).

Wmax(Bd
2 ) =W(F1, . . . ,Fd) ???

This is known for d = 2 (done by HKMS). Note the tuple (F1, . . . ,Fd) is
universal for the relations it satisfies.

By Stinespring dilation, the question is asking “Does every tuple in
Wmax(Bd

2 ) admit a dilation of self-adjoint pairwise anticommuting
unitaries?”

Other relations? Other finitely presented universal C ∗-algebras?
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