
Open Problems

1. Charles Fefferman’s Problems

Problem 1. Let f : E → R with E ⊂ Rn finite. Let ε > 0. How many computer
operations does it take to compute a function Fε ∈ Cm(Rn) such that Fε|E = f, with the
Cm-norm of Fε at most ε percent more than the least value possible (inf)?

Problem 2. Let f : E → R with E ⊂ Rn finite. How can we compute a function
F0 ∈ Cm−1,1(Rn) such that F0 can be approximated arbitrarily closely in Cm−1-norm by
functions Fε as in Problem 1, with ε arbitrarily small?

Problem 3. Which mathematical theorems are relevant to Problems 1 and 2?
(Think of the Brudnyi-Shvartsman finiteness principle.)

Problem 4. Let f : E → R with E ⊂ Rn. How can we tell whether there exists
F ∈ Wm,p(Rn) such that F = f on E? If F exists, how small can we take its norm?
How can we effectively compute such an F , with its Sobolev norm within a factor C of
least possible, if E is finite? Here, C should depend only on m,n, p.

Pavel Shvartsman has answered the above math questions for m = 1; likely his ideas
will also solve the computer science question in that case.

Problem 5. Let E ⊂ Rn. How can we decide whether E is a subset of an imbedded
(or immersed) compact, Cm-smooth surface of dimension k?

(Think of a Möbius strip in R3.)

Problem 6. Let f : E → R, with E ⊂ Rn finite. How small can we make
∑
x∈E

|F (x)− f(x)|2

given that ‖F‖Cm(Rn) has order of magnitude at most M, where M is a given positive
number?

(This question is due to Andrea Bertozzi).

Problem 7. Suppose we know that F : Rn → R has Cm-norm at most M. Suppose
also that we are told the values F (x1), · · · , F (xN) of F at N given points. Our job is to
pick additional points xN+1, · · · , xN+N ′ , and then try to guess F as closely as possible,
given the values F (x1), · · · , F (xN+N ′). We pick the points xN+1, · · · , xN+N ′ successively,
and we are allowed to use x1, · · · , xN+k−1 and F (x1), · · ·F (xN+k−1) in deciding which
point to pick as xN+k. How should we proceed?

The Problem is of course not precisely formulated. Formulate a precise version of the
problem and solve it. (This question is due to Dann Toliver).
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2. Nahum Zobin’s Problems

Problem 8. Find an analog of the Whitney Theorem for tensor fields on a manifold
with a connection (e.g., a Riemannian manifold).

Problem 9. Extension of functions and tensor fields subject to differential equations
and inequalities. In particular, extension of closed differential forms with preservation of
closedness.

2.1. Geometry of open domains and extensions of functions. Let Ω be an open
subset of Rn. Then the notion of a smooth function is well defined, and so are the spaces
Cm,1(Ω). We say that Ω ∈ EP (m), if

Cm,1(Rn)|Ω = Cm,1(Ω).

Whitney proved that if Ω satisfies the Whitney Condition (the geodesic metric in Ω is
equivalent to the Euclidean metric, this condition is also called quasi-convexity – see
Gromov’s book) then Ω ∈ EP (m) for all m ∈ N. One can rather easily show that if
Ω ∈ EP (0) then Ω is quasi-convex. This means that Ω ∈ EP (0) iff Ω is quasi-convex,
and the condition Ω ∈ EP (0) implies that Ω ∈ EP (m) for any m ∈ N. I have shown
that for a finitely connected planar Ω and for any m ∈ N the condition Ω ∈ EP (m) is
equivalent to the condition that Ω is quasi-convex. However, I have also shown that if Ω
is an infinitely connected planar domain, or a domain in Rn, n ≥ 3, then the condition
Ω ∈ EP (m),m ≥ 1, does not imply that Ω ∈ EP (l), l ≤ m.

Problem 10. Show that generally (i.e., for an infinitely connected planar domain, or
a domain in Rn, n ≥ 3) the condition Ω ∈ EP (m) does not imply that Ω ∈ EP (m′), 1 ≤
m < m′.

Can one save the implication

Ω ∈ EP (m), m > 0,⇒ Ω is quasi-convex

for infinitely connected planar domains Ω by imposing topological restrictions on Ω?
Maybe.

Problem 11. Show that if the pairwise distances between components of R2 \ Ω are
bounded from below, and if Ω ∈ EP (m) for some m ∈ N, then Ω is quasi-convex.

Is there any cure in higher dimensions? Unlikely:

Problem 12. For each m ∈ N construct a domain Ωm ⊂ R3, homeomorphic to an
open ball, with boundary smooth at all points, except of one, and such that

Ω ∈
(

EP (m) \
⋃

0≤k<m

EP (k)

)
.
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3. Pavel Shvartsman’s problems

The Finiteness Property. We let Ck,ω(R) denote the space of all function f ∈ Ck(R)
whose partial derivatives of order k satisfy the Lipschitz condition (with respect to the
metric ω(‖x− y‖)). Recall that this space possesses the following “finiteness property”:

There is a positive integer N = N(k, n) such that the following is true: Let f be a function
defined on a closed subset S ⊂ R. Suppose that the restriction f |S′ of f to an arbitrary

subset S ′ ⊂ S consisting of at most N points can be extended to a function FS′ ∈ Ck,ω(R)
with norm ‖FS′‖Ck,ω(R) ≤ 1. Then the function f itself can be extended to a function

F ∈ Ck,ω(R) with ‖F‖Ck,ω(R) ≤ γ where γ = γ(n, k) is a constant depending only on n

and k.

We call the number N appearing in formulations of finiteness properties “the finiteness
number”. Whitney [25] characterized the restriction of the space Ck(R), k ≥ 1, to an
arbitrary subset S ⊂ R in terms of divided differences of functions. An application of
Whitney’s method to the space Ck,ω(R) implies the finiteness property for this space
with the finiteness number N(k, 1) = k + 2.

Brudnyi and Shvartsman [19, 4] proved that the sharp value of the finiteness number
for the space C1,ω(R) is N(1, n) = 3 · 2n−1. Fefferman [6, 8] showed that the finiteness
property holds for every k, n ≥ 1. An upper bound for the finiteness number N(k, n)
given in [6, 8] is

N(k, n) ≤ (dimPk + 1)3·2dimPk .

Here Pk stands for the space of polynomials of degree at most k defined on R.
Basing on this estimate of N(k, n) Bierstone and Milman [1] and Shvartsman [23]

proved that the finiteness property for Ck,ω(R) holds with the finiteness number N(k, n) =

2dimPk .

Problem 13. Find the sharp value of the “finiteness number” N = N(k, n) for the

space Ck,ω(Rn) for k > 1.

In [23] we conjectured the following:

Conjecture 13.1. The sharp value of the finiteness number for Ck,ω(Rn) equals

(1) N(k, n) =
k∏

m=0

(k −m + 2)(
n+m−2

m ).

In particular, in the two dimensional case, (1) is the same as N(k, 2) = (k + 2)! and
so the first step towards resolving this conjecture might be to consider the simplest case
of the space C2,ω(R2) and to ask:

Is it true that in this case N(2, 2) = 24?

2. Trace criterion for the space Ck,ω(Rn). As we have noted above, Whitney

[25] characterized the restriction Ck(R)|S in terms of divided differences of functions.

A similar intrinsic characterization of the trace space Ck,ω(R)|S has been obtained by
Merrien [17].
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Recall a trace criterion for the space C1,ω(R2) |S, S ⊂ R2, presented in the author’s
paper [21]. (Note that by the finiteness theorem this criterion is expressed in terms of
exactly 6 (arbitrary!) points of S.)

Let Z ⊂ S be an arbitrary set consisting of three points and let θZ be the biggest angle
of the triangle whose vertices are the points of Z. We let PZ denote the affine polynomial
interpolating f at the points of Z.

A locally bounded function f is in C1,ω(R2) |S if and only if there exists λ > 0 such
that the following inequalities hold:

(i). for every subset Z = {z0, z1, z2} ⊂ X such that z1 belongs to the line segment
[z0, z2] ∣∣∣∣

f(z0)− f(z1)

‖z0 − z1‖ − f(z1)− f(z2)

‖z1 − z2‖

∣∣∣∣ ≤ λω(‖z0 − z2‖) ;

(ii). for every pair of subsets Z1, Z2 ⊂ S each consisting of three non-collinear points

‖∇PZ1 −∇PZ2‖ ≤ λ

{
ω(diam Z1)

sin θZ1

+
ω(diam Z2)

sin θZ2

+ ω (diam Z1 ∪ Z2)

}
.

Moreover, ‖f‖C1,ω(R2)|S ∼ inf λ.

Observe that the proofs of the finiteness property for the space Ck,ω(Rn) given in
[19, 4] (k = 1) and [6, 8] (arbitrary k, n ≥ 1) are constructive. However, straightforward
application of these algorithms to N(k, n)-element sets leads to very complicated trace
criterions.

Problem 14. Find a trace criterion for the space Ck,ω(Rn) for n > 1.

Thus, the first step towards resolving this problem might be to consider the simplest
case of the space C1,ω(R3). Observe that, by the ”finiteness property” for this space, the
corresponding criterion should be expressed in terms of exactly 12 (arbitrary!) points of
S ⊂ R3.

3. The Whitney extension problem for the space CkΛm
ω (Rn). Let m be a

non-negative integer. We let Ωm denote the class of non-decreasing continuous functions
ω : R+ → R+ such that ω(0) = 0 and the function ω(t)/tm is non-increasing. Given

non-negative integers k and m and ω ∈ Ωm we define the space CkΛm
ω (Rn) as follows:

a function f ∈ Ck(Rn) belongs to CkΛm
ω (Rn) if there exists λ > 0 such that for every

multi-index α, |α| = k, and every x, h ∈ Rn we have |∆m
h (Dαf)(x)| ≤ λω(‖h‖).

Here as usual ∆m
h f denotes the m-th difference of a function f of step h. CkΛm

ω (Rn)
is normed by

‖f‖CkΛm
ω (Rn) :=

∑

|α|≤k

sup
x∈Rn

|Dαf(x)|+
∑

|α|=k

sup
x,h∈Rn

|∆m
h (Dαf)(x)|
ω(‖h‖) .

In particular, for m = 1 and ω ∈ Ω1 the space CkΛ1
ω(Rn) coincides with the space

Ck,ω(Rn). In turn, the space Λm
ω (Rn) := C0Λm

ω (Rn), ω ∈ Ωm, coincides with the gener-
alized Zygmund space of bounded functions f on Rn whose modulus of smoothness of
order m, ωm(t; f), satisfies the inequality ωm(t; f) ≤ λω(t), t ≥ 0. In particular, the space



5

Λ2
ω(Rn) with ω(t) = t is the classical Zygmund space of bounded functions satisfying the

Zygmund condition: there is λ > 0 such that for all x, y ∈ Rn

|f (x)− 2f
(

x+y
2

)
+ f(y)| ≤ λ‖x− y‖.

Consider three Whitney’s type problems for the space CkΛm
ω (Rn).

Problem 15. Whether the space CkΛm
ω (Rn) possesses the finiteness property?

For n = 1 the finiteness property follows from the results of Merrien [17], Jonsson [16],
Shevchuk [18] and Galan [12]. If n > 1, the answer is positive for m = 1 (see Section
1), and for k = 0,m = 2, i.e., for the Zygmund space, see [19] (in this case the optimal
finiteness number N = 3 · 2n−1 is the same as for C1,ω(Rn).)

Problem 16. Given closed subset S ⊂ Rn, does there exist a linear continuous exten-
sion operator T : CkΛm

ω (Rn)|S → CkΛm
ω (Rn)?

The answer is positive for m = 1 and arbitrary n > 1 (for k = 1 see Brudnyi and
Shvartsman [3], for k > 1 see Fefferman [7, 10]); for k = 0,m = 2 see [3].

Problem 17. Find a trace criterion for the space CkΛm
ω (Rn)(Rn).

We have such a criterion only for the space C1,ω(R2) (see Section 2) and Λ2
ω(R2) [21].

4. Sobolev Extension Domains. Given positive integer k and p ≥ 1, a domain Ω
in Rn is said to be Sobolev W k

p -extension domain if the following isomorphism

W k
p (Ω) = W k

p (Rn)|Ω
holds. In other words, Ω is a Sobolev extension domain if every Sobolev function f ∈
W k

p (Ω) can be extended to a Sobolev W k
p -function F defined on all of Rn.

A domain with locally Lipschitz boundary provides an example of a Sobolev extension
domain for every k, p ≥ 1. The same is true for the class (ε, δ)-domains introduced by
Jones [15].

Also recall that the case p = ∞ has been studied by Whitney [26] who proved that

quasi-Euclidean domains are W k
∞-extension domains for every k ≥ 1 (Ω is quasi-Euclidean

if its inner (or geodesic) metric is equivalent to the Euclidean distance). Zobin [28] showed

that every finitely connected bounded planar W k
∞-extension domain is quasi-Euclidean.

He also showed, see [27], that for every k ≥ 2 there exists a bounded planar W k
∞-extension

domain which is not quasi-Euclidean.
Goldshtein, Latfullin and Vodopyanov [13, 14] proved that every simply connected

bounded planar domain is a W 1
2 -extension domain if and only if Ω is a quasi-disk, i.e.,

the image of a disk under a quasi-conformal mapping of the plane onto itself.

Problem 18. Given p ≥ 1, n > 1, k ≥ 1 find a geometric description of the class of
Sobolev W k

p -extension domains in Rn.
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Thus, the first step towards resolving this problem might be to consider the simplest
case of a simply connected planar W 1

p -extension domain with p 6= 2,∞.

5. A geometrical background of the finiteness property: some connections
with convex geometry. The proof of the finiteness property for the space C1,ω(Rn)
presented in [19, 4] is based on the following geometrical result expressed in terms of
set-valued maps and their Lipschitz selections.

Let (M, d) be a metric space and let F be a set-valued mapping from M into the
family Conv(Rn) of all convex compact subsets of Rn.

Problem 19. Find conditions on F for which it has a Lipschitz selection.

Recall that a mapping f : M→ Rn is said to be a Lipschitz selection of F if f(x) ∈
F (x) for every x ∈M and f ∈ Lip(M,Rn).

Conjecture 19.2. (See [2]). Let F be a set-valued mapping from a metric space
(M, d) into Conv(Rn). Suppose that, for every subset M′ ⊂ M consisting of at most
2n points, the restriction F |M′ of F to M′ has a Lipschitz selection fM′ such that
‖fM′‖Lip(M′,Rn) ≤ 1. Then F has a Lipschitz selection f with ‖f‖Lip(M,Rn) bounded by

some constant γ = γ(n) depending only on n.

Note that in the case of the trivial pseudometric d ≡ 0 the conjecture is true, even
with n + 1 instead of 2n, since in this case it is exactly the classical theorem of Helly [5].
In [20, 21, 22] we proved the following:

(1). The conjecture is true for R2.
(2). The conjecture is true for every finite k-point metric space M, but with γ =

γ(n, k).
(3). If the conjecture is true for some number N(n) in place of 2n then it also holds

in its original form.
(4). The conjecture is false in general if 2n is replaced by some number N(n) with

N(n) < 2n.
(5). The conjecture is true for set-valued maps F which take values in the class A(Rn)

of all affine subsets of Rn. (In case of the Whitney extension problem for C1,ω(Rn) we
only need to consider this class of convex subsets of Rn.)

Thus the first step towards resolving this conjecture might be to consider the simplest
case of the metric space M = {1, 2, ...,m} and n = 3.
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4. Edward Bierstone and Pierre Milman’s Problems

Extension problems for geometric classes (E.g., subanalytic, semialgebraic or,
more generally, o-minimal structures).
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Problem 20. Extension of subanalytic functions Is there a Whitney extension
theorem for Cm subanalytic functions on a closed subanalytic subset X of Rn? (A
function is subanalytic if its graph is subanalytic.)

As evidence, there seems to be a subanalytic extension involving loss of differentiability,
as in our paper [Inv. Math. 151 (2003), 329–352].

2. Characterization of “tame” subanalytic sets by the extension property
There is a remarkable subclass of subanalytic sets, called semicoherent, characterized by
the following theorem.

Theorem 4.1. Let X denote a compact subanalytic subset of Rn. Then the following
conditions are equivalent:

(1) Composite function property. If p : M → Rn is a proper real-analytic mapping with
p(M) = X, then the ring of composite C∞ functions p∗C∞(Rn) (where p∗(g) := g ◦ p) is
closed in C∞(M).

(2) C∞(X) is the intersection of all Cm(X).

(3) Natural local algebraic invariants of X (e.g., the Hilbert-Samuel function) are upper-
semicontinuous (in the subanalytic Zariski topology).

(4) For each l, the degree ≤ l part of the Cm paratangent bundle (m ≥ l) stabilizes as m
increases.

(5) X is semicoherent (i.e., satisfies a stratified version of the Oka-Cartan coherence
theorem).

(6) There is a uniform bound for a local invariant of X called the Chevalley function
(which compares algebraic and metric notions of order of vanishing).

The various equivalences are proved in [Ann. of Math. 147 (1998), 731–785], [Duke
Math. J. 83 (1996), 607–620], [Inv. Math., loc. cit.]. We show that, if X is semicoherent,
then there is an extension operator E : C∞(X) → C∞(Rn). Thus we get estimates

on the Ck seminorms of an extension: Given k ∈ N and K ⊂ Rn compact, there exist
l = l(k,K) ∈ N and L = L(k,K) ⊂ X compact, such that

‖E(f)‖K
k ≤ c‖f‖L

l .

Problem 21. Can the class of semicoherent sets be characterized by the extension
property?

We prove:

Theorem 4.2. Suppose there is an extension operator as above with an estimate l(0, K) =
0 on the zeroth seminorms, for every compact K. Then X is semicoherent.

So the preceding question can be reformulated: Does semicoherence imply the extension
property with l(0, K) = 0?

We do not know whether this is true is simple examples (e.g., X = union of the x-axis
and the parabola y = x2 in R2).


