Classification of C*-envelopes of tensor algebras arising from stochastic matrices

Daniel Markiewicz (Ben-Gurion Univ. of the Negev)
Joint Work with
Adam Dor-On (Univ. of Waterloo)

Multivariable Operator Theory at the Technion On the occasion of Baruch Solel's 65th Birthday Technion, June 2017

Dor-On-M.'16 Adam Dor-On and Daniel Markiewicz, "C*-envelopes of tensor algebras arising from stochastic matrices", Integral Equations and Operator Theory (2017), doi:10.1007/s00020-017-2382-x (also in the arXiv).

General Problem
 What is the C^{*}-envelope of the Tensor Algebra of the subproduct system

over \mathbb{N} arising from a stochastic matrix?
There are some surprises when compared to the situation of product systems over \mathbb{N}.

Dor-On-M.'16 Adam Dor-On and Daniel Markiewicz, "C*-envelopes of tensor algebras arising from stochastic matrices", Integral Equations and Operator Theory (2017), doi:10.1007/s00020-017-2382-x (also in the arXiv).

General Problem

What is the C^{*}-envelope of the Tensor Algebra of the subproduct system over \mathbb{N} arising from a stochastic matrix?
There are some surprises when compared to the situation of product systems over \mathbb{N}.

Definition (Shalit-Solel '09, Bhat-Mukherjee '10)

Let M be a vN algebra, let $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ be a family of W^{*}-correspondences over M, and let $U=\left(U_{m, n}: X_{m} \otimes X_{n} \rightarrow X_{m+n}\right)$ be a family of bounded M-linear maps. We say that X is a subproduct system over M if for all $m, n, p \in \mathbb{N}$,
(1) $X_{0}=M$
(2) $U_{m, n}$ is co-isometric
(3) The family U "behaves like multiplication": $U_{m, 0}$ and $U_{0, n}$ are the right/left multiplications and

$$
U_{m+n, p}\left(U_{m, n} \otimes I_{p}\right)=U_{m, n+p}\left(I_{m} \otimes U_{n, p}\right)
$$

When $U_{m, n}$ is unitary for all m, n we say that X is a product system.

Theorem (Muhly-Solel '02, Solel-Shalit '09)

Let M be a vN algebra. Suppose that $\theta: M \rightarrow M$ is a unital normal CP map. Then there exits a canonical subproduct system structure on the family of Arveson-Stinespring correspondences associated to $\left(\theta^{n}\right)_{n \in \mathbb{N}}$.

```
Definition
Given a countable (possibly infinite) set \Omega, a stochastic matrix over }\Omega\mathrm{ is a
function P : \Omega
for all i
```


Subproduct system of a stochastic matrix

There is a 1-1 correspondence between ucp maps of $\ell^{\infty}(\Omega)$ into itself and stochastic matrices over Ω given by

Theorem (Muhly-Solel '02, Solel-Shalit '09)

Let M be a $v N$ algebra. Suppose that $\theta: M \rightarrow M$ is a unital normal CP map. Then there exits a canonical subproduct system structure on the family of Arveson-Stinespring correspondences associated to $\left(\theta^{n}\right)_{n \in \mathbb{N}}$.

Definition

Given a countable (possibly infinite) set Ω, a stochastic matrix over Ω is a function $P: \Omega \times \Omega \rightarrow \mathbb{R}$ such that $P_{i j} \geq 0$ for all i, j and $\sum_{j \in \Omega} P_{i j}=1$ for all i.

Subproduct system of a stochastic matrix
There is a 1-1 correspondence between ucp maps of $\ell^{\infty}(\Omega)$ into itself and stochastic matrices over Ω given by

Hence, a stochastic P gives rise to a canonical subproduct system

Theorem (Muhly-Solel '02, Solel-Shalit '09)

Let M be a $v N$ algebra. Suppose that $\theta: M \rightarrow M$ is a unital normal CP map. Then there exits a canonical subproduct system structure on the family of Arveson-Stinespring correspondences associated to $\left(\theta^{n}\right)_{n \in \mathbb{N}}$.

Definition

Given a countable (possibly infinite) set Ω, a stochastic matrix over Ω is a function $P: \Omega \times \Omega \rightarrow \mathbb{R}$ such that $P_{i j} \geq 0$ for all i, j and $\sum_{j \in \Omega} P_{i j}=1$ for all i.

Subproduct system of a stochastic matrix

There is a 1-1 correspondence between ucp maps of $\ell^{\infty}(\Omega)$ into itself and stochastic matrices over Ω given by

$$
\theta_{P}(f)(i)=\sum_{j \in \Omega} P_{i j} f(j)
$$

Hence, a stochastic P gives rise to a canonical subproduct system $\operatorname{Arv}(P)$.

Given a subproduct system (X, U), we define the Fock W^{*}-correspondence

$$
\mathcal{F}_{X}=\bigoplus_{n=0}^{\infty} X_{n}
$$

Define for every $\xi \in X_{m}$ the shift operator

- Tensor algebra (not self-adjoint):

- Toeplitz algebra: $\mathcal{T}(X)=C^{*}\left(\mathcal{T}_{+}(X)\right)$
- Cuntz-Pimsner algebra: $\mathcal{O}(X)=\mathcal{T}(X) / \mathcal{J}(X)$ for appropriate $\mathcal{J}(X)$

For the case of subproduct systems, Viselter '12 defined the ideal $\mathcal{J}(X)$ as follows: let Q_{n} denote the orthogonal projection onto the $\mathrm{n}^{\text {th }}$ summand of Fock module:

$$
\mathcal{J}(X)=\left\{T \in \mathcal{T}(X): \lim _{n \rightarrow \infty}\left\|T Q_{n}\right\|=0\right\}
$$

Given a subproduct system (X, U), we define the Fock W^{*}-correspondence

$$
\mathcal{F}_{X}=\bigoplus_{n=0}^{\infty} X_{n}
$$

Define for every $\xi \in X_{m}$ the shift operator

$$
S_{\xi}^{(m)} \psi=U_{m, n}(\xi \otimes \psi), \quad \psi \in X_{n}
$$

- Tensor algebra (not self-adjoint):

For the case of subproduct systems, Viselter '12 defined the ideal $\mathcal{J}(X)$ as follows: let Q_{n} denote the orthogonal projection onto the $\mathrm{n}^{\text {th }}$ summand of Fock module:

$$
\mathcal{J}(X)=\left\{T \in \mathcal{T}(X): \lim _{n \rightarrow \infty}\left\|T Q_{n}\right\|=0\right\} .
$$

Given a subproduct system (X, U), we define the Fock W^{*}-correspondence

$$
\mathcal{F}_{X}=\bigoplus_{n=0}^{\infty} X_{n}
$$

Define for every $\xi \in X_{m}$ the shift operator

$$
S_{\xi}^{(m)} \psi=U_{m, n}(\xi \otimes \psi), \quad \psi \in X_{n}
$$

- Tensor algebra (not self-adjoint):

$$
\mathcal{T}_{+}(X)=\overline{\operatorname{Alg}}^{\|\cdot\|} M \cup\left\{S_{\xi}^{(m)} \mid \forall \xi \in X_{m}, \forall m\right\}
$$

For the case of subproduct systems, Viselter '12 defined the ideal $\mathcal{J}(X)$ as follows: let Q_{n} denote the orthogonal projection onto the $\mathrm{n}^{\text {th }}$ summand of Fock module:

Given a subproduct system (X, U), we define the Fock W^{*}-correspondence

$$
\mathcal{F}_{X}=\bigoplus_{n=0}^{\infty} X_{n}
$$

Define for every $\xi \in X_{m}$ the shift operator

$$
S_{\xi}^{(m)} \psi=U_{m, n}(\xi \otimes \psi), \quad \psi \in X_{n}
$$

- Tensor algebra (not self-adjoint):

$$
\mathcal{T}_{+}(X)=\overline{\operatorname{Alg}}^{\|\cdot\|} M \cup\left\{S_{\xi}^{(m)} \mid \forall \xi \in X_{m}, \forall m\right\}
$$

- Toeplitz algebra: $\mathcal{T}(X)=C^{*}\left(\mathcal{T}_{+}(X)\right)$

For the case of subproduct systems, Viselter '12 defined the ideal $\mathcal{J}(X)$ as follows: let Q_{n} denote the orthogonal projection onto the $\mathrm{n}^{\text {th }}$ summand of

$$
\mathcal{J}(X)=\left\{T \in \mathcal{T}(X): \lim _{n \rightarrow \infty}\left\|T Q_{n}\right\|=0\right\} .
$$

Given a subproduct system (X, U), we define the Fock W^{*}-correspondence

$$
\mathcal{F}_{X}=\bigoplus_{n=0}^{\infty} X_{n}
$$

Define for every $\xi \in X_{m}$ the shift operator

$$
S_{\xi}^{(m)} \psi=U_{m, n}(\xi \otimes \psi), \quad \psi \in X_{n}
$$

- Tensor algebra (not self-adjoint):

$$
\mathcal{T}_{+}(X)=\overline{\operatorname{Alg}}^{\|\cdot\|} M \cup\left\{S_{\xi}^{(m)} \mid \forall \xi \in X_{m}, \forall m\right\}
$$

- Toeplitz algebra: $\mathcal{T}(X)=C^{*}\left(\mathcal{T}_{+}(X)\right)$
- Cuntz-Pimsner algebra: $\mathcal{O}(X)=\mathcal{T}(X) / \mathcal{J}(X)$ for appropriate $\mathcal{J}(X)$
\square Fock module:

Given a subproduct system (X, U), we define the Fock W^{*}-correspondence

$$
\mathcal{F}_{X}=\bigoplus_{n=0}^{\infty} X_{n}
$$

Define for every $\xi \in X_{m}$ the shift operator

$$
S_{\xi}^{(m)} \psi=U_{m, n}(\xi \otimes \psi), \quad \psi \in X_{n}
$$

- Tensor algebra (not self-adjoint):

$$
\mathcal{T}_{+}(X)=\overline{\operatorname{Alg}}^{\|\cdot\|} M \cup\left\{S_{\xi}^{(m)} \mid \forall \xi \in X_{m}, \forall m\right\}
$$

- Toeplitz algebra: $\mathcal{T}(X)=C^{*}\left(\mathcal{T}_{+}(X)\right)$
- Cuntz-Pimsner algebra: $\mathcal{O}(X)=\mathcal{T}(X) / \mathcal{J}(X)$ for appropriate $\mathcal{J}(X)$

For the case of subproduct systems, Viselter '12 defined the ideal $\mathcal{J}(X)$ as follows: let Q_{n} denote the orthogonal projection onto the $\mathrm{n}^{\text {th }}$ summand of Fock module:

$$
\mathcal{J}(X)=\left\{T \in \mathcal{T}(X): \lim _{n \rightarrow \infty}\left\|T Q_{n}\right\|=0\right\}
$$

Example (Product system $\mathscr{P}^{\text {C }}$)

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathbb{C}}\right)$ is the original Toeplitz algebra
- $\mathcal{O}\left(\mathscr{P}^{\mathbb{C}}\right)=C(\mathbb{T})$

Theorem (Viselter '12)

If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$.

So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system)

Example (Product system $\mathscr{P}^{\mathbb{C}}$)

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathrm{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathbb{C}}\right)$ is the original Toeplitz algebra
- $\mathcal{O}\left(\mathscr{P}^{\mathbb{C}}\right)=C(\mathbb{T})$

Theorem (Viselter '12)
 If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$

So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system)

Example (Product system $\mathscr{P}^{\mathbb{C}}$)

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathrm{C}}\right)$ is the original Toeplitz algebra
- $\mathcal{O}\left(\mathscr{P}^{\mathbb{C}}\right)=C(\mathbb{T})$

Theorem (Viselter '12)
 If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$

So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system)

Example (Product system \mathscr{P}^{C})

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathbb{C}}\right)$ is the original Toeplitz algebra

Theorem (Viselter '12)
 If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$

So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system)

Example (Product system $\mathscr{P}^{\mathbb{C}}$)

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathbb{C}}\right)$ is the original Toeplitz algebra
- $\mathcal{O}\left(\mathscr{P}^{\mathbb{C}}\right)=C(\mathbb{T})$

Theorem (Viselter '12)
 If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$.

So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system)

Example (Product system $\mathscr{P}^{\mathbb{C}}$)

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathbb{C}}\right)$ is the original Toeplitz algebra
- $\mathcal{O}\left(\mathscr{P}^{\mathbb{C}}\right)=C(\mathbb{T})$

Theorem (Viselter '12)

If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$.

> So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system)

Example (Product system $\mathscr{P}^{\mathbb{C}}$)

Let $X=\mathscr{P}^{\mathbb{C}}=\cup_{n \in \mathbb{N}} \mathbb{C}$ be the "line bundle" product system.

- We have $\mathcal{F}_{X}=\oplus_{n \in \mathbb{N}} \mathbb{C} \simeq \ell^{2}(\mathbb{N})$ and $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)$ is closed algebra generated by the unilateral shift.
- $\mathcal{T}_{+}\left(\mathscr{P}^{\mathbb{C}}\right)=\mathbb{A}(\mathbb{D})$ the disk algebra
- $\mathcal{T}\left(\mathscr{P}^{\mathbb{C}}\right)$ is the original Toeplitz algebra
- $\mathcal{O}\left(\mathscr{P}^{\mathbb{C}}\right)=C(\mathbb{T})$

Theorem (Viselter '12)

If E is a correspondence and its associated product system \mathscr{P}_{E} is faithful, then $\mathcal{O}\left(\mathscr{P}^{E}\right)=\mathcal{O}(E)$.

So the algebras for subproduct systems generalize the case of single correspondences (via the associated product system).

In a previous paper with A. Dor-On, we studied the tensor algebras in their own right. Let's do a quick review.

- Recall that a stochastic matrix P is essential if for every $i, P_{i j}^{n}>0$ for some n implies that $\exists m$ such that $P_{j i}^{m}>0$.
- The sunnort of P is the matrix $\operatorname{sunn}(P)$ given by

> Theorem (Dor-On-M.'14)
> Let P and Q be finite stochastic matrices over Ω. TFAE:
> (1) There is an algebraic isomorphism of $T_{+}(P)$ onto $T_{+}(Q)$
> (2) there is a graded comp. bounded isomorphism $\mathcal{T}_{+}(P)$ onto $\mathcal{T}_{+}(Q)$
> (3) $\operatorname{Arv}(P)$ and $\operatorname{Arv}(Q)$ are similar un to change of hase

> Furthermore, if P and Q are essential, those conditions hold if and only if and Q have the same supports up to permutation of Ω.

In a previous paper with A. Dor-On, we studied the tensor algebras in their own right. Let's do a quick review.

- Recall that a stochastic matrix P is essential if for every $i, P_{i j}^{n}>0$ for some n implies that $\exists m$ such that $P_{j i}^{m}>0$.

In a previous paper with A. Dor-On, we studied the tensor algebras in their own right. Let's do a quick review.

- Recall that a stochastic matrix P is essential if for every $i, P_{i j}^{n}>0$ for some n implies that $\exists m$ such that $P_{j i}^{m}>0$.
- The support of P is the matrix $\operatorname{supp}(P)$ given by

$$
\operatorname{supp}(P)_{i j}= \begin{cases}1, & P_{i j} \neq 0 \\ 0, & P_{i j}=0\end{cases}
$$

In a previous paper with A. Dor-On, we studied the tensor algebras in their own right. Let's do a quick review.

- Recall that a stochastic matrix P is essential if for every $i, P_{i j}^{n}>0$ for some n implies that $\exists m$ such that $P_{j i}^{m}>0$.
- The support of P is the matrix $\operatorname{supp}(P)$ given by

$$
\operatorname{supp}(P)_{i j}= \begin{cases}1, & P_{i j} \neq 0 \\ 0, & P_{i j}=0\end{cases}
$$

Theorem (Dor-On-M.'14)

Let P and Q be finite stochastic matrices over Ω. TFAE:
(1) There is an algebraic isomorphism of $\mathcal{T}_{+}(P)$ onto $\mathcal{T}_{+}(Q)$.
(2) there is a graded comp. bounded isomorphism $\mathcal{T}_{+}(P)$ onto $\mathcal{T}_{+}(Q)$.
(3) $\operatorname{Arv}(P)$ and $\operatorname{Arv}(Q)$ are similar up to change of base

Furthermore, if P and Q are essential, those conditions hold if and only if P and Q have the same supports up to permutation of Ω.

- A stochastic matrix P is recurrent if $\sum_{n}\left(P^{n}\right)_{i i}=\infty$ for all i.

Theorem (Dor-On-M. '14)

Let P and Q be stochastic matrices over Ω. TFAE:
(1) There is an isometric isomorphism of $\mathcal{T}_{+}(P)$ onto $\mathcal{T}_{+}(Q)$.
(2) there is a graded comp. isometric isomorphism $\mathcal{T}_{+}(P)$ onto $\mathcal{T}_{+}(Q)$.
(3) $\operatorname{Arv}(P)$ and $\operatorname{Arv}(Q)$ are unitarily isomorphic up to change of base.

Furthermore, if P and Q are recurrent, those conditions hold if and only if P and Q are the same up to permutation of Ω.

We also computed the Cuntz-Pimsner algebra in the sense of Viselter.

Theorem (Dor-On-M.'14)

If P is irreducible $d \times d$ stochastic, then $\mathcal{O}(P) \simeq C(\mathbb{T}) \otimes M_{d}(\mathbb{C})$.
We thank Dilian Yang for pointing out a gap, fixed in Dor-On-M.' 16 We will turn the uncomplicated nature of $\mathcal{O}(P)$ to our advantage to study the C^{*}-envelope of $\mathcal{T}_{+}(P)$.

We also computed the Cuntz-Pimsner algebra in the sense of Viselter.

Theorem (Dor-On-M.'14)

If P is irreducible $d \times d$ stochastic, then $\mathcal{O}(P) \simeq C(\mathbb{T}) \otimes M_{d}(\mathbb{C})$.
We thank Dilian Yang for pointing out a gap, fixed in Dor-On-M.'16.

We will turn the uncomplicated nature of $\mathcal{O}(P)$ to our advantage to study the C^{*}-envelope of $\mathcal{T}_{+}(P)$

We also computed the Cuntz-Pimsner algebra in the sense of Viselter.
Theorem (Dor-On-M.' 14)
If P is irreducible $d \times d$ stochastic, then $\mathcal{O}(P) \simeq C(\mathbb{T}) \otimes M_{d}(\mathbb{C})$.
We thank Dilian Yang for pointing out a gap, fixed in Dor-On-M.'16.
We will turn the uncomplicated nature of $\mathcal{O}(P)$ to our advantage to study the C^{*}-envelope of $\mathcal{T}_{+}(P)$.

Definition (C*-envelope - existence proved by Hamana '79)

Let $\mathcal{A} \subseteq B(H)$ be a unital closed subalgebra. The C*-envelope of \mathcal{A} consists of a C^{*}-algebra $C_{\text {env }}^{*}(\mathcal{A})$ and a comp. isometric embedding $\iota: \mathcal{A} \rightarrow C_{\text {env }}^{*}(\mathcal{A})$ with the following universal property: if $j: \mathcal{A} \rightarrow B$ is a comp. isometric embedding and $B=C^{*}(j(A))$, then there is a *-homomorphism $\phi: B \rightarrow C_{\text {env }}^{*}(\mathcal{A})$ such that $\phi(j(a))=\iota(a)$ for all $a \in \mathcal{A}$.

\square
\square be the direct sum of all boundary representations of \mathcal{A}. Then the

Definition (C*-envelope - existence proved by Hamana '79)

Let $\mathcal{A} \subseteq B(H)$ be a unital closed subalgebra. The C*-envelope of \mathcal{A} consists of a C^{*}-algebra $C_{\text {env }}^{*}(\mathcal{A})$ and a comp. isometric embedding $\iota: \mathcal{A} \rightarrow C_{\text {env }}^{*}(\mathcal{A})$ with the following universal property: if $j: \mathcal{A} \rightarrow B$ is a comp. isometric embedding and $B=C^{*}(j(A))$, then there is a *-homomorphism $\phi: B \rightarrow C_{\text {env }}^{*}(\mathcal{A})$ such that $\phi(j(a))=\iota(a)$ for all $a \in \mathcal{A}$.

Definition (Arveson '69)

Let \mathcal{S} be an operator system. We say that a UCP map $\phi: \mathcal{S} \rightarrow B(H)$ has the unique extension property (UEP) if it has a unique cp extension $\tilde{\phi}: C^{*}(\mathcal{S}) \rightarrow B(H)$ which is a *-rep. If $\tilde{\phi}$ is irreducible, then ϕ is called a boundary representation of \mathcal{S}.

Theorem (Arveson '08 for A separable, Davidson-KennedyLet $\mathcal{A} \subseteq B(H)$ be a unital closed subalgebra and let $S=\mathcal{A}+\mathcal{A}^{*}$. Let π be the direct sum of all boundary representations of \mathcal{A}. Then the C^{*}-envelope of \mathcal{A} is given by the pair $\pi \Gamma_{\mathcal{A}}$ and $C^{*}(\pi(S))$.

Definition (C*-envelope - existence proved by Hamana '79)

Let $\mathcal{A} \subseteq B(H)$ be a unital closed subalgebra. The C*-envelope of \mathcal{A} consists of a C^{*}-algebra $C_{\text {env }}^{*}(\mathcal{A})$ and a comp. isometric embedding $\iota: \mathcal{A} \rightarrow C_{\text {env }}^{*}(\mathcal{A})$ with the following universal property: if $j: \mathcal{A} \rightarrow B$ is a comp. isometric embedding and $B=C^{*}(j(A))$, then there is a *-homomorphism $\phi: B \rightarrow C_{\text {env }}^{*}(\mathcal{A})$ such that $\phi(j(a))=\iota(a)$ for all $a \in \mathcal{A}$.

Definition (Arveson '69)

Let \mathcal{S} be an operator system. We say that a UCP map $\phi: \mathcal{S} \rightarrow B(H)$ has the unique extension property (UEP) if it has a unique cp extension $\tilde{\phi}: C^{*}(\mathcal{S}) \rightarrow B(H)$ which is a *-rep. If $\tilde{\phi}$ is irreducible, then ϕ is called a boundary representation of \mathcal{S}.

Theorem (Arveson '08 for \mathcal{A} separable, Davidson-Kennedy '13)

Let $\mathcal{A} \subseteq B(H)$ be a unital closed subalgebra and let $S=\mathcal{A}+\mathcal{A}^{*}$. Let π be the direct sum of all boundary representations of \mathcal{A}. Then the C^{*}-envelope of \mathcal{A} is given by the pair $\pi \upharpoonright_{\mathcal{A}}$ and $C^{*}(\pi(S))$.

Q: What is the C^{*}-envelope of a tensor algebra?

Theorem (From Muhly-Solel '98(...) to Katsoulis and Krios '06) If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$

Theorem (Davidson, Ramsey and Shalit '11)
 If X is a commutative subproduct system of fin. dim. Hilbert space fibers, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)=\mathcal{T}(X)$.

Theorem (Kakariadis and Shalit '15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.

Q: What is the C^{*}-envelope of a tensor algebra?

Theorem (From Muhly-Solel '98 (...) to Katsoulis and Kribs '06) If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$.

Theorem (Kakariadis and Shalit '15)

If X is a subnroduct system of fin . dim Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.

Q: What is the C^{*}-envelope of a tensor algebra?

Theorem (From Muhly-Solel '98 (...) to Katsoulis and Kribs '06) If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$.

Theorem (Davidson, Ramsey and Shalit '11)

If X is a commutative subproduct system of fin. dim. Hilbert space fibers, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)=\mathcal{T}(X)$.

Theorem (Kakariadis and Shalit '15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$.

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was
composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.

Q: What is the C^{*}-envelope of a tensor algebra?
Theorem (From Muhly-Solel '98 (...) to Katsoulis and Kribs '06) If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$.

Theorem (Davidson, Ramsey and Shalit '11)

If X is a commutative subproduct system of fin. dim. Hilbert space fibers, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)=\mathcal{T}(X)$.

Theorem (Kakariadis and Shalit '15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$.

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.

Q: What is the C*-envelope of a tensor algebra?
Theorem (From Muhly-Solel '98 (...) to Katsoulis and Kribs '06)
If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$.

Theorem (Davidson, Ramsey and Shalit '11)

If X is a commutative subproduct system of fin. dim. Hilbert space fibers, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)=\mathcal{T}(X)$.

Theorem (Kakariadis and Shalit '15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$.

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.

Q: What is the C*-envelope of a tensor algebra?

Theorem (From Muhly-Solel '98 (...) to Katsoulis and Kribs '06)

If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$.

Theorem (Davidson, Ramsey and Shalit '11)

If X is a commutative subproduct system of fin. dim. Hilbert space fibers, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)=\mathcal{T}(X)$.

Theorem (Kakariadis and Shalit '15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$.

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.

Q: What is the C*-envelope of a tensor algebra?

Theorem (From Muhly-Solel '98 (...) to Katsoulis and Kribs '06)

If E is a C^{*}-correspondence, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(E)\right)=\mathcal{O}(E)$.

Theorem (Davidson, Ramsey and Shalit '11)

If X is a commutative subproduct system of fin. dim. Hilbert space fibers, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)=\mathcal{T}(X)$.

Theorem (Kakariadis and Shalit '15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a subshift of finite type, then $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(X)\right)$ is either $\mathcal{T}(X)$ or $\mathcal{O}(X)$.

- So far, this seemed to suggest a dichotomy.
- In all these examples, however, X was either product system or was composed of Hilbert spaces.
- First candidate outside that context: stochastic matrices.
- Recall if P is irreducible finite stochastic, $\mathcal{O}(P) \simeq C(\mathbb{T}) \otimes M_{d}(\mathbb{C})$.
- Let $H=\mathcal{F}_{\operatorname{Arv}(P)} \otimes \ell^{2}(\Omega)$. We have a canonical representation $\pi: \mathcal{T}(P) \rightarrow B(H)$ which breaks up into d subrepresentations π_{k} on the "column-like" spaces $H_{k}=\mathcal{F}_{\operatorname{Arv}(P)} \otimes \mathbb{C} e_{k}$.

- Recall if P is irreducible finite stochastic, $\mathcal{O}(P) \simeq C(\mathbb{T}) \otimes M_{d}(\mathbb{C})$.
- Let $H=\mathcal{F}_{\operatorname{Arv}(P)} \otimes \ell^{2}(\Omega)$. We have a canonical representation $\pi: \mathcal{T}(P) \rightarrow B(H)$ which breaks up into d subrepresentations π_{k} on the "column-like" spaces $H_{k}=\mathcal{F}_{\operatorname{Arv}(P)} \otimes \mathbb{C} e_{k}$.

Theorem (Dor-On-M.'16)

If P is irreducible $d \times d$ stochastic, then $\mathcal{J}(\mathcal{T}(P)) \simeq \oplus_{j=1}^{d} \mathbb{K}\left(H_{j}\right)$.
Therefore we have an exact sequence

$$
0 \longrightarrow \bigoplus_{j=1}^{d} \mathbb{K}\left(H_{j}\right) \longrightarrow \mathcal{T}(P) \longrightarrow C(\mathbb{T}) \otimes M_{d}(\mathbb{C}) \longrightarrow 0
$$

Moreover, all irreducible representations of $\mathcal{T}(P)$ are unitarily equivalent to appropriate π_{k} or arise from the point evaluations on \mathbb{T}.

Theorem (Dor-On-M.'16)

Suppose that P is an irreducible matrix of size d. The point evaluations of $C(\mathbb{T}) \otimes M_{d}(\mathbb{C})$ lift to boundary representations of $\mathcal{T}_{+}(P)$ inside $\mathcal{T}(P)$. Therefore have an exact sequence

$$
0 \longrightarrow \bigoplus_{j \in \Omega_{b}^{P}} \mathbb{K}\left(H_{j}\right) \longrightarrow C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right) \longrightarrow C(\mathbb{T}) \otimes M_{d} \longrightarrow 0
$$

where Ω_{b}^{P} is the set of states k for which π_{k} is boundary.

Definition

Let P be an irreducible r-periodic stochastic matrix of size d. A state $k \in \Omega$ is called exclusive if whenever for $i \in \Omega$ and $n \in \mathbb{N}$ we have $P_{i k}^{(n)}>0$, then $P_{i k}^{(n)}=1$.
We say that P has the multiple-arrival property if whenever $k, s \in \Omega$ are distinct non-exclusive states such that whenever k leads to s in n steps, then there exists $k \neq k^{\prime} \in \Omega$ such that k^{\prime} leads to s in n steps.

Definition

Let P be an irreducible r-periodic stochastic matrix of size d. A state $k \in \Omega$ is called exclusive if whenever for $i \in \Omega$ and $n \in \mathbb{N}$ we have $P_{i k}^{(n)}>0$, then $P_{i k}^{(n)}=1$.
We say that P has the multiple-arrival property if whenever $k, s \in \Omega$ are distinct non-exclusive states such that whenever k leads to s in n steps, then there exists $k \neq k^{\prime} \in \Omega$ such that k^{\prime} leads to s in n steps.

Example

If P is r-periodic, then by permuting states it has the cyclic block decomposition

$$
\left[\begin{array}{cccc}
0 & P_{0} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & P_{r-2} \\
P_{r-1} & \cdots & 0 & 0
\end{array}\right], \quad \text { example: }\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
0.5 & 0.5 & 0
\end{array}\right]
$$

If such a matrix has full-support, which is to say no zeros in the blocks P_{j}, then it has multiple-arrival.

Theorem (Dor-On-M.'16)

Let P be an irreducible finite stochastic matrix. If $k \in \Omega$ is exclusive, then π_{k} is not a boundary rep.

Theorem (Dor-On-M.'16)

Suppose that P is a finite irreducible matrix with multiple-arrival Then π_{k} is a boundary representation if and only if k is non-exclusive Therefore, the C^{*}-envelope of $\mathcal{T}_{+}(P)$ inside $\mathcal{T}(P)$ corresponds to the quotient by the ideal

non-exclusive
exclusive

Thus we have an exact sequence

non-exclusive

Theorem (Dor-On-M.' ${ }^{16)}$

Let P be an irreducible finite stochastic matrix. If $k \in \Omega$ is exclusive, then π_{k} is not a boundary rep.

Theorem (Dor-On-M.'16)

Suppose that P is a finite irreducible matrix with multiple-arrival. Then π_{k} is a boundary representation if and only if k is non-exclusive. Therefore, the C^{*}-envelope of $\mathcal{T}_{+}(P)$ inside $\mathcal{T}(P)$ corresponds to the quotient by the ideal

$$
\bigcap_{k \text { non-exclusive }}\left\{T \in \mathcal{J}(P) \mid \pi_{k}(T)=0\right\} \simeq_{\pi} \bigoplus_{j \text { exclusive }} \mathbb{K}\left(H_{j}\right)
$$

Thus we have an exact sequence

$$
0 \longrightarrow \bigoplus_{j \text { non-exclusive }} \mathbb{K}\left(H_{j}\right) \longrightarrow C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right) \longrightarrow C(\mathbb{T}) \otimes M_{d} \longrightarrow 0
$$

Theorem (Dor-On-M.'16)

Let P be an irreducible stochastic finite matrix with multiple-arrival.

- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{T}(P)$ iff all states non-exclusive.
- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{O}(P)$ iff all states exclusive.

Example (Dor-On-M.'16: Dichotomy fails)

\square
Since P is 2-periodic, we see from its cyclic decomposition it has full-support. Therefore it has the multiple-arrival property. The only exclusive column is $k=3$. Therefore we have an exact sequence $0 \longrightarrow \mathbb{K}\left(H_{1}\right) \oplus \mathbb{K}\left(H_{2}\right) \longrightarrow C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \longrightarrow C(\mathbb{T}) \otimes M_{3} \longrightarrow 0$

Theorem (Dor-On-M.'16)

Let P be an irreducible stochastic finite matrix with multiple-arrival.

- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{T}(P)$ iff all states non-exclusive.
- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{O}(P)$ iff all states exclusive.

Example (Dor-On-M.'16: Dichotomy fails)

\square
Since P is 2-periodic, we see from its cyclic decomposition it has full-support. Therefore it has the multiple-arrival property. The only exclusive column is $k=3$. Therefore we have an exact sequence $0 \longrightarrow \mathbb{K}\left(H_{1}\right) \oplus \mathbb{K}\left(H_{2}\right) \longrightarrow C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \longrightarrow C(\mathbb{T}) \otimes M_{3} \longrightarrow 0$

Theorem (Dor-On-M.' ${ }^{16)}$

Let P be an irreducible stochastic finite matrix with multiple-arrival.

- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{T}(P)$ iff all states non-exclusive.
- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{O}(P)$ iff all states exclusive.

Example (Dor-On-M.'16: Dichotomy fails)

$C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right), \mathcal{T}(P)$ and $\mathcal{O}(P)$ are all different for $P=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0.5 & 0.5 & 0\end{array}\right]$. Since P is 2-periodic, we see from its cyclic decomposition it has full-support. Therefore it has the multiple-arrival property. The only exclusive column is $k=3$. Therefore we have an exact sequence $0 \longrightarrow \mathbb{K}\left(H_{1}\right) \oplus \mathbb{K}\left(H_{2}\right) \longrightarrow C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right) \longrightarrow C(\mathbb{T}) \otimes M_{3} \longrightarrow 0$

Theorem (Dor-On-M.'16)

Let P be an irreducible stochastic finite matrix with multiple-arrival.

- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{T}(P)$ iff all states non-exclusive.
- $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \cong \mathcal{O}(P)$ iff all states exclusive.

Example (Dor-On-M.'16: Dichotomy fails)

$C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right), \mathcal{T}(P)$ and $\mathcal{O}(P)$ are all different for $P=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0.5 & 0.5 & 0\end{array}\right]$. Since P is 2-periodic, we see from its cyclic decomposition it has full-support. Therefore it has the multiple-arrival property. The only exclusive column is $k=3$. Therefore we have an exact sequence

$$
0 \longrightarrow \mathbb{K}\left(H_{1}\right) \oplus \mathbb{K}\left(H_{2}\right) \longrightarrow C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \longrightarrow C(\mathbb{T}) \otimes M_{3} \longrightarrow 0
$$

Q: If dichotomy fails, what are the possibilities for $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$? Recall $\Omega_{b}^{P}=\left\{k \in \Omega: \pi_{k}\right.$ is boundary for $\left.P\right\}$

Theorem (Dor-On-M.' 16)

Let P be a finite irreducible stochastic.
© If P has a non-exclusive state then

(2) If all states are exclusive then

Theorem (Dor-On-M.' 16)

Let P and Q be finite irreducible stochastic matrices over Ω^{P} and Ω^{Q} respectively. Then $\left|\Omega_{b}^{P}\right|=\left|\Omega_{b}^{Q}\right|$ if and only if $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$ and $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(Q)\right)$ are stably isomorphic.

Q: If dichotomy fails, what are the possibilities for $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$? Recall $\Omega_{b}^{P}=\left\{k \in \Omega: \pi_{k}\right.$ is boundary for $\left.P\right\}$

Theorem (Dor-On-M.'16)

Let P be a finite irreducible stochastic.
(1) If P has a non-exclusive state then
(2) If all states are exclusive then
$K_{0}\left(C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong K_{1}\left(C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong \mathbb{Z}$

Theorem (Dor-On-M.'16)

let P and Q be finite irreducible stochastic matrices over Ω^{P} and Ω^{Q} respectively. Then $\left|\Omega_{b}^{P}\right|=\left|\Omega_{b}^{Q}\right|$ if and only if $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$ and $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(Q)\right)$ are stably isomorphic.

Q: If dichotomy fails, what are the possibilities for $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$? Recall $\Omega_{b}^{P}=\left\{k \in \Omega: \pi_{k}\right.$ is boundary for $\left.P\right\}$

Theorem (Dor-On-M.'16)

Let P be a finite irreducible stochastic.
(1) If P has a non-exclusive state then

$$
K_{0}\left(C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong \mathbb{Z}^{\left|\Omega_{b}\right|} \quad \text { and } \quad K_{1}\left(C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong\{0\}
$$

(2) If all states are exclusive then

$$
K_{0}\left(C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong K_{1}\left(C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong \mathbb{Z}
$$

\square
\square respectively. Then $\left|\Omega_{b}^{P}\right|=\left|\Omega_{b}^{Q}\right|$ if and only if $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$ and $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(Q)\right)$ are stably isomorphic.

Q: If dichotomy fails, what are the possibilities for $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$? Recall $\Omega_{b}^{P}=\left\{k \in \Omega: \pi_{k}\right.$ is boundary for $\left.P\right\}$

Theorem (Dor-On-M.'16)

Let P be a finite irreducible stochastic.
(1) If P has a non-exclusive state then

$$
K_{0}\left(C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong \mathbb{Z}^{\left|\Omega_{b}\right|} \quad \text { and } \quad K_{1}\left(C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong\{0\}
$$

(2) If all states are exclusive then

$$
K_{0}\left(C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong K_{1}\left(C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)\right) \cong \mathbb{Z}
$$

Theorem (Dor-On-M.'16)

Let P and Q be finite irreducible stochastic matrices over Ω^{P} and Ω^{Q} respectively. Then $\left|\Omega_{b}^{P}\right|=\left|\Omega_{b}^{Q}\right|$ if and only if $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right)$ and $C_{\text {env }}^{*}\left(\mathcal{T}_{+}(Q)\right)$ are stably isomorphic.

Definition

Let P be an r-periodic irreducible stochastic matrix over Ω of size d, and $k \in \Omega$. Let $\Omega_{0}, \ldots, \Omega_{r-1}$ be a cyclic decomposition for P, so that $\sigma(k)$ is the unique index such that $k \in \Omega_{\sigma(k)}$. The k-th column nullity of P is

$$
\mathcal{N}_{P}(k)=\sum_{m=1}^{\infty}\left|\left\{i \in \Omega_{\sigma(k)-m} \mid P_{i k}^{(m)}=0\right\}\right|
$$

Intuition: It counts the number of zeros in the $k^{\text {th }}$ column of the powers of P, relative to the cyclic decomposition support.

Note the series is actually a sum, because the matrix powers fill-out eventually.

Definition

Let P be an r-periodic irreducible stochastic matrix over Ω of size d, and $k \in \Omega$. Let $\Omega_{0}, \ldots, \Omega_{r-1}$ be a cyclic decomposition for P, so that $\sigma(k)$ is the unique index such that $k \in \Omega_{\sigma(k)}$. The k-th column nullity of P is

$$
\mathcal{N}_{P}(k)=\sum_{m=1}^{\infty}\left|\left\{i \in \Omega_{\sigma(k)-m} \mid P_{i k}^{(m)}=0\right\}\right|
$$

Intuition: It counts the number of zeros in the $k^{\text {th }}$ column of the powers of P, relative to the cyclic decomposition support.

$$
\left[\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right] \rightarrow \ldots
$$

Note the series is actually a sum, because the matrix powers fill-out eventually.

Theorem (Dor-On-M.' ${ }^{16)}$

Let P and Q be finite irreducible stochastic matrices over Ω^{P} and Ω^{Q} respectively. Then $C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right)$ and $C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(Q)\right)$ are ${ }^{*}$-isomorphic if and only if
(1) $\left|\Omega^{P}\right|=\left|\Omega^{Q}\right|$ (let d be this number)
(2) there is a bijection $\tau: \Omega_{b}^{P} \rightarrow \Omega_{b}^{Q}$ such that

$$
\forall k \in \Omega_{b}^{P}, \quad \mathcal{N}_{P}(k) \equiv \mathcal{N}_{Q}(\tau(k)) \quad \bmod d
$$

Example

Suppose matrices for P, Q, R are stochastic with matrices supported on graphs (so multiple-arrival)

$$
\operatorname{Gr}(P)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \operatorname{Gr}(Q)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \operatorname{Gr}(R)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Let \cong denote *-isomorphism. Then

Example

Suppose matrices for P, Q, R are stochastic with matrices supported on graphs (so multiple-arrival)

$$
\begin{gathered}
G r(P)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], G r(Q)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], G r(R)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
\Omega_{b}^{P}=\{1,2\}, \quad \mathcal{N}_{P}(j)=0, \quad j=1,2,3 \\
\Omega_{b}^{Q}=\{1,2,3\}, \quad \mathcal{N}_{Q}(j)=0, \quad j=1,2,3 \\
\Omega_{b}^{R}=\{1,2,3\}, \quad \mathcal{N}_{R}(1)=\mathcal{N}_{R}(2)=0, \mathcal{N}_{R}(3)=1,
\end{gathered}
$$

Let \cong denote ${ }^{*}$-isomorphism. Then:

Example

Suppose matrices for P, Q, R are stochastic with matrices supported on graphs (so multiple-arrival)

$$
\begin{gathered}
G r(P)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], G r(Q)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], G r(R)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
\Omega_{b}^{P}=\{1,2\}, \quad \mathcal{N}_{P}(j)=0, \quad j=1,2,3 \\
\Omega_{b}^{Q}=\{1,2,3\}, \quad \mathcal{N}_{Q}(j)=0, \quad j=1,2,3 \\
\Omega_{b}^{R}=\{1,2,3\}, \quad \mathcal{N}_{R}(1)=\mathcal{N}_{R}(2)=0, \mathcal{N}_{R}(3)=1
\end{gathered}
$$

Let \cong denote ${ }^{*}$-isomorphism. Then:

$$
\begin{gathered}
C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(P)\right) \otimes \mathbb{K} \not \not \neq C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(Q)\right) \otimes \mathbb{K} \cong C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(R)\right) \otimes \mathbb{K} \\
C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(Q)\right) \not \neq C_{\mathrm{env}}^{*}\left(\mathcal{T}_{+}(R)\right)
\end{gathered}
$$

Thank you!

Extension theory:

$$
0 \rightarrow K \xrightarrow{\iota} A \xrightarrow{\pi} B \rightarrow 0
$$

can be studied through Busby invariant $\eta: B \rightarrow Q(K) \cong M(K) / K$, since have $\theta: A \rightarrow M(K)$ by $\theta(a) c=\iota^{-1}(a \iota(c))$

Equivalence of exact sequences gives relation for Busby inv.:
$\exists \kappa: K_{1} \rightarrow K_{2}$ and $\beta: B_{1} \rightarrow B_{2}$ s.t. $\tilde{\kappa} \eta_{1}=\eta_{2} \beta$.
In our case closely connected to $K=\mathbb{K}$ for which a lot is known. There is a group structure on the set of equivalence classes of extensions (both weak and strong) since B is nuclear separable (Choi-Effros).

$$
\operatorname{Ext}_{s}(B) \rightarrow \operatorname{Ext}_{w}(B) \rightarrow \operatorname{Hom}\left(K_{1}(B), \mathbb{Z}\right)
$$

We use work of Paschke and Salinas, which characterizes this objects when K is a sum of compacts, and sweat to identify the objects and maps in this case.

Example

Suppose matrices for P, Q, R are stochastic with matrices supported on graphs (so multiple-arrival)

$$
\begin{gathered}
G r(P)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], G r(Q)=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], G r(R)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
\Omega_{b}^{P}=\{1,2\}, \quad \mathcal{N}_{P}(j)=0, \quad j=1,2,3 \\
\Omega_{b}^{Q}=\{1,2,3\}, \quad \mathcal{N}_{Q}(1)=\mathcal{N}_{Q}(2)=0, \mathcal{N}_{Q}(3)=1, \\
\Omega_{b}^{R}=\{1,2,3\}, \quad \mathcal{N}_{R}(1)=\mathcal{N}_{R}(2)=0, \mathcal{N}_{R}(3)=1, \\
C_{\text {env }}^{*}\left(\mathcal{T}_{+}(P)\right) \nsim C_{\text {env }}^{*}\left(\mathcal{T}_{+}(Q)\right) \cong C_{\text {env }}^{*}\left(\mathcal{T}_{+}(R)\right) \\
\mathcal{O}_{G r(P)} \cong \mathcal{O}_{G r(Q)} \nsim \mathcal{O}_{G r(R)}
\end{gathered}
$$

where \cong stands for ${ }^{*}$-isomorphism and \sim stands for stable isomorphism.

