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Introduction



The Drury-Arveson space was introduced by Drury in 1978 and
in late 1990s Arveson studied the space systematically.

Stefen Drury William Arveson

The story of the space goes back to the celebrated von Neumann
inequality for contractions.



VON NEUMANN INEQUALITY

A linear operator A on a Hilbert space H is called a contraction
if ‖A‖ ≤ 1, i.e., if ‖Ax‖ ≤ ‖x‖ for every vector x ∈ H.

von Neumann inequality (1951)

If A is a contraction, then

‖p(A)‖ ≤ sup
|z|≤1
|p(z)|

for every polynomial p.



GENERALIZATION TO OPERATOR TUPLES

Suppose that (A1, . . . ,Ad) is a commuting tuple of operators and
each Ai is a contraction, i = 1, . . . ,n. Then one might expect that

(∗) ‖p(A1, . . . ,Ad)‖ ≤ sup
|z1|≤1,...,|zd|≤1

|p(z1, . . . , zd)|

holds for every d-variable polynomial p.

I This is true in the case d = 2 (Ando, 1963) - proved by
dilation theorem.

I It is false for d ≥ 3 in general. (Kaijser and Varopoulos,
1974; Crabb-Davie 1975; Lotto-Steger, 1994; Holbrook,
2001)



GENERALIZATION TO OPERATOR TUPLES

This raises the following issues:

•What is the right notion of contraction for a commuting tuple
of operators?

•What is the right domain on which to consider the problem?

• What is the right norm for the “right-hand side”? (Note that
the right-hand side of (∗) is ‖p‖∞, the supremum norm of p on
the domain in question. Varopoulos’ construction shows that
for general d, ‖p‖∞ is too small.)

All of these were figured out in late 1970s.



GENERALIZATION TO OPERATOR TUPLES

I A.Lubin

I 1976: “Models for commuting contractions.” – developed a
dilation theorem for row contractions but did not mention
von Neumann inequality

I 1978: “A subnormal semigroup without normal extension.”

I 1978: “Research notes on von Neumann inequality.”

I S. Drury

I 1978: “A generalization of von Neumann’s inequality to the
complex ball”



ROW CONTRACTIONS

A d-tuple A is said to be commuting if [Ai,Aj] = 0 for all i, j.

A commuting tuple A = (A1, . . . ,Ad) is said to be a row
contraction if A1A∗1 + · · ·+ AdA∗d is a contraction.

Equivalently, (A1, . . . ,Ad) is a row contraction if

‖A1x1 + · · ·+ Adxd‖2 ≤ ‖x1‖2 + · · ·+ ‖xd‖2

for all x1, . . . , xd ∈ H. Note that this is stronger than requiring
that each individual Ai be a contraction, in fact much stronger.



GENERALIZED VON NEUMANN INEQUALITY

Drury (1978), Arveson (1998) : If (A1, . . . ,Ad) is a commuting
row contraction, then

‖p(A1, . . . ,Ad)‖ ≤ ‖p‖M = ‖p(Mz1 , . . . ,Mzd)‖

for every p ∈ C[z1, . . . , zd].

The right-hand side, ‖p‖M, has to be explained on the
Drury-Arveson space H2

d.



Drury-Arveson Space



BASIC SETTING AND NOTATION:

B = {z ∈ Cd : |z| < 1}, the unit ball in Cd.

S = {z ∈ Cd : |z| = 1}, the unit sphere in Cd .

dv = the volume measure on B with the normalization
v(B) = 1.

dσ = the spherical measure on S with the normalization
σ(S) = 1.
Standard multi-index notation:
For α = (α1, . . . , αd) ∈ Zd

+ and z = (z1, . . . , zd) ∈ B, we have

α! = α1! · · ·αd!,

|α| = α1 + · · ·+ αd,

zα = zα1
1 · · · z

αd
d .



BASIC SETTING AND NOTATION:

A(B) = the ball algebra, i.e. the collection of functions which

are analytic on B and continuous on the closed ball B.

L2
a(B, dv) : the Bergman space on B.

H2(S) : the Hardy space, which is a subspace of L2(S, dσ).

H2
d : the Drury-Arveson space.



DRURY-ARVESON SPACE H2
d

The space H2
d consists of holomorphic functions on B.

The inner product on H2
d is defined by

〈f , g〉 =
∑
α∈Zd

+

α!

|α|!
aαb̄α

for
f (z) =

∑
α∈Zd

+

aαzα and g(z) =
∑
α∈Zd

+

bαzα.

The H2
d norm is then

‖f‖ =
∑
α∈Zd

+

α!

|α|!
|aα|2



H2
d-NORM

The inner product or norm actually arises in several different
contexts. For example:

I Apolar bilinear form (19th century invariant theory and
differential algebra) / Revitalized by Rota et al.

I Bombieri norm or Bombieri-Weyl norm

I Kostlan norm



H2
d AS A RKHS

Arveson produced a model theory for row contractions (1998).

I He studied the dilation theory of a commuting contractive
d-tuple and came up with the d-tuple of symmetric left
creation operators on the symmetric Fock space.

I He observed that the symmetric Fock space is a
reproducing-kernel Hilbert space: For z ∈ B, define

Kz(w) =
1

1− 〈w, z〉
.

Kz is the reproducing kernel for H2
d.

I He showed that the norm on H2
d cannot be defined in terms

of any measure on Cd, but in a certain sense is maximal
among Hilbert space norms on polynomials over the ball.



H2
d IN DIFFERENT CONTEXTS

The Drury-Arveson space

I is the symmetric Fock space in d-variables, hence
I a quotient of the full Fock space, hence fits in

noncommutative Hardy space theory (Popescu), free
semigroup algebra theory (Davidson-Pitts) and

I a baby example of Muhly-Solel setting
I is an example of complete Nevanlinna-Pick interpolation

space
I is an example of Besov-Sobolev space
I belongs to a family of reproducing kernel Hilbert modules

For a comprehensive survey on one can check out the survey
written by Shalit: “Operator theory and function theory in Drury-
Arveson space”.



MULTIPLIERS OF H2
d

One of Arveson’s main contributions in his 1998 paper is the
introduction of multipliers for H2

d.

An f ∈ H2
d is said to be a multiplier of H2

d if

fg ∈ H2
d for every g ∈ H2

d.

We will writeM for the collection of multipliers of H2
d.

For every f ∈ M, the multiplication operator Mf is bounded on
H2

d by the closed graph theorem.

Obviously, we have C[z1, . . . , zd] ⊂M.



MULTIPLIER NORM

For each f ∈M, define

‖f‖M = ‖Mf‖ = sup{‖fg‖ : g ∈ H2
d, ‖g‖ ≤ 1}.

This is called the multiplier norm of f .

Arveson showed that when d ≥ 2, the collection of multipliers
of H2

d is strictly smaller than H∞, and the H∞ norm of a multi-
plier (even for a polynomial) in general does not dominate the
operator norm.

Arveson (1998): There is no L2 naturally associated with H2
d.

More specifically, the tuple (Mz1 , · · · ,Mzd) of multiplication by
the coordinate functions on H2

d (d-shift) is not jointly subnormal.



DRURY’S PROOF OF VON NEUMANN INEQUALITY

Recall von Neumann inequality:

(∗∗) ‖p(A1, . . . ,Ad)‖ ≤ ‖p‖M.

It is the multiplier norm of p ∈ C[z1, . . . , zd] that appears on the
right-hand side.



Drury’s proof: In order to prove

(∗∗) ‖p(A1, . . . ,Ad)‖ ≤ ‖p‖M,

it suffices to consider commuting tuples (A1, . . . ,Ad) for which
that is an r ∈ [0, 1) such that

〈(A1A∗1 + · · ·+ AdA∗d)x, x〉 ≤ r2‖x‖2, x ∈ H.

For such a tuple, we can resolve the identity operator 1 in the
form ∑

α∈Zd
+

|α|!
α!

Aα(1− A1A∗1 − · · · − AdA∗d)A∗α = 1.



This enables us to define an isometry Z : H → H2
d ⊗H:

(Zx)(z) =
∑
α∈Zd

+

|α|!
α!

(1− A1A∗1 − · · · − AdA∗d)1/2A∗αxzα.

It is then straightforward to verify that

Zp(A∗1, . . . ,A
∗
d) = (p(M∗z1

, . . . ,M∗zd
)⊗ 1)Z

for every p ∈ C[z1, . . . , zd]. This implies (∗∗).



ESSENTIAL NORM

The essential norm of an operator A on a Hilbert space H is de-
fined by

‖A‖ess = inf{‖A + K‖ : K is compact on H}.

Despite the fact that, when d ≥ 2, ‖p‖∞ does not dominate the
multiplier norm ‖p‖M = ‖Mp‖, Arveson showed in his 1998
paper that the identity

‖Mp‖ess = ‖p‖∞

holds for every p ∈ C[z1, . . . , zd].



ESSENTIAL NORM

Nevertheless:

F. and Xia. (2011): For multipliers f ∈ M in general, ‖f‖∞ does
not dominate the essential norm ‖Mf‖ess on H2

d if d ≥ 2. That is,
there is NO 0 < C <∞ such that

‖Mf‖ess ≤ C‖f‖∞ for every f ∈M.

This implies that there exist multipliers f of H2
d for which Mf fails

to be essentially hyponormal.



ESSENTIAL COMMUTATIVITY

Arveson (1998): For all i, j ∈ {1, . . . , d}, the commutators
[Mzi ,M

∗
zj

] are compact on H2
d. In fact, these operators belong to

the Schatten class Cp for p > d.

The corresponding result for the Hardy space is well known.
So perhaps one can interpret the above as saying that H2

d retains
some similarity to the Hardy space. Moreover, we have

F. and Xia. (2011): For every j ∈ {1, . . . , d} and every f ∈M, the
commutator [Mf ,M∗zj

] on H2
d belongs to the Schatten class Cp for

p > d. Furthermore, for each p > d, there is a 0 < C(p) <∞
such that

‖[Mf ,M∗zj
]‖p ≤ C(p)‖f‖M

for every multiplier f ∈M and every j ∈ {1, . . . , d}, where ‖ · ‖p
is the Schatten p-norm.



Recall that for each 1 ≤ p <∞, the Schatten class Cp consists of
operators A satisfying the condition

‖A‖p =
{

tr((A∗A)p/2)
}1/p

<∞.

If A ∈ Cp , then A is compact.
In terms of the s-dumbers s1(A), s2(A), ..., sj(A), ... of A, we have

‖A‖p =

 ∞∑
j=1

{sj(A)}p

1/p

.

To obtain our Schatten-class result mentioned above, we had to
use the fact that even though the tuple (Mz1 , · · · ,Mzd) is not
jointly subnormal, each individual Mzj actually is subnormal on
H2

d.



CARLESON MEASURE

A regular Borel measure dµ on B is said to be an Carleson mea-
sure for the Drury-Arveson space H2

d if there is a constant C such
that ∫

|h(z)|2dµ(z) ≤ C‖h‖2

for every h ∈ H2
d. In 2008, Arcozzi, Rochberg and Sawyer gave a

characterization for all the Carleson measures for H2
d.

This characterization is quite complicated, which can be inter-
preted as a reflection of the structure of H2

d.



CORONA THEOREM

Theorem (Costea, Sawyer and Wick 2008)

The corona theorem holds for the multiplier algebraM of the
Drury-Arveson space. That is, for g1, . . . , gk ∈M, if there is a
c > 0 such that

|g1(z)|+ · · ·+ |gk(z)| ≥ c

for every z ∈ B, then there exist f1, . . . , fk ∈M such that

f1g1 + · · ·+ fkgk = 1.

Note: One-function Corona theorem can be proved using more
elementary methods (F-Xia 2013, Richter-Sunkes 2016)



MORE RECENT DEVELOPMENTS
I Dilation theorem – Arveson, Müller-Vasilescu
I Nevanlinna-Pick type interpolation problems for

contractive multipliers ( Schur class multipliers) related to
H2

d have been intensively studied over the past 20 years .
I Commutant lifting theorem (Ball-Trent-Vinnikov,

Davidson-Le)
I Duality, convexity and peak interpolation in H2

d – Clouâtre
and Davidson 2016 have established analogues of classic
results of the ball algebra to the multiplier algebra.

I Henkin measure for H2
d – Clouâtre and Davidson 2016,

Hartz 2017
I Quasi-extremal multipliers of H2

d/ Aleksandrov-Clark
theory - Jury 2014/Jury-Martin 2017

I Connection between H2
d and Hilbert spaces of Dirichlet

series (McCarthy-Shalit)



Discussions on some problems



THE RECIPROCAL PROBLEM

This is a really elementary problem, but one to which we do not
have a general answer. This illustrates how little we know about
the Drury-Arveson space.

Question: Let f ∈ H2
d. Suppose that there is a c > 0 such that

|f (z)| ≥ c for every z ∈ B. Does it follow that 1/f ∈ H2
d?

The answer is “yes” for d = 2, 3 by an argument due to Richter
and Sundberg. The answer is “yes” with extra Bloch space con-
dition was proved by Richter and Sunkes.

But the problem is open for d ≥ 4.



MULTIPLIER CHARACTERIZATION

Let k ∈ N be such that 2k ≥ d. Then given any f ∈ H2
d, one can

define the measure dµf on B by the formula

(∗ ∗ ∗) dµf (z) = |(Rkf )(z)|2(1− |z|2)2k−ddv(z),

where R = z1∂1 + · · · + zd∂d, the radial derivative, and dv is the
normalized volume measure on B.

In 2000, Ortega and Fàbrega showed that f ∈ M if and only if
dµf is a Carleson measure for H2

d.

Recall that in 2008, Arcozzi, Rochberg and Sawyer characterized
all Carleson measures for H2

d.



So the combination of the result of Arcozzi, Rochberg and
Sawyer and the result of Ortega and Fàbrega is a characteriza-
tion of the membership f ∈M.

We have been trying to look for simpler or more direct, charac-
terization of the membership f ∈ M but there is no success so
far. Actually:

F. and Xia. (2015): There exists an f ∈ H2
d satisfying the condi-

tions f /∈M and
sup
|z|<1
‖fkz‖ <∞.

So it shows that the condition sup|z|<1 ‖fkz‖ < ∞ we desired
does not imply the membership f ∈M.



Our construction also yields the following negative result:

There does not exist any constant 0 < C <∞ such that the inequality

‖M∗f Mf −Mf M∗f ‖ ≤ C sup
|z|<1
‖(f − 〈fkz, kz〉)kz‖2

holds for every f ∈M, where Mf is the operator of multiplication by f
on H2

d.

The quantity ‖(f −〈fkz, kz〉)kz‖ is the “mean oscillation” of f ∈M
with respect to the normalized reproducing kernel of the Drury-
Arveson space. And, for those who are familiar with Hankel
operators, the commutator M∗f Mf −Mf M∗f is the Drury-Arveson
space analogue of

H∗f̄ Hf̄ .



Also we know that the norm inequality

(#) ‖Hϕ‖ ≤ C‖ϕ‖BMO,

holds in the setting of either the Hardy space of the unit sphere
or the Bergman space of the unit ball. In contrast, The above
negative result tells us that the Drury-Arveson space analogue
of (#) fails. This sets the Drury-Arveson space even farther
apart from the Hardy space and the Bergman space.



INVARIANT SUBSPACES

Arveson (2000): Let N be a closed linear subspace of H2
d that is

invariant under the multiplication by the polynomials. If N 6=
{0}, then d contains a nonzero multiplier of H2

d.

An immediate consequence: for invariant subspaces N1,N2 of
H2

d, if N1 6= {0} and N2 6= {0}, then N1 ∩N2 6= {0}.

Question: For d ≥ 2, do we have the analogue of this inter-
section property for invariant subspaces of the Hardy space or
Bergman space?

This is a rare situation where we actually know more about the
Drury-Arveson space than we know about the more familiar
Hardy space or Bergman space.



Reproducing Kernel HS

Drury Arveson

Kz(w) = 1
1−〈w,z〉

Hardy

Kz(w) = 1
(1−〈w,z〉)d

Bergman
Kz(w) = 1

(1−〈w,z〉)d+1

6

many operator-

theoretic problems

difficult

easy ?
difficult

easy

some

problems



A FAMILY OF RKHS H(t)

For each real number −d ≤ t < ∞, let H(t) be the Hilbert space
of analytic functions on B with the reproducing kernel

1
(1− 〈z,w〉)n+1+t .

Alternately, one can describe H(t) as the completion of
C[z1, . . . , zd] with respect to the norm ‖ · ‖t arising from the
inner product 〈·, ·〉t defined according to the following rules:
〈zα, zβ〉t = 0 whenever α 6= β,

〈zα, zα〉t =
α!∏|α|

j=1(n + t + j)

if α ∈ Zd
+\{0}, and 〈1, 1〉t = 1.



One can think of the parameter t as the “weight” of the space,
although t can be negative.

We have

H(0) = L2
a(B, dv), the Bergman space,

H(−1) = H2(S), the Hardy space,

H(−d) = H2
d, the Drury-Arveson space.

One can think of the Bergman space H(0) as a benchmark,
against which the other spaces in the family should be com-
pared.



REPRODUCING-KERNEL HILBERT MODULES

These spaces are all Hilbert modules over C[z1, . . . , zd] under the
identification of each f ∈ C[z1, . . . , zd] with the multiplication
operator Mf .

L2
a(B, dv) and H2(S) are actually Hilbert modules over the ball

algebra A(B), but H2
d is not.

A submodule is a closed linear subspaceM that is invariant un-
der Mz1 , . . . ,Mzd . We denote Mzi as Zi.

Survey on Hilbert module approach - “An introduction to Hilbert
module approach to multivariable operator theory” by Sarkar



Defect operators associated
with submodules



RESTRICTED MODULE OPERATORS

Here is another example of problem where Drury-Arveson case
is easier than Hardy/Bergman cases.

Given a submoduleM of a reproducing kernel Hilbert module
Ht, for example, the Hardy module, we have the restricted mod-
ule operators

ZM,i = Zi|M, i = 1, . . . ,n.

A natural question about the submodules is the Schatten
class membership, or the lack thereof, of the commutators
[Z∗M,i,ZM,j].



DEFECT OPERATOR

It is well known that if p > d, then [Z∗i ,Zj] ∈ Cp for all i, j ∈
{1, ..., d}.

It is also well known that for each i ∈ {1, ..., d}, [Z∗i ,Zi] /∈ Cd.

This leads to the natural question, what happens if we consider
ZM,1, ..., ZM,d instead of Z1, ..., Zd?

Given a submoduleM, let us denote

DM =

d∑
i=1

[Z∗M,i,ZM,i].



DRURY-ARVESON CASE

Theorem (F.-Xia 2011)

LetM be any submodule of the Drury-Arveson module H2
d. If

M 6= {0}, then there is a positive number ε = ε(M) > 0 such that

s1(DM) + ...+ sk(DM) ≥ εk(d−1)/d

for every k ∈ N. Consequently, DM does not belong to the Schatten
class Cd wheneverM 6= {0}.



HARDY CASE

Theorem (F.-Xia 2011)

LetM be any submodule of the Hardy module H2(S). IfM 6= {0},
then there is a positive number ε = ε(M) > 0 such that

s1(DM) + ...+ sk(DM) ≥ εk(d−1)/d

for every k ∈ N. Consequently, DM does not belong to the Schatten
class Cd wheneverM 6= {0}.



Remark. In the above theorems, the conclusion DM /∈ Cd is an
immediate consequence of the inequality

s1(DM) + ...+ sk(DM) ≥ εk(d−1)/d, k ∈ N

This is because, if 1 < p <∞ and if {ak} ∈ `
p
+, then

lim
k→∞

1
k(p−1)/p

k∑
j=1

aj = 0.



MOTIVATION FOR THE INVESTIGATION

The first motivation is related to what is now commonly referred
to as the Arveson conjecture. Simply stated, it is this:

Question. For a submodule M of H2
d, do the commutators

[Z∗M,i,ZM,j] belong to the Schatten class Cp for p > d?

Later, Douglas proposed the analogous problem for the
Bergman space.

From there it takes no imagination for one to think about the
case of the Hardy space H2(S), since all of these are reproducing-
kernel Hilbert spaces.



MOTIVATION FOR THE INVESTIGATION

In all these versions of the problem, one conspicuous feature is
the lower limit p > d that one sets for the Schatten class.

One might say that this lower limit is dictated by known exam-
ples. For instance, it is well known that [Z∗i ,Zi] /∈ Cd on H2(S)
and H2

d, and the same is also true on the Bergman space of the
ball B.

In other words, examples show that the lower limit p > d in
these conjectures is necessary for SOME submodules.

The first motivation for this investigation was to find out
whether the lower limit p > d is necessary for EVERY submod-
uleM 6= {0}.



MOTIVATION FOR THE INVESTIGATION

The second motivation is related to extensions of the C∗-algebra
C(S) by the compact operators, stemming from a paper of Dou-
glas and Voiculescu in 1981:

Let (A1, ...,Ad) be an essentially commuting tuple of bounded
operators on a separable Hilbert space H. Suppose that
(A1, ...,Ad) generates an exact sequence:

{0} → K → T τ−→C(S)→ {0},

where K is the collection of compact operators, T is the C∗-
algebra generated by A1, ..., Ad and K, and the homomorphism
τ : T → C(S) has the property

τ(Ai) = zi, i = 1, . . . , d.



MOTIVATION FOR THE INVESTIGATION

Such an exact sequence represents an element [τ ] in Ext(S) . The
class [τ ] can be determined in the following way. There exists a
2d × 2d matrix α whose entries are polynomials in 2d variables
such that if we set

A = α(A1,A∗1, ...,Ad,A∗d), (0.1)

then A is Fredholm and, under the identification Ext(S) ∼= Z, we
have

[τ ] = index(A).

Douglas and Voiculescu proved the following index formula,
which is generally regarded as a precursor to what is now called
non-commutative geometry.



MOTIVATION FOR THE INVESTIGATION

Theorem (Douglas and Voiculescu)

Suppose that the operators A1, ..., Ad satisfy the conditions

[Ai,Aj] ∈ Cd, [A∗i ,Aj] ∈ Cd for all 1 ≤ i, j ≤ d (0.2)

and

1−
d∑

i=1

A∗i Ai ∈ Cd. (0.3)

Then for the operator A given by (0.1) we have

index(A) = tr[A1,A∗1, ...,Ad,A∗d], (0.4)

where [A1,A∗1, ...,Ad,A∗d] is the antisymmetric sum of A1, A∗1, ..., Ad,
A∗d.



MOTIVATION FOR THE INVESTIGATION

When this index theorem was published, it was not known
whether one can have index(A) 6= 0 for a tuple (A1, ...,Ad) satis-
fying conditions (0.2) and (0.3).

Later, however, Gong showed that for any m ∈ Z, there exists a
tuple (A1, . . . ,Ad) satisfying (0.2) and (0.3) with

index(A) = m.

Indeed Gong showed that one can even replace Schatten class
Cd with Cp for any p > d− (1/2).



MOTIVATION FOR THE INVESTIGATION

But Gong’s paper does not tell us whether index formula (0.4)
can ever be applied to canonical operator tuples such as

(A1, ...,Ad) = (ZM,1, ...,ZM,d). (0.5)

Thus one of the motivating questions for us was whether index
formula (0.4) can ever be applied in the case of (0.5) .

Although it is generally believed that the answer is always neg-
ative for submodules M 6= {0} of the Hardy, Drury-Arveson
and Bergman modules, we did not see earlier results.



ABOUT THE PROOFS

I Drury Arveson case
I Freeness of H2

d as a Hilbert module over C[z1, ..., zd]

I IfM is a submodule of H2
d andM 6= {0}, thenM contains

a non-trivial multiplier of H2
d

I Hardy case (also solved but much more difficult)

I A multiplier for the Hardy space H2(S) is a function in
H∞(S).

I IfM is a submodule of the Hardy module, it is not known
whetherM∩H∞(S) contains anything other than 0.

I We were lucky to find a way to get around this
unboundedness.



EASY PROOF FOR DRURY-ARVESON CASE

Let {eα : α ∈ Zd
+} be the standard orthonormal basis for the

Drury-Arveson space H2
d. That is, for each α ∈ Zd

+,

eα(z) =
(
|α|!
α!

)1/2
zα.

On H2
d we also define the operator D =

∑d
i=1[Z∗i ,Zi].

The following identity follows from Arveson’s 1998 paper:

Lemma. For each f =
∑

α∈Zd
+

bαeα ∈ H2
d we have

〈Df , f 〉 = |b0|2 + (d− 1)
∑
α∈Zd

+

|bα|2

|α|+ 1
.



EASY PROOF FOR DRURY-ARVESON CASE

Proof. LetM be a submodule of H2
d and supposeM 6= {0}.

Then by a result of Arveson, there is a ϕ ∈M, ϕ 6= 0, which is a
multiplier of H2

d. Then Mϕ is bounded on H2
d.

For each ` ∈ N, let A` = {(α1, ..., αd) : ` < αi ≤ 2`, 1 ≤ i ≤ d}.
We then define

F` =
∑
α∈A`

(ϕeα)⊗ (ϕeα),

Since F` = MϕQ`M∗ϕ, where Q` =
∑

α∈A`
eα ⊗ eα, which is an

orthogonal projection, we have

‖F`‖ ≤ ‖Mϕ‖2

Suppose that
ϕ =

∑
β∈Zd

+

cβeβ.



EASY PROOF FOR DRURY-ARVESON CASE
Applying the above lemma, we have

tr(DMF`) =
∑
α∈A`

〈DMϕeα, ϕeα〉 ≥
∑
α∈A`

〈Dϕeα, ϕeα〉

= (d− 1)
∑
α∈A`

∑
β∈Zd

+

|cβ|2u2(α, β)

|α+ β|+ 1
,

where

u2(α, β) =
|β|!
β!
· |α|!
α!
· (α+ β)!

|α+ β|!
.

Since ϕ 6= 0, there is a β0 ∈ Zd
+ such that cβ0 6= 0. We have

tr(DMF`) ≥ (d− 1)|cβ0 |
2
∑
α∈A`

u2(α, β0)

|α+ β0|+ 1
.



EASY PROOF FOR DRURY-ARVESON CASE
Now suppose ` > |β0|. Then for α ∈ A`, we have |α+ β0|+ 1
≤ 3d` and u2(α, β0) ≥ (|β0|!/β0!) · (1/3n)|β0|. Hence

tr(DMF`) ≥
(d− 1)|cβ0 |2|β0|!

(3n)|β0|β0!
· 1

3n`
· card(A`) = δ1`

d−1

for each ` > |β0|. On the other hand,

tr(DMF`) ≤ ‖DMF`‖1 =

rank(F`)∑
j=1

sj(DMF`) ≤
`d∑

j=1

sj(DM)‖F`‖.

Since ‖F`‖ ≤ ‖Mϕ‖2, the above yields

`d∑
j=1

sj(DM) ≥ δ1

‖Mϕ‖2 `
d−1

for each ` > |β0|. The desired result follows from this. �



BASIC IDEA FOR HARDY CASE

Denote

D =

d∑
i=1

[Z∗i ,Zi].

Given a submodule M of H2(S), let PM : H2(S) → M be the
orthogonal projection. For h ∈M, Z∗M,ih = PMZ∗i h and ZM,ih =
Zih, which leads to

〈[Z∗M,i,ZM,i]h, h〉 = ‖ZM,ih‖2 − ‖Z∗M,ih‖2

≥ ‖Zih‖2 − ‖Z∗i h‖2 = 〈[Z∗i ,Zi]h, h〉.

Therefore

〈DMh, h〉 ≥ 〈Dh, h〉 for every h ∈M. (0.6)



BASIC IDEA FOR HARDY CASE

Our proof for the Hardy case is based on the realization that,
with enough work and further exploitation of the invariance of
M under the multiplication by functions in A(B), Theorem 1.1
can be deduced from (0.6).

To prove the Hardy case, for each k ∈N we need to construct an
operator Fk onMwith

rank(Fk) ≈ k,

tr(DMFk) ≈ k(d−1)/d

and
‖Fk‖ ≤ C, (0.7)

where C is independent of k. Of the three requirements, (0.7)
turns out to be the biggest obstacle.



BERGMAN CASE

Question. Does the analogue of two theorems above hold true
for submodules of the Bergman module?

Question. Is there a “unified” method to treat this type of
problems for submodules of more general reproducing kernel
Hilbert modules?



Essential Normality of
polynomial-generated submodules



ARVESON’S CONJECTURE

Arveson’s Conjecture (circa 2000):

Every graded submodule M of H2
d is p-essentially normal for

p > d, i.e. For a submodule M of H2
d, do the commutators

[Z∗M,i,ZM,j] belong to the Schatten class Cp for p > d?

Partial list of people who have worked on this and related prob-
lems:
Arveson, Douglas, Engliš, Eschmeier, Guo, Kennedy, Shalit,
Tang, K.Wang., P.Wang, Y.Wang, Yu



ARVESON’S CONJECTURE

Graded: the submodule has an orthogonal decomposition in
terms of degree. But the problem becomes much more inter-
esting and challenging for submodules that have NO such or-
thogonal decomposition.

Arveson first verified his conjecture in the case where the sub-
module is generated by a finite set of monomials (2005).

Later in 2006, Douglas proposed a similar but more refined con-
jecture for submodules of the Bergman moduleH(0) = L2(B, dv).

Guo and Wang (2008): In the case d = 2, 3, every graded sub-
module of H2

d is p-essentially normal for p > d. For arbitrary
d, every submodule of H2

d generated by a single homogeneous
polynomial is p-essentially normal for p > d.



ARVESON’S CONJECTURE

In a quite unexpected development early 2011, Douglas and
K.Wang proved

Theorem.(Douglas and Wang)

If [q] is the submodule of the Bergman module L2
a(B, dv)

generated by any q ∈ C[z1, . . . , zd], then [q] is p-essentially
normal for p > d.

This is an unconditional result in the sense that no assumption
is made about the polynomial q ∈ C[z1, . . . , zd]. This signals the
beginning of a new phase of investigations where one moves
away from degree-related assumptions such as homogeneity.



GEOMETRIC VERSION

Some of recent developments in this line of investigations

“Geometric Arveson-Douglas conjecture” by Engliš and Es-
chmeier.

“An analytic Grothendieck Riemann Roch theorem” by Dou-
glas, Tang and Yu.

“Geometirc Arveson-Douglas Conjecture - Decomposition of
Varieties” by Douglas, Y.Wang



SOME RELATED RESULTS

Inspired by the Douglas-K.Wang paper, we decided to take a
look at the essential normality of principal submodules of the
Hardy module and the Drury-Arveson module.

The key realization is to treat the three modules in a unified
way as mentioned before (considerH(t)).

That is, these three spaces are all members of a family of
reproducing-kernel Hilbert spaces (modules) of analytic func-
tions on B parametrized by a real-valued parameter (weight)
−d ≤ t <∞.



UNCONDITIONAL RESULT

Theorem (F-Xia preprint)

Let q be an arbitrary polynomial in C[z1, . . . , zd]. Then for each
real number −3 < t <∞, the submodule [q](t) ofH(t) is
p-essentially normal for every p > d.

Corollary. (t = −1) The submodule of the Hardy module H2(S)
generated by any q ∈ C[z1, . . . , zd] is p-essentially normal for
every p > d.

If we apply this to the case t = −2, we obtain the first non-trivial
Drury-Arveson space case:

Corollary. (d = 2.) The submodule of H2
2 generated by any q ∈

C[z1, z2] is p-essentially normal for every p > 2.



t = −3 CASE

Obviously, we would like to show that for every q ∈
C[z1, . . . , zd], the submodule [q](−3) of H(−3) is essentially nor-
mal. This goal we have NOT achieved yet.

Instead, we are able to show that there is a substantial subclass
Gd of C[z1, . . . , zd] such that for every q ∈ Gd, the submodule
[q](−3) of H(−3) is essentially normal. An important feature of

the class Gd is that its membership is stable under small pertur-
bation, in a sense to be made clear later.



t = −3 CASE

To tackle the case t = −3, we need to consider the zero locus of
q.

Given any q ∈ C[z1, . . . , zd], we write

Z(q) = {z ∈ Cd : q(z) = 0}.

Write ∂1, . . . , ∂d for the differentiations with respect to the com-
plex variables z1, . . . , zd.

Recall that the d-variable radial derivative is given by the for-
mula

R = z1∂1 + · · ·+ zd∂d.



t = −3 CASE

Definition. Let Gd be the collection of polynomials q ∈
C[z1, . . . , zd] satisfying the following two conditions:
(a) The radial derivative Rq does not vanish on the set Z(q) ∩ S.
(b) The zero locus Z(q) intersects the unit sphere S transversely.

Conditions (a), (b) above are inspired by Assumption 1.1 in the
Douglas-Tang-Yu paper mentioned earlier.

Note that condition (a) implies that the analytic gradient ∂q =
(∂1q, . . . , ∂dq) does not vanish on the set Z(q)∩S, which ensures
that (b) makes sense. At every point in S, the (real) co-dimension
of the tangent space to S is 1. Thus condition (b) is simply equiv-
alent to the condition that if ξ ∈ Z(q)∩S, then the tangent space
to Z(q) at ξ is not contained in the tangent space to S at ξ.



PARTIAL RESULT FOR t = −3

It is easy to see that the membership q ∈ Gd is equivalent to the
condition that the strict inequality

0 < |(Rq)(ξ)| < |(∂q)(ξ)|

holds for every ξ ∈ S ∩ Z(q), where ∂q = (∂1q, . . . , ∂dq), and
|(∂q)(ξ)| is the Euclidian length of the vector (∂q)(ξ).



PARTIAL RESULT FOR t = −3

Here is what we can prove in the case t = −3:

Theorem (F.-Xia preprint)

If q ∈ Gd, d ≥ 3, then the submodule [q](−3) ofH(−3) is p-essentially
normal for every p > d.

In the case d = 3, we have H(−3) = H2
3, the Drury-Arveson case

in three variables. Therefore the above implies

Corollary

If q ∈ G3, then the submodule [q] of H2
3 is p-essentially normal for

every p > 3.



WHAT TO DO NEXT

Question: Suppose that d ≥ 3. For arbitrary q ∈ [z1, . . . , zd] and
−d ≤ t ≤ −3, is the submodule [q](t) ofH(t) p-essentially normal
for p > d?
Actually the case t = −3 rests on the following explicit, and
seemingly rather tractable, analytical problem:

Question: Suppose that d ≥ 3 and let q ∈ [z1, . . . , zd]. Let R
denote the radial derivative. Dose there exist a constant 0 <
C = C(q) <∞ such that∫

|(Rq)(z)f (z)|2dv(z) ≤ C‖qf‖2
−2

for every f ∈ [z1, . . . , zd]?



von Neumann Inequality revisted



A HIERARCHY OF VON NEUMANN INEQUALITIES?

One might interpret the von Neumann inequality

‖p(A1, . . . ,Ad)‖ ≤ ‖p‖M = ‖p(Mz1 , . . . ,Mzd)‖

as saying that the tuple (Mz1 , . . . ,Mzd) on the Drury-Arveson
space H2

d “dominates” every commuting row contraction
(A1, . . . ,Ad).

Given two row contractions (A1, . . . ,Ad) and (B1, . . . ,Bd), it
seems fair to say that (B1, . . . ,Bd) dominates (A1, . . . ,Ad) if

‖p(A1, . . . ,Ad)‖ ≤ ‖p(B1, . . . ,Bd)‖

for every p ∈ C[z1, . . . , zd].



A HIERARCHY OF VON NEUMANN INEQUALITIES?

Or, perhaps one can relax this condition slightly:

If there is a constant 0 < C <∞ such that

‖p(A1, . . . ,Ad)‖ ≤ C‖p(B1, . . . ,Bd)‖

for every p ∈ C[z1, . . . , zd], one might still say that the tuple
(B1, . . . ,Bd) dominates tuple (A1, . . . ,Ad).



A HIERARCHY OF VON NEUMANN INEQUALITIES?

The main point is this: we can ask the rather restricted ques-
tion whether a given tuple (B1, . . . ,Bd) dominates (whatever the
word means) a particular (A1, . . . ,Ad), not the question whether
it dominates a general class of (A1, . . . ,Ad)’s.

In other words, the tuple (B1, . . . ,Bd) may not be as dominat-
ing as the tuple (Mz1 , . . . ,Mzd) on H2

d, but does it dominate
(A1, . . . ,Ad) nonetheless?

Obviously, we are thinking about some sort of hierarchy, albeit
partial, among commuting tuple of operators.



A HIERARCHY OF VON NEUMANN INEQUALITIES?

F. and Xia. (2014): We give some non-trivial examples of such a
hierarchy among commuting tuples of operators.

Question. How about a general theory? Is there a noncommu-
tative version?



Thanks for your attention!



HappyBirthday Prof. Solel ! !


