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1. Edward Bierstone and Pierre Milman’s Problems

Extension problems for geometric classes (E.g., subanalytic, semialgebraic or,
more generally, o-minimal structures).

Problem BM1. Extension of subanalytic functions Is there a Whitney extension
theorem for Cm subanalytic functions on a closed subanalytic subset X of Rn? (A
function is subanalytic if its graph is subanalytic.)

As evidence, there seems to be a subanalytic extension involving loss of differentiability,
as in our paper [Inv. Math. 151 (2003), 329–352].

2. Characterization of “tame” subanalytic sets by the extension property
There is a remarkable subclass of subanalytic sets, called semicoherent, characterized by
the following theorem.

Theorem 1.1. Let X denote a compact subanalytic subset of Rn. Then the following
conditions are equivalent:

(1) Composite function property. If p : M → Rn is a proper real-analytic mapping with
p(M) = X, then the ring of composite C∞ functions p∗C∞(Rn) (where p∗(g) := g ◦ p) is
closed in C∞(M).

(2) C∞(X) is the intersection of all Cm(X).

(3) Natural local algebraic invariants of X (e.g., the Hilbert-Samuel function) are upper-
semicontinuous (in the subanalytic Zariski topology).

(4) For each l, the degree ≤ l part of the Cm paratangent bundle (m ≥ l) stabilizes as m
increases.

(5) X is semicoherent (i.e., satisfies a stratified version of the Oka-Cartan coherence
theorem).

(6) There is a uniform bound for a local invariant of X called the Chevalley function
(which compares algebraic and metric notions of order of vanishing).

The various equivalences are proved in [Ann. of Math. 147 (1998), 731–785], [Duke
Math. J. 83 (1996), 607–620], [Inv. Math., loc. cit.]. We show that, if X is semicoherent,
then there is an extension operator E : C∞(X) → C∞(Rn). Thus we get estimates on

the Ck seminorms of an extension: Given k ∈ N and K ⊂ Rn compact, there exist
l = l(k,K) ∈ N and L = L(k, K) ⊂ X compact, such that

‖E(f)‖K
k ≤ c‖f‖L

l .

Problem BM2. Can the class of semicoherent sets be characterized by the extension
property?

We prove:
1
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Theorem 1.2. Suppose there is an extension operator as above with an estimate l(0, K) =
0 on the zeroth seminorms, for every compact K. Then X is semicoherent.

So the preceding question can be reformulated: Does semicoherence imply the extension
property with l(0, K) = 0?

We do not know whether this is true in simple examples (e.g., X = union of the x-axis
and the parabola y = x2 in R2).

2. Problems of Yu. Brudnyi and N. Kalton

Let B(Rn) be the set of all bounded subsets of Rn.

The local polynomial (best) approximation of order k is a function Ek : `loc
∞ (Rn) ×

B(Rn) → R+ given by

(1) Ek(S ; f) := inf
{‖f − P‖`∞(S) ; P ∈ Pk−1,n

}
.

Notice that the order k differs by 1 from the corresponding degree of the approximating
polynomials.

Also, k-oscillation of f : Rn → R on a set S ⊂ Rn is given by

(2) ωk(S ; f) := sup
{|∆k

hf(x)| ; x + jh ∈ S, j = 0, 1, . . . , k
}
,

where

∆k
hf(x) :=

k∑
j=0

(−1)k−j

(
k

j

)
f(x + jh).

Let S be a closed subset of Rn. We define the Whitney constant wk(S) by

(3) wk(S) := sup
{
Ek(S ; f) ; f ∈ C(S) and ωk(S ; f) ≤ 1

}
.

We also define the global Whitney constant wk(n) by

(4) wk(n) := sup{wk(S) ; S ⊂ Rn bounded and convex}.
In the spirit of the Whitney paper On functions with bounded n-differences, J. Math.
Pure Appl. 9, No. 3 (1957), 67–95, who considered the case of dimension one 1, let us
consider also the constants w∗

k(n) and w∗∗
k (n) defined by (3) with S := Rn

+ and S := Rn.
One can prove the following estimates:

w∗
k(n) ≤ 2, w∗∗

k (n) ≤ min
1≤j≤n

1
/(

n

j

)
.

In contrast, the sharp upper bound for wk(n) depends on the dimension, and in fact,
limn→∞ wk(n) = ∞ if k ≥ 2. We discuss this situation following the paper of Yu. Brudnyi
and Kalton Polynomial approximation on convex subsets of Rn, Constr. Appr. 16 (2000),
161–199.

In one-dimensional case the sharp value of Whitney constant wk := ωk(1) is known

only for k = 1 and 2 (w1 = w2 = 1
2
). Whitney, 1957, proved that 8

15
≤ w3 ≤ 7

10
and

wk < ∞ for all k. It is conjectured by Sendov that wk ≤ 1 for all k. Recently it was
proved that wk < 2 + e−2 and the Sendov conjecture was proved for k ≤ 7.

1 In this case wk(1) = wk([0, 1]).
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Now we present several conjectures and results due to Yu. Brudnyi and Kalton.
There is a fairly precise estimate for w2(n), i.e.,

1

2
log2

(⌊n

2

⌋
+ 1

)
≤ w2(n) ≤ 1

2
blog2 nc+

5

4
.

Curiously enough, w2(n) is almost attained not for the unit n-simplex Sn as it may be
thought, but for Sn ⊕ Sn ⊂ R2n. Meanwhile for Sn the precise asymptotic is given by

lim
n→∞

w2(S
n)

log2 n
=

1

4
.

We will write wk(`
n
p ) instead of wk(S) when S is the closed unit ball of `n

p . Then

w2(`
n
1 ) ≈ log n while w2(`

n
p ) with 1 < p ≤ ∞ is equivalent, up to a logarithmic factor, to

(p − 1)−1 as p → 1. In the important for applications case of the n-cube (i.e., p = ∞)
this constant is bounded by 802. (It is conjectured that w2(`

n
∞) ≤ 2.)

Now let w
(sym)
k (n) be defined as in (4) but for centrally symmetric convex bodies. Then

for some numerical constants c1, c2 > 0,

c1

√
n ≤ w

(sym)
3 (n) ≤ c2

√
n log(n + 1).

As in the linear approximation case, this result can be improved for w3(`
n
p ). For example,

w3(`
n
2 ) ≈ log(n + 1) and

c1 log(n + 1) ≤ w3(`
n
∞) ≤ c2

(
log(n + 1)

)2
.

There are also a few estimates for k ≥ 4. In particular,

w
(sym)
k (X) ≤ cn

k
2
−1 log(n + 1),

while

wk(`
n
p ) ≤ cn

(k−3)
2 log(n + 1)

for 2 ≤ p ≤ ∞ and wk(`
n
1 ) ≈ log(n + 1).

Conjectures. (a) If k ≥ 2, then

wk(n) ≈ w
(sym)
k (n) ≈ n

k
2
−1 log(n + 1)

as n →∞.
This is proved for k = 2 while the upper estimate for w

(sym)
k (n) is established for k ≥ 2.

As for the lower bound, we only have wk(n) ≥ w
(sym)
k (n) ≥ c

√
n for k ≥ 3.

(b) If k ≥ 3 and 1 ≤ p < ∞, then

wk(`
n
p ) ≈ log(n + 1)

as n →∞.
The result is established for p = 1 and all k ≥ 2 and for k = 3 and 2 ≤ p < ∞, while

the lower bound is established for all k ≥ 3. It is quite possible, that it is way off the
mark when k ≥ 4.

(c) w2(`
n
∞) is “small”, say, w2(`

n
∞) ≤ 2. The only known results are w2(`

1
∞) = 1

2
, and

w2(`
2
∞) = 1, and w2(`

n
∞) ≤ 802 for n ≥ 3. If the conjecture held, then for every convex

function f on an n-cube Q we would have the inequality

E2(Q ; f) ≤ ω2(Q ; f).
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(d) If X is an infinite-dimensional Banach space, then w3(X) = ∞.

3. Problems of A. Brudnyi and Yu. Brudnyi

3.1. Let X be a “smoothness“ Banach space continuously embedded into C(Rn), e.g.,

Ck,ω(Rn), Sobolev space W k
p (Rn), where k

n
> 1

p
, the Zygmund space of functions whose

second difference |∆2
hf(x)| = O(‖h‖) etc. Then the trace space X|S is well defined for

every S ⊂ Rn. This space is Banach under the canonical trace norm.
Consider a class S of subsets in Rn Given an integer N ≥ 1 and a subset S ⊂ S define

a functional f 7→ δN(f ; S; X) on C(S) by

(5) δN(f ; S; X) := sup
Σ
‖f |Σ‖X|Σ ,

where Σ runs over all N -point subsets of S.
A space X has finite property with respect to the class S if for some integer N ≥ 1,

constant C > 0 and every S ⊂ S and f ∈ C(S)

(6) ‖f‖X|S ≤ CδN(f ; S; X).

We conventionally assume that the left-hand side is ∞ if f 6∈ X|S. The minimal N for
which (6) holds for all S ⊂ S is said to be the finiteness constant of X with respect to
the class of sets S and is denoted by FS(X).

3.2. k-modulus of continuity is the function on `loc
∞ (Rn) × (0, +∞) with range in R+ ∪

{+∞} given by

(7) ωk(t ; f) := sup
‖h‖≤t

∥∥∆k
hf

∥∥
`∞(Rn)

.

Here `loc
∞ (Rn) is the (Fréchet) space of locally bounded functions f on Rn equipped with

the collection of seminorms
{

sup
C
|f |

}
, where C runs over the family of compact subsets

of Rn.
A function ω : (0, +∞) → R+ belongs to the class Ωk if it satisfies the conditions

(a) ω is nondecreasing, continuous and

ω(0+) = 0;

(b) for all 0 < t ≤ s
ω(s)

sk
≤ ω(t)

tk
.

In the sequel the functions of Ωk will be called k-majorants.

Let ω ∈ Ωk. The homogeneous Lipschitz space Λ̇k,ω(Rn) consists of locally bounded
on Rn functions f satisfying

(8) |f |Λk,ω(Rn) := sup
t>0

ωk(t ; f)

ω(t)
< ∞.

We also define the Banach space Λk,ω(Rn) of Lipschitz functions of order k by

(9) |f |Λk,ω(Rn) := sup
Rn

|f |+ |f |Λk,ω(Rn).
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In particular, let ω(t) := tσ, 0 < σ ≤ k, and s be the largest integer less than σ. Then
the following equalities hold:

(a) If σ is noninteger or σ = k, then

(10) Λk,ω(Rn) = Cs,ω̄(Rn),

where ω(t) := tσ−s and the corresponding norms are equivalent.
(b) If σ < k is integer, then

(11) Λk,ω(Rn) = CsΛ(Rn) (= Bσ
∞(Rn)).

Let us recall that the space on the right-hand side is defined by the norm

(12) ‖f‖Bσ∞(Rn) := ‖f‖`∞(Rn) + max
|α|=σ−1

sup
t>0

ω2(t ; Dαf)

t
.

3.3. Let X ⊂ Rn be a subset. By KS we denote the set of cubes in Rn centered at S and
of `∞-radius at most diamS. We write Qr(x) for the cube of radius r and center x and
denote by Xr(x) the set Qr(x) ∩X for x ∈ X. By R[x1, . . . , xn] we denote the space of
real polynomials on Rn and by Pk ⊂ R[x1, . . . , xn] the subspace of polynomials of degree
k. For k = 0 we let Pk−1 := {0}.

We say that X is Markov if there is a constant C = C(X, n, k) such that for every
polynomial p ∈ Pk, k ≥ 1, and every Qr(x) ∈ KX

(13) sup
Xr(x)

||∇p|| ≤ C

r
sup
Xr(x)

|p|.

(Here || · || is the Euclidean norm on Rn.)
(1) Let Xj ⊂ Rnj be closed sj-sets, nj − 1 < sj ≤ nj, 1 ≤ j ≤ m (i.e., for each j there

are positive constants aj, bj such that for every cube B ∈ KXj
of radius r,

ajr
sj ≤ Hsj

(B ∩Xj) ≤ bjr
sj ;

here Hsj
is the Hausdorff sj-measure on Xj).

Then X := X1 × · · · ×Xm ⊂ Rn, n := n1 + · · ·+ nm, is a Markov set.
(2) If X ⊂ Rn is a compact Markov set and φ : U → V ⊂ Rn is a C1 diffeomorphism
defined on a neighbourhood U of X, then φ(X) is Markov.
(3) If Xj ⊂ Rn, 1 ≤ j ≤ m, are Markov, then ∪jXj is Markov.
(4) Any Lipschitz submanifold of Rn of dimension ≤ n− 1 is not Markov.

If there exists a positive number r0 < diam X such that inequality (13) is valid for all
Qr(x) ∈ KX with r ≤ r0, then X is called locally Markov.

The class of locally Markov subsets of Rn is denoted by Marloc(Rn). Clearly if X is
compact and locally Markov, then X is Markov.

A subset X ⊂ Rn is said to be Markov of weak type if for each x ∈ X there exists
a sequence {rj(x)}j∈N ⊂ R+ converging to 0 such that inequality (13) with r = rj(x),
j ∈ N, is valid for every k ≥ 1 with the constant C = C(x).

The class of Markov subsets of weak type of Rn is denoted by Marw(Rn).
A union of locally Markov subsets of Rn is Markov of weak type. In particular, any

open subset of Rn is Markov of weak type.
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Problems.

(1) Prove that finiteness constant FMarloc(Rn)(Λ
k,ω(Rn)) =

(
n+k−1

n

)
+ 1. This problem

relates to interesting geometric questions. As an example, we formulate one of
them. Does there exist a Markov set in the plane such that every its three-point
subset does not belong to a straight line?

(2) Evaluate FS(Λk,ω(Rn)), where S is the class of d-sets, 0 < d ≤ n.
(3) Let S belong to the class of d-sets, 0 < d ≤ n. Prove that there exists a linear

extension operator from Λk,ω(Rn)|S to Λk,ω(Rn) whose norm and depth depend

only on k, n and S.2

In case n − 1 < d ≤ n the results follow from a more general theorem proved
by Yu. Brudnyi and A. Brudnyi.

(4) Characterize trace space Λk,ω(Rn)|S for S being a Lipschitz submanifold of Rn.

(5) Evaluate finiteness constant FMarw(Rn)(C
k,ω(Rn)).

4. Charles Fefferman’s Problems

Problem F1. Let f : E → R with E ⊂ Rn finite. Let ε > 0. How many computer
operations does it take to compute a function Fε ∈ Cm(Rn) such that Fε|E = f, with the
Cm-norm of Fε at most ε percent more than the least value possible (inf)?

To ”compute a function” F in Cm(Rn) from data means the following: We enter the
data into a computer, which performs ”one-time work”, then signals that it is ready to
accept ”queries”. We may then query the computer, by inputting points x in Rn. The
computer responds to each query x by performing a calculation (the ”query work”), and
then printing out the values at x of F and its derivatives up to order m. The resources
used to compute F are: The number of computer operations used in the one-time work;
The number of computer operations used in the query work; and The storage, i.e. the
number of real numbers or integers that can be stored in RAM.

See ”Fitting a Cm Smooth Function to Data II” by Fefferman and Klartag, available
e.g. on Fefferman’s website at math.princeton.edu. Surely this notion of ”computing a
function” is an old idea in computer science and numerical analysis

Problem F2. Let f : E → R with E ⊂ Rn finite. How can we compute a function
F0 ∈ Cm−1,1(Rn) such that F0 can be approximated arbitrarily closely in Cm−1-norm by
functions Fε as in Problem 1, with ε arbitrarily small?

Problem F3. Which mathematical theorems are relevant to Problems F1 and F2?
(Think of the Brudnyi-Shvartsman finiteness principle.)

Problem F4. Let f : E → R with E ⊂ Rn. How can we tell whether there exists
F ∈ Wm,p(Rn) such that F = f on E? If F exists, how small can we take its norm?

2A linear operator T : X|S → X is of depth N if for every x ∈ Rn \S there exist a sequence of points
x1, . . . , xN ∈ S and a sequence of numbers λ1, . . . , λN such that

(Tf)(x) =
N∑

i=1

λif(xi).
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How can we effectively compute such an F , with its Sobolev norm within a factor C of
least possible, if E is finite? Here, C should depend only on m,n, p.

Pavel Shvartsman has answered the above math questions for m = 1; likely his ideas
will also solve the computer science question in that case.

Problem F5. Let E ⊂ Rn. How can we decide whether E is a subset of an imbedded
(or immersed) compact, Cm-smooth surface of dimension k?

(Think of a Möbius strip in R3.)

Problem F6. Let f : E → R, with E ⊂ Rn finite. How small can we make
∑
x∈E

|F (x)− f(x)|2

given that ‖F‖Cm(Rn) has order of magnitude at most M, where M is a given positive
number?

(This question is due to Andrea Bertozzi).

Problem F7. Suppose we know that F : Rn → R has Cm-norm at most M. Suppose
also that we are told the values F (x1), · · · , F (xN) of F at N given points. Our job is to
pick additional points xN+1, · · · , xN+N ′ , and then try to guess F as closely as possible,
given the values F (x1), · · · , F (xN+N ′). We pick the points xN+1, · · · , xN+N ′ successively,
and we are allowed to use x1, · · · , xN+k−1 and F (x1), · · ·F (xN+k−1) in deciding which
point to pick as xN+k. How should we proceed?

The Problem is of course not precisely formulated. Formulate a precise version of the
problem and solve it. (This question is due to Dann Toliver).

Problem F8. Let P be the space of all real polynomials of degree ≤ m on Rn. Let
| · |x, x ∈ Rn, be a family of norms on P subject to the following two conditions:

(i) ∃ c0, C0 ∈ R+, ∀P ∈ P , ∀x ∈ Rn,

c0 max
|α|≤m

|∂αP (x)| ≤ |P |x ≤ C0 max
|α|≤m

|∂αP (x)|,

(ii) ∃C1 ∈ R+, ∀ x, h ∈ Rn, |h| ≤ 1, ∀P ∈ P |P |x+h ≤ (1 + C1|h|)|P |x.
Let Ω be an open subset of Rn, let F ∈ Cm(Ω), define

‖F‖Cm(Ω) = sup
x∈Ω

|Jx(F )|x.

Now consider a simple case n = m = 2, Q is a unit square (with sides parallel to the
coordinate axis) centered at the origin. Let I = {(x, 0) ∈ Rn : −1.5 ≤ x ≤ 1.5}. Assume
that for each z ∈ I we are given P z ∈ P , and there exists F0 ∈ C2(R2) such that

∀ z ∈ I JzF0 = P z.

Assume that

∀ z ∈ I |P z|z ≤ 1.

Given ε > 0, does there exist F ε ∈ C2(R2) such that

∀ z ∈ I JzF
ε = P z,
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and

‖F ε‖C2(Q) ≤ 1 + ε?

Problems added in July of 2009.
Disclaimer: some of the problems below arose in discussions with other people.

Interpolation on Sobolev spaces

Problem F9a. Let E ⊂ R2. Characterize W 2,p(R2)|E, where p is large but finite.

Recall: For C2(R2), the finiteness principle of Brudnyi-Shvartsman characterizes re-
strictions to E. One proof uses a Calderon-Zygmund decomposition. On each square of
that decomposition, E lies inside an arc.

Problem F9b Is there an analogous CZ decomposition for W 2,p? If so, what kind of
arcs arise? What can we say about W 2,p(R2)|E when E lies in an arc (e.g., the x-axis)?

Problem F9c If E is finite, then how many computer operations are needed to com-
pute an essentially optimal interpolant?

Problem F9d. Let E ⊂ Rn, and f : E → R. Compute the order of magnitude of the
norm of f in W 1,p(Rn)|E, where p is large but finite. How many computer operations
does it take?

Recall: Shvartsman proved that Whitney’s extension of f is essentially best possible.
So the problem is to compute the W 1,p norm of Whitney’s extension.

Interpolation in Cm(Rn) with Reasonable Constants.

Let E ⊂ Rn be finite, and let f : E → R. Bo’az and I gave an efficient algorithm to
compute

inf{‖F‖Cm(Rn) : F |E = f},
up to a (multiplicative) constant C depending only on m, n.

Unfortunately, our proof gives an absurdly large C.

Problem F10a Compute the above inf up to a reasonable C.

To do so, it may be useful to understand the convex set

K = {Je(F ) : ‖F‖Ċm(Rn) ≤ 1, J0(F ) = 0},
where e = (1, 0, 0, · · · , 0) ∈ Rn.

Problem F10b Compute explicit polyhedra Kapprox for m,n ≤ 3 such that

Kapprox ⊂ K ⊂ 1.1Kapprox.

Problem F10c Give a coordinate-free version of the Fefferman-Klartag algorithms.
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Note: In the above Ċm(Rn) denotes the space of locally Cm functions for which

‖F‖Ċm(Rn) = sup
x∈Rn

(
m∑

i1,··· ,im=1

|∂i1,··· ,imF (x)|2
)1/2

is finite. So, we look only at the m-th derivatives of F . Polynomilas of degree less than
m satisfy ‖P‖Ċm(Rn) = 0. Also, Jx(F ) denotes the (m− 1) jet of F at x.

Interpolation with close-to-optimal Cm norm.

Pick your favorite norm on Cm(Rn).
Given f : E → R with E ⊂ Rn finite, let

‖f‖ = inf{‖F‖Cm(Rn) : F |E = f}.
Simple examples show that the infimum need not be a minimum.

Problem F11a Given ε > 0, compute ‖f‖ up to a factor (1 + ε), and compute an
F ∈ Cm(Rn) such that F |E = f, and

‖F‖Cm(Rn) ≤ (1 + ε)‖f‖.
How many computer operations does it take?

For the special case of C2(R2) (with appropriate C2 norm) these tasks can be performed
in C(ε)N log N operations where N is the number of points in E, and C(ε) depends very
badly on ε.

Problem F11b Prove an analogous result for vector valued functions in C2(R2), e.g.,
functions taking values in R2.

Problem F11c Achieve a practical computation of

|P |x0 = inf{‖F‖Cm(Rn) : Jx0(F ) = P.},
up to a factor (1 + ε) for a given ε > 0.

Here Jx0(F ) denotes the m-th order Taylor polynomial of F at x0.

Whitney fields

For the next problems, we use the following notation:
P = vector space of m-th degree polynomials in Rn,
Jx(F ) = m-th order Taylor polynomial of F at x,
For E ⊂ Rn finite,

Wh(E) = vector space of ”Whitney fields” on E = {~P = (P x)x∈E : ∀x ∈ E, P x ∈ P}.

JE(F ) = (Jx(F ))x∈E ∈ Wh(E).

Problem F12a Given ~P ∈ Wh(E), it is known how to compute

inf{‖F‖Cm(Rn) : JE = ~P},
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up to a factor (1 + ε), for suitable norms on Cm(Rn).
If E has N points, the computation takes exp(C/ε) ·N log N operations. Improve this

to Cε−pN log N, where p depends only on m and n.

Problem F13a We work in C2(R3) with a suitable norm. Let ε be small, and N large
(think of ε fixed, N arbitrary). Let E be a lattice of N points in the unit square in the
xy-plane in R3. Let S be a lattice of ∼ ε−3 points in the unit cube in R3.

Given f : E → R and given a real number M > 0, let

Γf (S, M) = {JS(F ) : ‖F‖C2(R3) ≤ M, F |E = f}.
Compute a convex polyhedron Γ̃(S, M) such that

Γf (S, M) ⊂ Γ̃(S.M) ⊂ Γf (S, (1 + ε)M).

Can it be done in C(ε)N log N operations? (It can be done in C(ε)N5(log N)2 opera-
tions.)

”Moves”.

The motivation of the next problem is as follows:
Suppose f : E → R with E ⊂ Rn finite. Let N be the number of points of E, and let

ε > 0 be given. Suppose that there exists no F ∈ Cm(Rn) with norm ≤ 1 + ε such that
F |E = f. God knows this but we don’t. The point of the next problem is that (I think)
God can prove to us that there exists no F ∈ Cm(Rn) with norm ≤ 1 such that F |E = f.
God’s proof takes at most C(ε)N steps, this is probably the best possible. God’s proof
will consist of a sequence of at most C(ε)N ’moves”.

Let f : E → R with E ⊂ Rn and let ε > 0 be given.
We present several ”moves” by which we may compute convex polyhedron KS ⊂

WH(S) for finite S ⊂ Rn, such that the following holds:
Any F ∈ Cm(Rn) with norm ≤ 1, and satisfying F |E = f, must also satisfy JS(F ) ∈

KS.
The moves are as follows:
1. We may take S = {x} with x ∈ E, and define

KS = {JS(F ) : F (x) = f(x)}.
2. Given S, it’s known how to compute an ”approximate unit ball” KAUB(S) ⊂ Wh(S),

with the following properties:
(a) F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ 1 imply JS(F ) ∈ KAUB(S),

(b) ~P ∈ KAUB(S) implies that there exists F ∈ Cm(Rn) such that ‖F‖Cm(Rn) ≤ 1 + ε

and JS(F ) = ~P ,
(c) KAUB(S) is a convex polyhedron defined by at most C(ε) linear constraints.
For any S, an ”opening move” is to take KS = KAUB(S).
The ”subsequent moves” are as follows:
3. Suppose we have already produced convex polyhedra KS1 , KS2 , · · · , KSL

correspond-
ing to finite subsets S1, S2, · · · , SL ⊂ Rn, respectively.
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Then we may take any S ⊂ S1 ∪ S2 ∪ · · · ∪ SL, and define

KS = {~P |S : ~P ∈ Wh(S1 ∪ S2 ∪ · · · ∪ SL), ~P |Sl
∈ Kl, l = 1, · · · , L}.

4. If we have already produced KS ⊂ Wh(S), and if KS ⊂ K ′
S for another convex

polyhedron K ′
S ⊂ Wh(S), then we may pass from KS to K ′

S.
This completes the definition of ”Moves”.
Problem F14 – CONJECTURE: Given f, E, ε as above, with E containing N

points, there exists a sequence of at most C(ε)N moves, with the following properties:
(a) All the sets S arising in our moves have at most C(ε) points,
(b) All the convex polyhedra KS arising in our moves are defined by at most C(ε)

constraints,

(c) Given ~P ∈ K~S, there exists F ∈ Cm(Rn), with norm at most 1 + ε, such that

JS(F ) = ~P . Here S is the set arising in out last ”move”.
In particular, if (as God knows) there exists no F ∈ Cm(Rn) of norm at most 1 + ε

such that F |E = f, then the last move will produce the convex set KS = ∅ ⊂ Wh(S).
This will prove to us that there can be no F ∈ Cm(Rn) of norm at most 1 such that

F |E = f.

Interpolation in Cm−1,1(Rn) with Optimal Norm.

Given f : E → R with E ⊂ Rn finite, and given your favorite norm on Cm−1,1(Rn),
there exists F ∈ Cm−1,1(Rn) such that F |E = f with ‖F‖Cm−1,1(Rn) as small as possible.

Problem F15 Compute the norm of such an F.
What does it mean to compute F itself?
Give an efficient algorithm to compute such an F.

Other Problems on Interpolation in Cm(Rn).

Problem F16a Can we interpolate in Cm(Rn) with Cm-norm of the least possible
order of magnitude, using SPLINES, i.e.,

∑
ν Pν IQν , where Pν is a polynomial of degree

D, the Qν form a partition of some big cube into subcubes, and D depends only on m,n?
(The algorithm of Bo’az and Charlie gives an interpolant of the form

∑
ν

Pν

Sν

IQν ,

where Pν , Sν are polynomials of degree D, and c < Sν < C on Qν .)

Fix a modulus of continuity ω. For E ⊂ Rn, write Cm,ω(E) for the space of restrictions
F |E of functions F ∈ Cm,ω(Rn). Define the norm on Cm,ω(E)

‖f‖Cm,ω(E) = inf{‖F‖Cm,ω(Rn) : F |E = f}.
If E is finite but arbitrarily large then there exists an interpolation operator T : Cm,ω(E) →
Cm,ω(Rn) of ”bounded depth”. That is

(a) ‖Tf‖Cm,ω(Rn) ≤ C‖f‖Cm,ω(E),
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(b) For each x ∈ Rn there exist y1, · · · , yk ∈ E and λ1, · · · , λk ∈ R such that

∀ f ∈ Cm,ω(E) (Tf)(x) =
k∑

i=1

λif(yi),

and k ≤ D ≡ ”depth”, a large constant depending on n,m,
(c) Tf |E = f for each f ∈ Cm,ω(E).
Suppose E is closed but infinite. It’s known that there exists T satisfying (a) and (c),

but not (b).

Problem 16b. Can we find T satisfying (a), (b) and (c)?

With Cm in place of Cm,ω, the answer is NO, but I guess the answer for Cm,ω is YES.

Problems Suggesting Links to Algebraic Geometry

Problem F17a If E ⊂ Rn, let Ix(E) = {Jx(F ) : F ∈ Cm(Rn), F |E = 0}. Then Ix(E)
is an ideal in the ring of jets at x. What ideals arise as Ix(E)? Can we say anything
non-trivial about Ix(E)?

Let E ⊂ Rn. For x ∈ Rn, let

Kx(E) = {Jx(F ) : F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ 1, F |E = 0}.
Then Kx(E) is Whitney convex, with Whitney constant ≤ C.

Problem F17b Which Whitney convex sets (with Whitney constant ≤ C) arise as
Kx(E)?

Here we are not interested in the exact size and shape of Kx(E). Rather, we view two
convex symmetric sets K, K ′, containing 0, as essentially equivalent if cK ⊂ K ′ ⊂ CK
with c, C depending only on n,m.

Can we say anything about Kx(E) other than that it is Whitney convex?

Problem F18 Clarify the connections (if there are any) between the Brudnyi-Shvartsman
finiteness principle and blowing up singularities.

Fitting a Submanifold to Data.

Fix m,n, k ≥ 1. Let E ⊂ Rn (maybe we require E finite).
Problem F19 How can we tell whether there exists a Cm-smooth submanifold M ⊂

Rn of dimension k (not necessarily a graph, even when k = n− 1) such that E ⊂ M?
What’s the right formulation of the problem?
Are there sets analogous to Γ(x,M) that play a role in the answer?
If so, what properties of those sets play the role of convexity of Γ(x,M)?
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5. Pavel Shvartsman’s problems

1. The Finiteness Property. We let Ck,ω(Rn) denote the space of all function

f ∈ Ck(Rn) whose partial derivatives of order k satisfy the Lipschitz condition (with
respect to the metric ω(‖x−y‖)). Recall that this space possesses the following “finiteness
property”:

There is a positive integer N = N(k, n) such that the following is true: Let f be a
function defined on a closed subset S ⊂ Rn. Suppose that the restriction f |S′ of f to
an arbitrary subset S ′ ⊂ S consisting of at most N points can be extended to a function
FS′ ∈ Ck,ω(Rn) with norm ‖FS′‖Ck,ω(Rn) ≤ 1.

Then the function f itself can be extended to a function F ∈ Ck,ω(Rn) with ‖F‖Ck,ω(Rn) ≤
γ where γ = γ(n, k) is a constant depending only on n and k.

We call the number N appearing in formulations of finiteness properties “the finiteness
number”.

H. Whitney [34] characterized the restriction of the space Ck(R), k ≥ 1, to an arbitrary
subset S ⊂ R in terms of divided differences of functions. An application of Whitney’s
method to the space Ck,ω(R) implies the finiteness property for this space with the
finiteness number N(k, 1) = k + 2.

Brudnyi and Shvartsman [27, 6] proved that the sharp value of the finiteness number
for the space C1,ω(Rn) is N(1, n) = 3 ·2n−1. Fefferman [11, 13] showed that the finiteness
property holds for every k, n ≥ 1. An upper bound for the finiteness number N(k, n)
given in [11, 13] is

N(k, n) ≤ (dimPk + 1)3·2dimPk .

Here Pk stands for the space of polynomials of degree at most k defined on Rn. (Recall

that dimPk =
(

n+k
k

)
.)

Basing on this estimate of N(k, n) Bierstone and Milman [2] and Shvartsman [31]

proved that the finiteness property for Ck,ω(Rn) holds with the finiteness number N(k, n) =

2dimPk .

Problem S1. Find the sharp value of the “finiteness number” N = N(k, n) for the

space Ck,ω(Rn) for k > 1.

In [31] we conjectured the following:

Conjecture S1.1 The sharp value of the finiteness number for Ck,ω(Rn) equals

N(k, n) =
k∏

m=0

(k −m + 2)(
n+m−2

m ).

In particular, in two dimensional case the conjecture states that N(k, 2) = (k + 2)!.
Thus, the “simplest” case where the problem is open is the case of the space C2,ω(R2).
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Is it true that in this case N(2, 2) = 24?

2. Trace criterion for the space Ck,ω(Rn). As we have noted above, H. Whitney

[34] characterized the restriction Ck(R)|S in terms of divided differences of functions.

A similar intrinsic characterization of the trace space Ck,ω(R)|S has been obtained by
Merrien [25].

Recall a trace criterion for the space C1,ω(R2) |S, S ⊂ R2, presented in author’s papers
[29]. (Note that by the finiteness theorem this criterion is expressed in terms of exactly
6 (arbitrary!) points of S.)

Let Z ⊂ S be an arbitrary set consisting of three points and let θZ be the biggest angle
of the triangle whose vertices are the points of Z. We let PZ denote the affine polynomial
interpolating f at the points of Z.

A locally bounded function f is in C1,ω(R2) |S if and only if there exists λ > 0 such
that the following inequalities hold:

(i). for every subset Z = {z0, z1, z2} ⊂ X such that z1 belongs to the line segment
[z0, z2] ∣∣∣∣

f(z0)− f(z1)

‖z0 − z1‖ − f(z1)− f(z2)

‖z1 − z2‖

∣∣∣∣ ≤ λω(‖z0 − z2‖) ;

(ii). for every pair of subsets Z1, Z2 ⊂ S each consisting of three non-collinear points

‖∇PZ1 −∇PZ2‖ ≤ λ

{
ω(diam Z1)

sin θZ1

+
ω(diam Z2)

sin θZ2

+ ω (diam Z1 ∪ Z2)

}
.

Moreover, ‖f‖C1,ω(R2)|S ∼ inf λ.

Observe that the proofs of the finiteness property for the space Ck,ω(Rn) given in [27, 6]
(k = 1) and [11, 13] (arbitrary k, n ≥ 1) are constructive. However, straightforward
application of these algorithms to N(k, n)-element sets leads to very complicated trace
criterions.

Problem S2. Find a trace criterion for the space Ck,ω(Rn) for n > 1.

We mean that this criterion uses only the values of a function on the set S and certain
geometric characteristics of S. Thus, the “simplest” case where the problem is open is
the case of the space C1,ω(R3). Observe that, by the ”finiteness property” for this space,
the corresponding criterion should be expressed in terms of exactly 12 (arbitrary!) points
of S ⊂ R3.

3. The Whitney extension problem for the space CkΛm
ω (Rn). In this section we

present several Whitney-type problems formulated in the joint paper with Yuri Brudnyi
[3]. Let m be a non-negative integer. We let Ωm denote the class of non-decreasing
continuous functions ω : R+ → R+ such that ω(0) = 0 and the function ω(t)/tm is
non-increasing. Given non-negative integers k and m and ω ∈ Ωm we define the space
CkΛm

ω (Rn) as follows: a function f ∈ Ck(Rn) belongs to CkΛm
ω (Rn) if there exists λ > 0

such that for every multi-index α, |α| = k, and every x, h ∈ Rn we have |∆m
h (Dαf)(x)| ≤

λω(‖h‖).
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Here as usual ∆m
h f denotes the m-th difference of a function f of step h:

∆m
h f(x) :=

m∑
i=0

(−1)m−i

(
m

i

)
f(x + ih).

CkΛm
ω (Rn) is normed by

‖f‖CkΛm
ω (Rn) :=

∑

|α|≤k

sup
x∈Rn

|Dαf(x)|+
∑

|α|=k

sup
x,h∈Rn

|∆m
h (Dαf)(x)|
ω(‖h‖) .

In particular, for m = 1 and ω ∈ Ω1 the space CkΛ1
ω(Rn) coincides with the space

Ck,ω(Rn). In turn, the space Λm
ω (Rn) := C0Λm

ω (Rn), ω ∈ Ωm, coincides with the gener-
alized Zygmund space of bounded functions f on Rn whose modulus of smoothness of
order m, ωm(t; f), satisfies the inequality ωm(t; f) ≤ λω(t), t ≥ 0. In particular, the space
Λ2

ω(Rn) with ω(t) = t is the classical Zygmund space of bounded functions satisfying the
Zygmund condition: there is λ > 0 such that for all x, y ∈ Rn

|f (x)− 2f
(

x+y
2

)
+ f(y)| ≤ λ‖x− y‖.

Consider three Whitney’s type problems for the space CkΛm
ω (Rn).

Problem S3. Whether the space CkΛm
ω (Rn) possesses the finiteness property?

For n = 1 the finiteness property follows from the results of Merrien [23], Jonsson [21],
Shevchuk [26] and Galan [17]. If n > 1, the answer is positive for m = 1 (see Section
1), and for k = 0,m = 2, i.e., for the Zygmund space, see [27] (in this case the optimal
finiteness number N = 3 · 2n−1 is the same as for C1,ω(Rn).)

Problem S4. Given closed subset S ⊂ Rn, does there exist a linear continuous exten-
sion operator T : CkΛm

ω (Rn)|S → CkΛm
ω (Rn)?

The answer is positive for m = 1 and arbitrary n > 1 (for k = 1 see Brudnyi and
Shvartsman [5], for k > 1 see Fefferman [12, 15]); for k = 0,m = 2 see [5].

Problem S5. Find a trace criterion for the space CkΛm
ω (Rn).

We have such a criterion only for the space C1,ω(R2) (see Section 2) and Λ2
ω(R2) [29].

4. Sobolev Extension Domains. Given positive integer k and p ≥ 1, a domain Ω
in Rn is said to be Sobolev W k

p -extension domain if the following isomorphism

W k
p (Ω) = W k

p (Rn)|Ω
holds. In other words, Ω is a Sobolev extension domain if every Sobolev function f ∈
W k

p (Ω) can be extended to a Sobolev W k
p -function F defined on all of Rn.

For instance, Lipschitz domains (Calderón [9], 1 < p < ∞, Stein [33], p = 1,∞) in Rn

are W k
p -extension domains for every p ∈ [1,∞] and every k ∈ N . Jones [20] introduced

a wider class of (ε, δ)-domains and proved that every (ε, δ)-domain is a Sobolev W k
p -

extension domain in Rn for every k ≥ 1 and every p ≥ 1. Burago and Maz’ya [8], [23], Ch.
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6, described extension domains for the space BV (Rn) of functions whose distributional
derivatives of the first order are finite Radon measures; see also [1].

Goldshtein, Latfullin and Vodopyanov [18, 19] proved that every simply connected
bounded planar domain is a W 1

2 -extension domain if and only if Ω is a quasi-disk, i.e.,
the image of a disk under a quasi-conformal mapping of the plane onto itself (note that
quasi-disk is an (ε, δ)-domain). Maz’ja [23, 24] gave an example of a simply connected

domain Ω ⊂ R2 such that Ω is a W 1
p -extension domain for every p ∈ [1, 2), while R2 \ Ω̄

is a W 1
p -extension domain for all p > 2. However Ω is not an (ε, δ)−domain for any ε

and δ.

The case p = ∞ has been studied by Whitney [35] who proved that quasi-Euclidean

domains are W k
∞-extension domains for every k ≥ 1 (Ω is quasi-Euclidean if its inner

(or geodesic) metric is equivalent to the Euclidean distance). Zobin [37] showed that

every finitely connected bounded planar W k
∞-extension domain is quasi-Euclidean. He

also showed, see [36], that for every k ≥ 2 there exists a bounded planar W k
∞-extension

domain which is not quasi-Euclidean.
Extension properties of α-subhyperbolic domains in Rn determined by certain inner

metrics has been studied by Koskela [22] and Shvartsman [32] (observe that for α = 0 this
class coincides with (ε, δ)-domains, and for α = 1 with quasi-Euclidean domains). In [32]

it was shown that every p−n
p−1

-subhyperbolic domain Ω ⊂ Rn is a Sobolev W k
q -extension

domain provided p > n and q > p∗ where p∗ ∈ (n, p) depends only on p, n and Ω; for
k = 1 and q > p this has been proved in [22].

Combining this result with the necessity condition for a finitely connected bounded
domain Ω ⊂ R2 due to Buckley and Koskela [7], we obtain that such a domain is a

Sobolev W 1
p -extension domain for some p > 2 iff Ω is p−2

p−1
-subhyperbolic.

Problem S6. Given p ≥ 1, n > 1, k ≥ 1 find a geometric description of the class of
Sobolev W k

p -extension domains in Rn.

Thus, the ”simplest” unknown case is the case of a simply connected planar W 1
p -

extension domain with p ∈ [1, 2).

5. A geometrical background of the finiteness property: some connections
with convex geometry. Let us recall several problems posed in the joint paper with
Yuri Brudnyi [4].

The proof of the finiteness property for the space C1,ω(Rn) presented in [27, 6] is
based on the following geometrical result expressed in terms of set-valued maps and their
Lipschitz selections.

Let (M, d) be a metric space and let F be a set-valued mapping from M into the
family Conv(Rn) of all convex compact subsets of Rn.

Problem S7. Find conditions on F for which it has a Lipschitz selection.

Recall that a mapping f : M→ Rn is said to be a Lipschitz selection of F if f(x) ∈
F (x) for every x ∈M and f ∈ Lip(M,Rn).

Conjecture S7.1 ([4]) Let F be a set-valued mapping from a metric space (M, d) into
Conv(Rn). Suppose that, for every subset M′ ⊂ M consisting of at most 2n points, the
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restriction F |M′ of F to M′ has a Lipschitz selection fM′ such that ‖fM′‖Lip(M′,Rn) ≤ 1.

Then F has a Lipschitz selection f with ‖f‖Lip(M,Rn) bounded by some constant γ = γ(n)
depending only on n.

Note that in the case of the trivial pseudometric d ≡ 0 the conjecture is true, even
with n+1 instead of 2n, since in this case it is exactly the classical theorem of Helly [10].
In [28, 29, 30] we prove he following:

(1). The conjecture is true for R2.
(2). The conjecture is true for every finite k-point metric space M, but with γ =

γ(n, k).
(3). If the conjecture is true for some number N(n) in place of 2n then it also holds

in its original form.
(4). The conjecture is false in general if 2n is replaced by some number N(n) with

N(n) < 2n.
(5). The conjecture is true for set-valued maps F which take values in the class A(Rn)

of all affine subsets of Rn. (In case of the Whitney extension problem for C1,ω(Rn) we
only need to consider this class of convex subsets of Rn.)

Thus the ”simplest” case where the conjecture is open is the case of the metric space
M = {1, 2, ..., m} and n = 3.
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Notices 18 (1996) 881–902.

[8] Yu. D. Burago, V. G. Maz’ya, Certain Questions of Potential Theory and Function Theory
for Regions with Irregular Boundaries. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) vol. 3, 1967, 152 pp.; English transl. in Potential Theory and Function Theory for
Irregular Regions. Seminars in Math., V. A. Steklov Math. Inst., Leningrad, Vol. 3, Consultants
Bureau, New York 1969 vii+68 pp.

[9] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure
Math., vol. IV, (1961) 33–49.
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6. Yosef Yomdin’s Problems

Problem Y1. Given n,m, k ∈ Z+, and a set E ⊂ U , where U is the unit ball in
Rn, such that #(E) ≤ k, do there exist D, C > 0, depending only upon n,m, k, such
that for any function f : E → R for which there exists F ∈ Cm(Rn), F |E = f, with
‖F‖Cm(Rn) ≤ 1 one can find a polynomial P of degree at most D such that P |E = f and

‖P‖Cm(U) ≤ C?

7. Nahum Zobin’s Problems

Problem Z1. Find an analog of the Whitney Theorem for tensor fields on a manifold
with a connection (e.g., a Riemannian manifold). The connection is needed since oth-
erwise one cannot compare tangent spaces at different points and therefore one cannot
define the notion of a tensor field with uniformly bounded k-th derivatives.

Problem Z2. Extension of functions and tensor fields (with uniformly bounded k-th
derivatives) subject to differential equations and inequalities. Extension of differential
forms with uniformly bounded differentials. In particular, extension of closed bounded
differential forms with preservation of closedness and boundedness.

7.1. Geometry of open domains and extensions of functions. Let Ω be an open
subset of Rn. Then the notion of a smooth function is well defined, and so are the spaces
Cm,1(Ω). We say that Ω ∈ EP (m), if

Cm,1(Rn)|Ω = Cm,1(Ω).

Whitney proved that if Ω satisfies the Whitney Condition (the geodesic metric in Ω is
equivalent to the Euclidean metric, this condition is also called quasi-convexity – see
Gromov’s book) then Ω ∈ EP (m) for all m ∈ N. One can rather easily show that if
Ω ∈ EP (0) then Ω is quasi-convex. This means that Ω ∈ EP (0) iff Ω is quasi-convex,
and the condition Ω ∈ EP (0) implies that Ω ∈ EP (m) for any m ∈ N. I have shown
that for a finitely connected planar Ω and for any m ∈ N the condition Ω ∈ EP (m)
is equivalent to the condition that Ω is quasi-convex. However, I have also shown that if
Ω is an infinitely connected planar domain, or a domain in Rn, n ≥ 3, then the condition
Ω ∈ EP (m),m ≥ 1, does not imply that Ω ∈ EP (l), l ≤ m, so the higher extension
properties do not imply lower extension properties. Do lower extension properties imply
higher ones? Maybe, not.

Problem Z3. Construct Ωm,m ≥ 1, – an infinitely connected planar domain, or a
domain in Rn, n ≥ 3, – such that Ω ∈ EP (m) but Ω /∈ EP (m′),∀m′ > m.

Can one save the implication

Ω ∈ EP (m), m > 0,⇒ Ω is quasi-convex

for infinitely connected planar domains Ω by imposing topological restrictions on Ω?
Maybe.

Problem Z4. Show that if the pairwise distances between components of R2 \ Ω are
bounded from below, and if Ω ∈ EP (m) for some m ∈ N, then Ω is quasi-convex.
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Is there any topological cure in higher dimensions? Unlikely:

Problem Z5. For each m ∈ N construct a domain Ωm ⊂ R3, homeomorphic to an
open ball, with boundary smooth at all points, except of one, and such that

Ω ∈
(

EP (m) \
⋃

0≤k<m

EP (k)

)
.


