Approximation of Groupoids

Magdalena C. Georgescu

Joint work with Kyle Austin and Joav Orovitz

Ben Gurion University

June 22, 2017
Topology: Terminology and Notation

\(X\) - topological space; \(\mathcal{U}, \mathcal{V}\) open covers of \(X\)
Topology: Terminology and Notation

X - topological space; \mathcal{U}, \mathcal{V} open covers of X

$\mathcal{U} \leq \mathcal{V}$ (\mathcal{U} refines \mathcal{V}) if every set in \mathcal{U} is contained in a set in \mathcal{V}. Equivalently, say \mathcal{V} coarsens \mathcal{U}.

Paracompactness allows one to endow X with a uniform structure, and hence to write X as an inverse limit of metrizable spaces, as we will explain in just a moment.
X - topological space; \mathcal{U}, \mathcal{V} open covers of X

$\mathcal{U} \leq \mathcal{V}$ (\mathcal{U} refines \mathcal{V}) if every set in \mathcal{U} is contained in a set in \mathcal{V}. Equivalently, say \mathcal{V} coarsens \mathcal{U}.

X is **paracompact** if every open cover has a locally finite refinement.
Topology: Terminology and Notation

X - topological space; \mathcal{U}, \mathcal{V} open covers of X

$\mathcal{U} \leq \mathcal{V}$ (\mathcal{U} refines \mathcal{V}) if every set in \mathcal{U} is contained in a set in \mathcal{V}. Equivalently, say \mathcal{V} coarsens \mathcal{U}.

X is **paracompact** if every open cover has a locally finite refinement.

Paracompactness allows one to endow X with a uniform structure, and hence to write X as an inverse limit of metrizable spaces, as we will explain in just a moment.
Star refinement and uniform structure I

Given \(U \in \mathcal{U} \) the star of \(U \) against the cover \(\mathcal{U} \) is the union of all the sets in \(\mathcal{U} \) that intersect \(U \).
Star refinement and uniform structure I

Given $U \in \mathcal{U}$ the star of U against the cover \mathcal{U} is the union of all the sets in \mathcal{U} that intersect U.

Set U in \mathcal{U}.

$\text{star}(U, \mathcal{U})$
Star refinement and uniform structure II

Given $U \in \mathcal{U}$ the star of U against the cover \mathcal{U} is the union of all the sets in \mathcal{U} that intersect U.

Say that \mathcal{U} star refines a cover \mathcal{V} (denoted $\mathcal{U} \leq \mathcal{V}$) if, for any $U \in \mathcal{U}$, $\text{star}(U, \mathcal{U})$ is contained in some element of \mathcal{V}.
Star refinement and uniform structure II

Given $U \in \mathcal{U}$ the star of U against the cover \mathcal{U} is the union of all the sets in \mathcal{U} that intersect U.

Say that \mathcal{U} star refines a cover \mathcal{V} (denoted $\mathcal{U} \leq \mathcal{V}$) if, for any $U \in \mathcal{U}$, $\text{star}(U, \mathcal{U})$ is contained in some element of \mathcal{V}.

For a set X a uniform structure is a collection of covers $\{\mathcal{U}_\lambda\}_{\lambda \in \Lambda}$ which is a cofinal filter under reverse star refinement, and is closed under coarsening of the covers.
Star refinement and uniform structure II

Given $U \in \mathcal{U}$ the star of U against the cover \mathcal{U} is the union of all the sets in \mathcal{U} that intersect U.

Say that \mathcal{U} star refines a cover \mathcal{V} (denoted $\mathcal{U} \leq \mathcal{V}$) if, for any $U \in \mathcal{U}$, star(U, \mathcal{U}) is contained in some element of \mathcal{V}.

For a set X a uniform structure is a collection of covers $\{ \mathcal{U}_\lambda \}_{\lambda \in \Lambda}$ which is a cofinal filter under reverse star refinement, and is closed under coarsening of the covers.

The example to keep in mind: a metric space with covers given by ε-balls (and coarsenings thereof). This information can be used to define uniform continuity of functions on the space and other similar concepts.
Star refinement and uniform structure II

Given $U \in \mathcal{U}$ the star of U against the cover \mathcal{U} is the union of all the sets in \mathcal{U} that intersect U.

Say that \mathcal{U} star refines a cover \mathcal{V} (denoted $\mathcal{U} \leq \mathcal{V}$) if, for any $U \in \mathcal{U}$, $\text{star}(U, \mathcal{U})$ is contained in some element of \mathcal{V}.

For a set X a uniform structure is a collection of covers $\{\mathcal{U}_\lambda\}_{\lambda \in \Lambda}$ which is a cofinal filter under reverse star refinement, and is closed under coarsening of the covers.

The example to keep in mind: a metric space with covers given by ε-balls (and coarsenings thereof). This information can be used to define uniform continuity of functions on the space and other similar concepts.

A paracompact space X has a uniform structure. If \mathcal{U} is an open cover of X then one can find an open cover \mathcal{V} which is a star refinement of \mathcal{U}.
Uniform structure and inverse limits I

An increasing sequence of covers ordered by reverse star refinement is called a **normal sequence**.
Uniform structure and inverse limits I

An increasing sequence of covers ordered by reverse star refinement is called a normal sequence.

If $\Lambda = \{ \mathcal{U}_n \}$ is a normal sequence for X, then one can define a pseudo-metric d on X:

- For x, y in X, let $n(x, y)$ be the largest n such that there exists $U \in \mathcal{U}_n$ containing both x and y.
- Let $\rho(x, y) = 2^{-n(x, y)}$, with the understanding that $2^{-\infty} = 0$.
- Let $d(x, y) = \inf \sum_{i=1}^{n} \rho(x_i, x_{i+1})$ where $x_1 = x$, $x_n = y$ and $x_i \in X$.
On the previous slide we explained how to get a pseudo-metric d from a normal sequence of covers on X.

Let X_λ be the quotient of X obtained from the equivalence relation $x \sim y$ if and only if $d(x, y) = 0$. The resulting space X_λ is a metric space, and $X \to X_\lambda$ is continuous.
Uniform structure and inverse limits II

On the previous slide we explained how to get a pseudo-metric d from a normal sequence of covers on X.

Let X_λ be the quotient of X obtained from the equivalence relation $x \sim y$ if and only if $d(x, y) = 0$. The resulting space X_λ is a metric space, and $X \to X_\lambda$ is continuous.

WARNING: We will refer to X_λ as a quotient of X; however, we warn that the topology of X_λ is not the canonical quotient topology induced by the original topology on X and the equivalence relation, but is instead determined by the choice of covers $\{ U_n \}$ (i.e. a possibly weaker topology).
Uniform structure and inverse limits III

On the previous slide we explained how to get a metrizable quotient X_λ from a topological space X equipped with a normal sequence of covers.

Let \mathcal{U} and \mathcal{V} be two normal sequences for X. Say that \mathcal{V} cofinally refines \mathcal{U} if for every $n \in \mathbb{N}$ there exists $k(n) \in \mathbb{N}$ such that $\mathcal{V}_{k(n)} \leq \mathcal{U}_n$.
Uniform structure and inverse limits III

On the previous slide we explained how to get a metrizable quotient X_λ from a topological space X equipped with a normal sequence of covers.

Let \mathcal{U} and \mathcal{V} be two normal sequences for X. Say that \mathcal{V} cofinally refines \mathcal{U} if for every $n \in \mathbb{N}$ there exists $k(n) \in \mathbb{N}$ such that $\mathcal{V}_{k(n)} \leq \mathcal{U}_n$.

Let $\hat{X}_\alpha = \langle X, \mathcal{U} \rangle$ and $\hat{X}_\beta = \langle X, \mathcal{V} \rangle$ (meaning X equipped with the pseudo-metric resulting from \mathcal{U} and \mathcal{V} respectively). If \mathcal{V} cofinally refines \mathcal{U} then:

$\hat{X}_\alpha \leftarrow X \rightarrow \hat{X}_\beta \leftarrow \hat{X}_\alpha$

$\phi = \text{id}$

where the map $\phi : \hat{X}_\beta \rightarrow \hat{X}_\alpha$ is uniformly continuous. If we then define X_α and X_β to be the corresponding quotient spaces, it should be clear that ϕ then induces a map $X_\beta \rightarrow X_\alpha$.
Uniform structure and inverse limits IV

Suppose additionally that \(X \) is Lindelöf – that is, that every open cover has a countable subcover. This assumption ensures that we can take each cover in the normal sequence to be countable, and thus that the space \(X_\lambda \) is second countable.
Uniform structure and inverse limits IV

Suppose additionally that \(X \) is Lindelöf – that is, that every open cover has a countable subcover. This assumption ensures that we can take each cover in the normal sequence to be countable, and thus that the space \(X_\lambda \) is second countable.

We also note that for any open cover \(\mathcal{U} \) of \(X \) we can get a normal sequence \(\{ \mathcal{U}_n \} \) for \(X \) such that \(\mathcal{U}_1 = \mathcal{U} \).
Uniform structure and inverse limits IV

Suppose additionally that X is Lindelöf – that is, that every open cover has a countable subcover. This assumption ensures that we can take each cover in the normal sequence to be countable, and thus that the space X_λ is second countable.

We also note that for any open cover \mathcal{U} of X we can get a normal sequence $\{\mathcal{U}_n\}$ for X such that $\mathcal{U}_1 = \mathcal{U}$.

Considering all sequences of covers ordered by cofinal refinement we get:

Theorem

If X is a locally compact and Lindelöf space then it is the inverse limit of a system $\{X_\varphi, p_\psi^\varphi : X_\varphi \to X_\psi\}_{\varphi \in \Lambda}$ where each X_φ is second countable and locally compact, and all the connecting maps are proper.
Groupoids: Definition

One can think of a groupoid G as a set (of arrows), with two operations:

- a partial multiplication $(g, h) \mapsto gh$ defined on a subset $G^{(2)} \subset G \times G$
- an inverse $g \mapsto g^{-1}$ defined on all of G.

The set $G^{(2)}$ is called the set of composable arrows. One defines $s, t: G \to G$ by $s(g) = gg^{-1}$ and $t(g) = g^{-1}g$ (the source and target of each arrow). The following rules must be satisfied:

- the inverse of g^{-1} is g.
- $s(g)$ and $t(g)$ act as identity elements for arrows with which they are composable.

The image of the source map (or, equivalently, the target map) is a subset of G denoted $G^{(0)}$, referred to as the unit space of the groupoid.
Groupoids: Definition

One can think of a groupoid G as a set (of arrows), with two operations:

- a partial multiplication $(g, h) \mapsto gh$ defined on a subset $G^{(2)} \subset G \times G$
- an inverse $g \mapsto g^{-1}$ defined on all of G.

The set $G^{(2)}$ is called the set of composable arrows. One defines $s, t : G \to G$ by $s(g) = gg^{-1}$ and $t(g) = g^{-1}g$ (the source and target of each arrow). The following rules must be satisfied:

- $(g, h) \in G^{(2)}$ if and only if $t(g) = s(h)$, and composition of arrows is associative.
- the inverse of g^{-1} is g.
- $s(g)$ and $t(g)$ act as identity elements for arrows with which they are composable.
Groupoids: Definition

One can think of a groupoid \mathcal{G} as a set (of arrows), with two operations:

- a partial multiplication $(g, h) \mapsto gh$ defined on a subset $\mathcal{G}^{(2)} \subset \mathcal{G} \times \mathcal{G}$
- an inverse $g \mapsto g^{-1}$ defined on all of \mathcal{G}.

The set $\mathcal{G}^{(2)}$ is called the set of composable arrows. One defines $s, t : \mathcal{G} \to \mathcal{G}$ by $s(g) = gg^{-1}$ and $t(g) = g^{-1}g$ (the source and target of each arrow). The following rules must be satisfied:

- $(g, h) \in \mathcal{G}^{(2)}$ if and only if $t(g) = s(h)$, and composition of arrows is associative.
- the inverse of g^{-1} is g.
- $s(g)$ and $t(g)$ act as identity elements for arrows with which they are composable.

The image of the source map (or, equivalently, the target map) is a subset of \mathcal{G} denoted $\mathcal{G}^{(0)}$, referred to as the **unit space** of the groupoid.
Topological groupoids

More succinct, but also more abstract definition of groupoid: A groupoid is a small category in which every morphism is invertible.
Topological groupoids

More succinct, but also more abstract definition of groupoid: A groupoid is a small category in which every morphism is invertible.

A **topological groupoid** is a groupoid endowed with a locally compact Hausdorff topology, such that the multiplication and inverse are both continuous.
Toplogical groupoids

More succinct, but also more abstract definition of groupoid: A groupoid is a small category in which every morphism is invertible.

A topological groupoid is a groupoid endowed with a locally compact Hausdorff topology, such that the multiplication and inverse are both continuous.

Of course, this implies the source and target maps are also continuous.
Examples: Topological Groupoids

- with discrete topology
Examples: Topological Groupoids

- with discrete topology

- transformation groupoid - starting from G a topological group, X a topological space, and $\alpha : G \curvearrowright X$ a continuous action of G on X by homeomorphisms. The groupoid is basically $X \times G$:
for $x \in G^{(0)}$ write:

- G^x - the set of arrows whose \textit{target} is x
- G_x - the set of arrows whose \textit{source} is x
Groupoid Notation and Terminology

for $x \in \mathcal{G}^{(0)}$ write:

- \mathcal{G}^x - the set of arrows whose target is x
- \mathcal{G}_x - the set of arrows whose source is x

Terminology: we say \mathcal{G} is

- **open** if the source and target maps are open maps.
- **étale** if the source and target maps are local homeomorphisms.
- **transitive** if for any $x, y \in \mathcal{G}^{(0)}$ there exists $g \in \mathcal{G}$ such that $s(g) = x$ and $t(g) = y$.

Approximation for Groupoids I

Lemma

Let G be an open Lindelöf groupoid, and $\{K_n\}$ an exhaustion of G by compact sets. There exists a sequence of countable and locally finite open coverings $\{U_n\}_{n \geq 0}$ of G such that for all $n \geq 0$:

1. each set in U_n is pre-compact.
2. $U_{n+1}^0 \leq s(\{K_n \cap U : U \in U_n^1\}), t(\{K_n \cap U : U \in U_n^1\}) \leq U_n^0$.
3. $m(U_{n+1}^1_{|K_n}, U_{n+1}^1_{|K_n}) \leq U_n^1$.
4. $(U_{n+1}^1)^{-1} \leq U_n^1$.
Approximation for Groupoids II

If we have a normal sequence of covers \(\{ \mathcal{U}_n \} \) for \(G \) satisfying the conditions of the previous slide, then we can form the quotient \(G_\alpha \) (in the same way as described for a general topological space).
Approximation for Groupoids II

If we have a normal sequence of covers \(\{ U_n \} \) for \(G \) satisfying the conditions of the previous slide, then we can form the quotient \(G_\alpha \) (in the same way as described for a general topological space).

The extra conditions we impose on the normal sequence mean that we can define:

- \(s([g]) = [s(g)] \) (where \(g \in G \) is a representative of \([g] \in G_\alpha \))
- \([g], [h] \in G_\alpha^{(2)} \) are composable if there exists \(g' \in [g] \) and \(h' \in [h] \) with \(s(h') = t(g') \), in which case \(m([g], [h]) = [g'h'] \)
- \([g]^{-1} = [g^{-1}] \)

and these operations are well-defined and continuous in \(G_\alpha \).
Haar system of measures

Let \mathcal{G} be a topological groupoid. A **Haar system of measures on** \mathcal{G} is a collection $\{\mu_x : x \in \mathcal{G}^{(0)}\}$ of positive Radon measures on \mathcal{G} such that:

1. μ_x is supported on \mathcal{G}^x
2. for fixed $f \in C_c(\mathcal{G})$, $x \mapsto \int_{\mathcal{G}^{(0)}} f(y) d\mu^x(y)$ is continuous on $\mathcal{G}^{(0)}$
3. for all $g \in \mathcal{G}^{(1)}$ and $f \in C_c(\mathcal{G})$,

$$
\int_{\mathcal{G}^{t(g)}} f(y) d\mu^{t(g)}(y) = \int_{\mathcal{G}^{s(g)}} f(gy) d\mu^{s(g)}(y).
$$

The last condition is the groupoid equivalent of 'left invariance for Haar measure' in the case of groups. The second condition is a continuity condition for the choice of measures, and is needed in order for the convolution product to work (we will discuss this later).
Notes on Haar system of measures

Unlike for groups, a Haar system of measures might not exist, or if it does it might not be unique.
Notes on Haar system of measures

Unlike for groups, a Haar system of measures might not exist, or if it does it might not be unique.

A topological groupoid which has a Haar system of measures is necessarily an open groupoid.
Notes on Haar system of measures

Unlike for groups, a Haar system of measures might not exist, or if it does it might not be unique.

A topological groupoid which has a Haar system of measures is necessarily an open groupoid.

A general result regarding when a Haar system of measures exists is not known, though there are partial result. e.g. Every topological groupoid which is locally transitive admits a Haar system (Seda, 1970’s).
Notes on Haar system of measures

Unlike for groups, a Haar system of measures might not exist, or if it does it might not be unique.

A topological groupoid which has a Haar system of measures is necessarily an open groupoid.

A general result regarding when a Haar system of measures exists is not known, though there are partial result. e.g. Every topological groupoid which is locally transitive admits a Haar system (Seda, 1970’s).

Having a Haar system on G enables one to construct the groupoid C^*-algebra (as explained later).
Approximation of Haar system

We modify the construction of the normal sequence \mathcal{U}_n by the addition of a partition of unity and the following condition:

Fix $\{f^n_\omega : \omega \in \Lambda_n\}$ a finite partition of unity of K_n whose carriers refine \mathcal{U}_n. Let $(\lambda_\omega)_\omega \subset \mathbb{C}$ be any sequence with $|\lambda_\omega| < n$. For each element $U \in \mathcal{U}_{n+1}$ and for each $x, y \in s(U)$ we have

$$\left| \int_G \left(\sum_\omega \lambda_\omega f^n_\omega \right) \ d\mu^x - \int_G \left(\sum_\omega \lambda_\omega f^n_\omega \right) \ d\mu^y \right| < \frac{1}{n}.$$
Approximation of Haar system

We modify the construction of the normal sequence \mathcal{U}_n by the addition of a partition of unity and the following condition:

Fix $\{f^n_\omega : \omega \in \Lambda_n\}$ a finite partition of unity of K_n whose carriers refine \mathcal{U}_n. Let $(\lambda_\omega)_\omega \subset \mathbb{C}$ be any sequence with $|\lambda_\omega| < n$. For each element $U \in \mathcal{U}_{n+1}$ and for each $x, y \in s(U)$ we have

$$\left| \int_{G} \left(\sum_\omega \lambda_\omega f^n_\omega \right) d\mu^x - \int_{G} \left(\sum_\omega \lambda_\omega f^n_\omega \right) d\mu^y \right| < \frac{1}{n}.$$

Let $q : G \to G_\alpha$. It follows that for each $f \in C_c(G_\alpha)$

$$x \sim y \text{ for } x, y \in G^{(0)} \Rightarrow \int_{G^x} (f \circ q) d\mu^x = \int_{G^y} (f \circ q) d\mu^y,$$

allowing us to define a Haar system of measures on G_α based on the Haar system of measures on G.
Assume \(\{ \mu^x \} \) is a Haar system on \(G \).
Equip \(C_c(G) \) with a convolution product and an involution operation. One can then complete the resulting algebra to a \(C^* \)-algebra (in fact, there is a reduced \(C^* \)-algebra and a full \(C^* \)-algebra).
Groupoid C^*-algebra I

Assume $\{\mu^x\}$ is a Haar system on G.

Equip $\mathcal{C}_c(G)$ with a convolution product and an involution operation. One can then complete the resulting algebra to a C^*-algebra (in fact, there is a reduced C^*-algebra and a full C^*-algebra).

For $\varphi, \psi \in \mathcal{C}_c(G)$ define:

convolution: $(\varphi \ast \psi)(g) = \int \varphi(gh)\psi(h^{-1})d\mu^g(h)$

involution: $\varphi^*(g) = \varphi(g^{-1})$

We omit the description of the reduced and full C^*-algebra completion.
Groupoid C^*-algebra II

With the construction described so far, $C_c(G_\alpha) \hookrightarrow C_c(G)$ (as a *-algebra embedding).
Groupoid C^*-algebra II

With the construction described so far, $C_c(G_\alpha) \hookrightarrow C_c(G)$ (as a *-algebra embedding).

This is an easy computational check:

Denote by q the map $G \to G_\alpha$ which takes g to $[g]$. The embedding is given by $\tilde{q}(\varphi) = (\varphi \circ q)$ for $\varphi \in C_c(G_\alpha)$:

\[
\tilde{q}(\varphi \ast \psi)(g) = (\varphi \ast \psi)(q(g)) = \int_{G_\alpha} \varphi(q(g)q(h))\psi(q(h)^{-1}) d\mu^{s(q(g))}(q(h))
\]

\[
= (\tilde{q}(\varphi) \ast \tilde{q}(\psi))(g)
\]

\[
\tilde{q}(\varphi^*)(g) = (\varphi^* \circ q)(g) = \overline{\varphi(q(g)^{-1})} = \overline{\tilde{q}(\varphi)(g^{-1})} = (\tilde{q}(\varphi))^*(g),
\]

where $\varphi, \psi \in C_c(G_\alpha)$ and $g \in G$. We used the fact that $q : G \to G_\alpha$ respects the groupoid operations and is onto.
2-Cocycles and twisted convolution algebra

A 2-cocycle for \mathcal{G} is a map $\sigma : \mathcal{G}^{(2)} \to \mathbb{T}$ such that

- $\sigma(g, h)\sigma(gh, k) = \sigma(g, hk)\sigma(gh, k)$ for all $(g, h), (h, k) \in \mathcal{G}^{(2)}$, and
- $\sigma(g, s(g)) = 1 = \sigma(t(g), g)$ for all $g \in \mathcal{G}$.

Such a cocycle allows us to construct twisted groupoid C^*-algebras (modify the convolution product).
2-Cocycles and twisted convolution algebra

A 2-cocycle for G is a map $\sigma : G^{(2)} \to \mathbb{T}$ such that

- $\sigma(g, h)\sigma(gh, k) = \sigma(g, hk)\sigma(gh, k)$ for all $(g, h), (h, k) \in G^{(2)}$, and
- $\sigma(g, s(g)) = 1 = \sigma(t(g), g)$ for all $g \in G$.

Such a cocycle allows us to construct twisted groupoid C^*-algebras (modify the convolution product).

A cocycle on G can be pushed to a cocycle on G_α by again modifying the normal sequence construction to add the following condition:

*Choose a normal sequence $\{V_n\}$ for \mathbb{T}, where V_n is a finite cover by $\frac{1}{2^n}$-balls, and also ask that the sequence $\{U_n\}$ satisfies:

$$\sigma(U_n|_{K_n}, U_n|_{K_n}) \leq V_n$$

This ensures that we can define $\sigma([g], [h]) = \sigma(g, h)$ for $g, h \in G$ representatives of $[g], [h] \in G_\alpha$. Similarly to the previous slide, $C_c(G_\alpha, \sigma) \hookrightarrow C_c(G, \sigma)$ (as a $*$-algebra embedding).
Disintegration Theorem

The version of Renault’s theorem mentioned below omits the mention of a 2-cocycle for \mathcal{G} in order to simplify slightly the presentation.

Theorem (Renault’s Disintegration Theorem)

Let \mathcal{G} be a second countable locally compact groupoid endowed with a Haar system of measures. Every nondegenerate representation of the *-algebra $C_c(\mathcal{G})$ on a separable Hilbert space is the integrated form of a representation of \mathcal{G} on a bundle of Hilbert spaces.
Disintegration Theorem

The version of Renault’s theorem mentioned below omits the mention of a 2-cocycle for G in order to simplify slightly the presentation.

Theorem (Renault’s Disintegration Theorem)

Let G be a second countable locally compact groupoid endowed with a Haar system of measures. Every nondegenerate representation of the \ast-algebra $C_c(G)$ on a separable Hilbert space is the integrated form of a representation of G on a bundle of Hilbert spaces.

Our goal is to use the approximation by second countable groupoids described in the earlier part of the talk to bootstrap this result to σ-compact groupoids.
Hilbert bundles

A Borel bundle of Hilbert spaces over a space X is a Borel space $Z = X \ast \mathcal{H} = \{(x, v) : x \in X \text{ and } v \in \mathcal{H}_x\}$ such that

1. the projection $p : Z \to X$ is measurable, and each fiber \mathcal{H}_x is a Hilbert space

along with measurable sections $\{s_\alpha\}_{\alpha \in A}$ to p such that for each $x \in X$ the span of the set $\{s_\alpha(x) : \alpha \in A\}$ is dense in $p^{-1}(x)$ and satisfying the following properties

1. for each $\alpha \in A$ the map $(x, v) \to \langle s_\alpha(x), v \rangle$ is measurable on Z.
2. for each $\alpha, \beta \in A$ the map $x \to \langle s_\alpha(x), s_\beta(x) \rangle_{\mathcal{H}_x}$ is measurable on X.
3. the functions $(x, v) \to \langle s_\alpha(x), v \rangle$ separate the points of Z.

If $A = \mathbb{N}$ then we say that the bundle is separable.
Representations of Groupoids

We represent groupoids on a bundle of Hilbert spaces.
Representations of Groupoids

We represent groupoids on a bundle of Hilbert spaces.

Isomorphism groupoid: \(\text{Iso}(G^{(0)} \ast \mathcal{H}) := \{(x, U, y) : U : \mathcal{H}_x \to \mathcal{H}_y \text{ is unitary}\} \).
Representations of Groupoids

We represent groupoids on a bundle of Hilbert spaces.

Isomorphism groupoid: $Iso(G^{(0)} \ast \mathcal{H}) := \{(x, U, y) : U : \mathcal{H}_x \rightarrow \mathcal{H}_y \text{ is unitary}\}$.

If G is a groupoid equipped with a Haar system of measures, a **unitary representation** of G is a triple $(G^{(0)} \ast \mathcal{H}, L, \nu)$ where

- $G^{(0)} \ast \mathcal{H}$ is a Borel Hilbert bundle over $G^{(0)}$
- $L : G \rightarrow Iso(G^{(0)} \ast \mathcal{H})$ is such that $L(g) = (t(g), L_g, s(g))$
- ν is a quasi-invariant measure on $G^{(0)}$;
Representations of Groupoids

We represent groupoids on a bundle of Hilbert spaces.

Isomorphism groupoid: \(Iso(G^{(0)} \ast \mathcal{H}) := \{ (x, U, y) : U : \mathcal{H}_x \rightarrow \mathcal{H}_y \text{ is unitary} \} \).

If \(G \) is a groupoid equipped with a Haar system of measures, a unitary representation of \(G \) is a triple \((G^{(0)} \ast \mathcal{H}, L, \nu)\) where

- \(G^{(0)} \ast \mathcal{H} \) is a Borel Hilbert bundle over \(G^{(0)} \)
- \(L : G \rightarrow Iso(G^{(0)} \ast \mathcal{H}) \) is such that \(L(g) = (t(g), L_g, s(g)) \)
- \(\nu \) is a quasi-invariant measure on \(G^{(0)} \);

additionally define Borel sections and square-integrable sections

\[
B(G^{(0)} \ast \mathcal{H}) := \{ f : G^{(0)} \rightarrow G^{(0)} \ast \mathcal{H} : x \mapsto \langle f(x), f_\alpha(x) \rangle \text{ is Borel for all } \alpha \} \\
L^2(G^{(0)} \ast \mathcal{H}, \nu) = \{ f \in B(G^{(0)} \ast \mathcal{H}) : x \mapsto \| f(x) \|^2 \text{ is integrable on } G^{(0)} \},
\]
Representations of Groupoids

We represent groupoids on a bundle of Hilbert spaces.

Isomorphism groupoid: \(Iso(\mathcal{G}^{(0)} \ast \mathcal{H}) := \{(x, U, y) : U : \mathcal{H}_x \to \mathcal{H}_y \text{ is unitary}\} \).

If \(\mathcal{G} \) is a groupoid equipped with a Haar system of measures, a **unitary representation** of \(\mathcal{G} \) is a triple \((\mathcal{G}^{(0)} \ast \mathcal{H}, L, \nu)\) where

- \(\mathcal{G}^{(0)} \ast \mathcal{H} \) is a Borel Hilbert bundle over \(\mathcal{G}^{(0)} \)
- \(L : \mathcal{G} \to Iso(\mathcal{G}^{(0)} \ast \mathcal{H}) \) is such that \(L(g) = (t(g), L_g, s(g)) \)
- \(\nu \) is a quasi-invariant measure on \(\mathcal{G}^{(0)} \);

additionally define Borel sections and square-integrable sections
\[
B(\mathcal{G}^{(0)} \ast \mathcal{H}) := \left\{ f : \mathcal{G}^{(0)} \to \mathcal{G}^{(0)} \ast \mathcal{H} : x \mapsto \langle f(x), f_\alpha(x) \rangle \text{ is Borel for all } \alpha \right\}
\]
\[
L^2(\mathcal{G}^{(0)} \ast \mathcal{H}, \nu) = \left\{ f \in B(\mathcal{G}^{(0)} \ast \mathcal{H}) : x \mapsto \|f(x)\|^2 \text{ is integrable on } \mathcal{G}^{(0)} \right\},
\]
and impose the condition that \(g \mapsto \langle L_g h(s(g)), k(t(g)) \rangle \) should be \(\nu \)-measurable for all \(h, k \in L^2(\mathcal{G}^{(0)} \ast \mathcal{H}, \nu) \).
Integrated form of a representation

Suppose G is a groupoid equipped with a Haar system of measures $\{\mu^x\}$. Suppose moreover that $(G^{(0)} \ast \mathcal{H}, L, \nu)$ is a unitary representation of G.

Renault's disintegration theorem states that if G is second countable then all representations of $C^c(G)$ are of this type.
Integrated form of a representation

Suppose \mathcal{G} is a groupoid equipped with a Haar system of measures $\{\mu^x\}$. Suppose moreover that $(\mathcal{G}^{(0)} \ast \mathcal{H}, L, \nu)$ is a unitary representation of \mathcal{G}.

There is a representation of $C_c(\mathcal{G})$, called the integrated form of $(\mathcal{G}^{(0)} \ast \mathcal{H}, L, \nu)$, denoted by L through a standard abuse of notation, defined such that

$$\langle L(\varphi)h,k \rangle = \int_{\mathcal{G}^{(0)}} \int_{\mathcal{G}} \varphi(g) \langle L_g(h(s(g))),k(t(g)) \rangle \Delta(g)^{-1/2} d\mu^x(g) d\nu(x),$$

where $\varphi \in C_c(\mathcal{G})$, $h,k \in L^2(\mathcal{G}^{(0)} \ast \mathcal{H}, \nu)$ and Δ is the modular function of ν.
Integrated form of a representation

Suppose G is a groupoid equipped with a Haar system of measures $\{\mu^x\}$. Suppose moreover that $(G^{(0)} \ast \mathcal{H}, L, \nu)$ is a unitary representation of G.

There is a representation of $\mathcal{C}_c(G)$, called the integrated form of $(G^{(0)} \ast \mathcal{H}, L, \nu)$, denoted by L through a standard abuse of notation, defined such that

$$\langle L(\varphi)h, k \rangle = \int_{G^{(0)}} \int_G \varphi(g) \langle L_g(h(s(g))), k(t(g)) \rangle \Delta(g)^{-1/2} \, d\mu^x(g) \, d\nu(x),$$

where $\varphi \in \mathcal{C}_c(G)$, $h, k \in L^2(G^{(0)} \ast \mathcal{H}, \nu)$ and Δ is the modular function of ν.

Renault’s disintegration theorem states that if G is second countable then all representations of $\mathcal{C}_c(G)$ are of this type.
Disintegration Theorem for Lindelöf groupoids

We want to extend Renault’s result to Lindelöf groupoids:

Theorem

Let G be a Lindelöf locally compact groupoid endowed with a Haar system of measures. Every nondegenerate representation of the \ast-algebra $C_c(G)$ on a Hilbert space is the integrated form of a representation of G on a bundle of Hilbert spaces.
Some obvious comments about the quotient construction:

- If \mathcal{G} is transitive, so is \mathcal{G}_α.
- If \mathcal{G} is étale, it is easy to ensure the quotient groupoids \mathcal{G}_α are also étale.
Comments, and avenues for future investigation

Some obvious comments about the quotient construction:

- If \mathcal{G} is transitive, so is \mathcal{G}_α.
- If \mathcal{G} is étale, it is easy to ensure the quotient groupoids \mathcal{G}_α are also étale.

Some questions:

- Is it true that if \mathcal{G} is étale then finite dynamic asymptotic dimension is preserved by the construction?
- If \mathcal{G} is equipped with a Fell bundle, is there a good way to associate a Fell bundle to \mathcal{G}_α?
- Are there results for second countable groupoids that, using the ideas / constructions presented, can be extended to Lindelöf groupoids?
...The End

Thank you for your attention.