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General Problem

What is the C*-envelope of the Tensor Algebra of the subproduct system
over N arising from a stochastic matrix?

There are some surprises when compared to the situation of product
systems over N.
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Basic framework Subproduct systems

Definition (Shalit-Solel ’09, Bhat-Mukherjee ’10)

Let M be a vN algebra, let X = (Xn)n∈N be a family of
W*-correspondences over M , and let U = (Um,n : Xm ⊗Xn → Xm+n) be
a family of bounded M -linear maps. We say that X is a subproduct
system over M if for all m,n, p ∈ N,

1 X0 = M

2 Um,n is co-isometric

3 The family U “behaves like multiplication”: Um,0 and U0,n are the
right/left multiplications and

Um+n,p(Um,n ⊗ Ip) = Um,n+p(Im ⊗ Un,p)

When Um,n is unitary for all m,n we say that X is a product system.
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Basic framework Subproduct systems

Theorem (Muhly-Solel ’02, Solel-Shalit ’09)

Let M be a vN algebra. Suppose that θ : M →M is a unital normal CP
map. Then there exits a canonical subproduct system structure on the
family of Arveson-Stinespring correspondences associated to (θn)n∈N.

Definition

Given a countable (possibly infinite) set Ω, a stochastic matrix over Ω is a
function P : Ω× Ω→ R such that Pij ≥ 0 for all i, j and

∑
j∈Ω Pij = 1

for all i.

Subproduct system of a stochastic matrix

There is a 1-1 correspondence between ucp maps of `∞(Ω) into itself and
stochastic matrices over Ω given by

θP (f)(i) =
∑
j∈Ω

Pijf(j)

Hence, a stochastic P gives rise to a canonical subproduct system Arv(P ).
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Basic framework Tensor, Toeplitz and Cuntz-Pimsner algebras

Given a subproduct system (X,U), we define the Fock W*-correspondence

FX =

∞⊕
n=0

Xn

Define for every ξ ∈ Xm the shift operator

S
(m)
ξ ψ = Um,n(ξ ⊗ ψ), ψ ∈ Xn

Tensor algebra (not self-adjoint):

T+(X) = Alg
‖·‖
M ∪ {S(m)

ξ | ∀ξ ∈ Xm,∀m}

Toeplitz algebra: T (X) = C∗(T+(X))
Cuntz-Pimsner algebra: O(X) = T (X)/J (X) for appropriate J (X)

For the case of subproduct systems, Viselter ’12 defined the ideal J (X) as
follows: let Qn denote the orthogonal projection onto the nth summand of
Fock module:

J (X) = {T ∈ T (X) : lim
n→∞

‖TQn‖ = 0}.
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Basic framework Some examples

Example (Product system PC)

Let X = PC = ∪n∈NC be the “line bundle” product system.

We have FX = ⊕n∈NC ' `2(N) and T+(PC) is closed algebra
generated by the unilateral shift.

T+(PC) = A(D) the disk algebra

T (PC) is the original Toeplitz algebra

O(PC) = C(T)

Theorem (Viselter ’12)

If E is a correspondence and its associated product system PE is faithful,
then O(PE) = O(E).

So the algebras for subproduct systems generalize the case of single
correspondences (via the associated product system).
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Case of Stochastic Matrices c.b./bounded/algebraic isomorphism problem

In a previous paper with A. Dor-On, we studied the tensor algebras in their
own right. Let’s do a quick review.

Recall that a stochastic matrix P is essential if for every i, Pnij > 0 for
some n implies that ∃m such that Pmji > 0.

The support of P is the matrix supp(P ) given by

supp(P )ij =

{
1, Pij 6= 0

0, Pij = 0

Theorem (Dor-On-M.’14)

Let P and Q be finite stochastic matrices over Ω. TFAE:

1 There is an algebraic isomorphism of T+(P ) onto T+(Q).

2 there is a graded comp. bounded isomorphism T+(P ) onto T+(Q).

3 Arv(P ) and Arv(Q) are similar up to change of base

Furthermore, if P and Q are essential , those conditions hold if and only if
P and Q have the same supports up to permutation of Ω.
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Case of Stochastic Matrices Completely isometric isomorphism problem

A stochastic matrix P is recurrent if
∑

n(Pn)ii =∞ for all i.

Theorem (Dor-On-M.’14)

Let P and Q be stochastic matrices over Ω. TFAE:

1 There is an isometric isomorphism of T+(P ) onto T+(Q).

2 there is a graded comp. isometric isomorphism T+(P ) onto T+(Q).

3 Arv(P ) and Arv(Q) are unitarily isomorphic up to change of base.

Furthermore, if P and Q are recurrent, those conditions hold if and only if
P and Q are the same up to permutation of Ω.
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Case of Stochastic Matrices Cuntz-Pimsner algebra

We also computed the Cuntz-Pimsner algebra in the sense of Viselter.

Theorem (Dor-On-M.’14)

If P is irreducible d× d stochastic, then O(P ) ' C(T)⊗Md(C).

We thank Dilian Yang for pointing out a gap, fixed in Dor-On-M.’16.

We will turn the uncomplicated nature of O(P ) to our advantage to study
the C*-envelope of T+(P ).
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The C*-Envelope of the Tensor Algebra Basic Defs: Boundary reps and C*-envelope

Definition (C*-envelope - existence proved by Hamana ’79)

Let A ⊆ B(H) be a unital closed subalgebra. The C*-envelope of A
consists of a C*-algebra C∗env(A) and a comp. isometric embedding
ι : A → C∗env(A) with the following universal property: if j : A → B is a
comp. isometric embedding and B = C∗(j(A)), then there is a
*-homomorphism φ : B → C∗env(A) such that φ(j(a)) = ι(a) for all a ∈ A.

Definition (Arveson ’69)

Let S be an operator system. We say that a UCP map φ : S → B(H) has
the unique extension property (UEP) if it has a unique cp extension
φ̃ : C∗(S)→ B(H) which is a ∗-rep. If φ̃ is irreducible, then φ is called a
boundary representation of S.

Theorem (Arveson ’08 for A separable, Davidson-Kennedy ’13)

Let A ⊆ B(H) be a unital closed subalgebra and let S = A+A∗. Let π
be the direct sum of all boundary representations of A. Then the
C*-envelope of A is given by the pair π �A and C∗(π(S)).
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The C*-Envelope of the Tensor Algebra Some known results

Q: What is the C*-envelope of a tensor algebra?

Theorem (From Muhly-Solel ’98 (...) to Katsoulis and Kribs ’06)

If E is a C*-correspondence, then C∗env(T+(E)) = O(E).

Theorem (Davidson, Ramsey and Shalit ’11)

If X is a commutative subproduct system of fin. dim. Hilbert space fibers,
then C∗env(T+(X)) = T (X).

Theorem (Kakariadis and Shalit ’15)

If X is a subproduct system of fin. dim. Hilbert space fibers arising from a
subshift of finite type, then C∗env(T+(X)) is either T (X) or O(X).

So far, this seemed to suggest a dichotomy.

In all these examples, however, X was either product system or was
composed of Hilbert spaces.

First candidate outside that context: stochastic matrices.
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The C*-envelope of T+(P ) Boundary representations

Recall if P is irreducible finite stochastic, O(P ) ' C(T)⊗Md(C).

Let H = FArv(P ) ⊗ `2(Ω). We have a canonical representation
π : T (P )→ B(H) which breaks up into d subrepresentations πk on
the “column-like” spaces Hk = FArv(P ) ⊗ Cek.

Theorem (Dor-On-M.’16)

If P is irreducible d× d stochastic, then J (T (P )) ' ⊕dj=1K(Hj).
Therefore we have an exact sequence

0 −→
d⊕
j=1

K(Hj) −→ T (P ) −→ C(T)⊗Md(C) −→ 0

Moreover, all irreducible representations of T (P ) are unitarily equivalent
to appropriate πk or arise from the point evaluations on T.
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The C*-envelope of T+(P ) Boundary representations

Theorem (Dor-On-M.’16)

Suppose that P is an irreducible matrix of size d. The point evaluations of
C(T)⊗Md(C) lift to boundary representations of T+(P ) inside T (P ).
Therefore have an exact sequence

0 −→
⊕
j∈ΩP

b

K(Hj) −→ C∗env(T+(P )) −→ C(T)⊗Md −→ 0

where ΩP
b is the set of states k for which πk is boundary.
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The C*-envelope of T+(P ) Exclusivity and Multiple-Arrival

Definition

Let P be an irreducible r-periodic stochastic matrix of size d. A state
k ∈ Ω is called exclusive if whenever for i ∈ Ω and n ∈ N we have
P

(n)
ik > 0, then P

(n)
ik = 1.

We say that P has the multiple-arrival property if whenever k, s ∈ Ω are
distinct non-exclusive states such that whenever k leads to s in n steps,
then there exists k 6= k′ ∈ Ω such that k′ leads to s in n steps.

Example

If P is r-periodic, then by permuting states it has the cyclic block
decomposition 0 P0 ··· 0

...
. . .

. . .
...

0 ··· 0 Pr−2

Pr−1 ··· 0 0

 , example:

 0 0 1
0 0 1

0.5 0.5 0


If such a matrix has full-support, which is to say no zeros in the blocks Pj ,
then it has multiple-arrival.
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The C*-envelope of T+(P ) The C*-envelope exact sequence

Theorem (Dor-On-M.’16)

Let P be an irreducible finite stochastic matrix. If k ∈ Ω is exclusive, then
πk is not a boundary rep.

Theorem (Dor-On-M.’16)

Suppose that P is a finite irreducible matrix with multiple-arrival.
Then πk is a boundary representation if and only if k is non-exclusive.
Therefore, the C*-envelope of T+(P ) inside T (P ) corresponds to the
quotient by the ideal⋂

k non-exclusive

{ T ∈ J (P ) | πk(T ) = 0 } 'π
⊕

j exclusive

K(Hj)

Thus we have an exact sequence

0 −→
⊕

j non-exclusive

K(Hj) −→ C∗env(T+(P )) −→ C(T)⊗Md −→ 0
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The C*-envelope of T+(P ) Dichotomy Fails

Theorem (Dor-On-M.’16)

Let P be an irreducible stochastic finite matrix with multiple-arrival.

C∗env(T+(P )) ∼= T (P ) iff all states non-exclusive.

C∗env(T+(P )) ∼= O(P ) iff all states exclusive.

Example (Dor-On-M.’16: Dichotomy fails)

C∗env(T+(P )) , T (P ) and O(P ) are all different for P =

[
0 0 1
0 0 1

0.5 0.5 0

]
.

Since P is 2-periodic, we see from its cyclic decomposition it has
full-support. Therefore it has the multiple-arrival property. The only
exclusive column is k = 3. Therefore we have an exact sequence

0 −→ K(H1)⊕K(H2) −→ C∗env(T+(P )) −→ C(T)⊗M3 −→ 0
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The C*-envelope of T+(P ) Classification: K-theory and Stable isomorphism

Q: If dichotomy fails, what are the possibilities for C∗env(T+(P ))?
Recall ΩP

b = {k ∈ Ω : πk is boundary for P}

Theorem (Dor-On-M.’16)

Let P be a finite irreducible stochastic.

1 If P has a non-exclusive state then

K0(C∗env(T+(P ))) ∼= Z|Ωb| and K1(C∗env(T+(P ))) ∼= {0}

2 If all states are exclusive then

K0(C∗env(T+(P ))) ∼= K1(C∗env(T+(P ))) ∼= Z

Theorem (Dor-On-M.’16)

Let P and Q be finite irreducible stochastic matrices over ΩP and ΩQ

respectively. Then |ΩP
b | = |Ω

Q
b | if and only if C∗env(T+(P )) and

C∗env(T+(Q)) are stably isomorphic.
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The C*-envelope of T+(P ) Classification up to isomorphism

Definition

Let P be an r-periodic irreducible stochastic matrix over Ω of size d, and
k ∈ Ω. Let Ω0, ...,Ωr−1 be a cyclic decomposition for P , so that σ(k) is
the unique index such that k ∈ Ωσ(k). The k-th column nullity of P is

NP (k) =

∞∑
m=1

|{ i ∈ Ωσ(k)−m | P
(m)
ik = 0 }|

Intuition: It counts the number of zeros in the kth column of the powers of
P , relative to the cyclic decomposition support.[

0 ∗
∗ 0

]
→
[
∗ 0
0 ∗

]
→ . . .

Note the series is actually a sum, because the matrix powers fill-out
eventually.
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The C*-envelope of T+(P ) Classification up to isomorphism

Theorem (Dor-On-M.’16)

Let P and Q be finite irreducible stochastic matrices over ΩP and ΩQ

respectively. Then C∗env(T+(P )) and C∗env(T+(Q)) are *-isomorphic if and
only if

1 |ΩP | = |ΩQ| (let d be this number)

2 there is a bijection τ : ΩP
b → ΩQ

b such that

∀k ∈ ΩP
b , NP (k) ≡ NQ(τ(k)) mod d.
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The C*-envelope of T+(P ) Classification up to isomorphism

Example

Suppose matrices for P,Q,R are stochastic with matrices supported on
graphs (so multiple-arrival)

Gr(P ) =

0 0 1
0 0 1
1 1 0

 , Gr(Q) =

1 1 1
1 1 1
1 1 1

 , Gr(R) =

1 1 1
1 1 1
1 1 0


ΩP
b = {1, 2}, NP (j) = 0, j = 1, 2, 3

ΩQ
b = {1, 2, 3}, NQ(j) = 0, j = 1, 2, 3

ΩR
b = {1, 2, 3}, NR(1) = NR(2) = 0, NR(3) = 1,

Let ∼= denote *-isomorphism. Then:

C∗env(T+(P ))⊗K 6∼= C∗env(T+(Q))⊗K ∼= C∗env(T+(R))⊗K

C∗env(T+(Q)) 6∼= C∗env(T+(R))
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The C*-envelope of T+(P ) Classification up to isomorphism

Thank you!
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The C*-envelope of T+(P ) Classification up to isomorphism

Extension theory:
0→ K

ι→ A
π→ B → 0

can be studied through Busby invariant η : B → Q(K) ∼= M(K)/K, since
have θ : A→M(K) by θ(a)c = ι−1(aι(c))

Equivalence of exact sequences gives relation for Busby inv.:
∃κ : K1 → K2 and β : B1 → B2 s.t. κ̃η1 = η2β.

In our case closely connected to K = K for which a lot is known. There is
a group structure on the set of equivalence classes of extensions (both
weak and strong) since B is nuclear separable (Choi-Effros).

Exts(B)→ Extw(B)→ Hom(K1(B),Z)

We use work of Paschke and Salinas, which characterizes this objects
when K is a sum of compacts, and sweat to identify the objects and maps
in this case.
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The C*-envelope of T+(P ) Classification up to isomorphism

Example

Suppose matrices for P,Q,R are stochastic with matrices supported on
graphs (so multiple-arrival)
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b = {1, 2, 3}, NQ(1) = NQ(2) = 0, NQ(3) = 1,

ΩR
b = {1, 2, 3}, NR(1) = NR(2) = 0, NR(3) = 1,

C∗env(T+(P )) 6∼ C∗env(T+(Q)) ∼= C∗env(T+(R))

OGr(P )
∼= OGr(Q) 6∼ OGr(R)

where ∼= stands for *-isomorphism and ∼ stands for stable isomorphism.
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