Distances between homotopy classes of self maps of the unit circle

Itai Shafrir

Consider two smooth maps f, g from the unit circle \mathbb{S}^{1} to itself. A natural question is
Question: Is there a universal $\delta>0$ such that the inequality $\|f-g\|<\delta$ implies that f and g have the same degree?

The degree of a continuous map $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ can be defined as follows. Write $f\left(e^{i \theta}\right)=e^{i \varphi(\theta)}$ with $\varphi:[0,2 \pi] \rightarrow \mathbb{R}$. Since we must have $e^{i \varphi(2 \pi)}=e^{i \varphi(0)}$ it follows that $\varphi(2 \pi)-\varphi(0)=2 \pi d$ for some $d \in \mathbb{Z}$. We then define $\operatorname{deg} f:=d$.

The answer to the question depends of course on the norm $\|\cdot\|$. When one uses the maximum norm $\|h\|_{\infty}=\max _{x \in \mathbb{S}^{1}}|h(x)|$, the answer to the question is "yes" and the optimal δ equals 2. Indeed, if $\|f-g\|_{\infty}<2$ then there is no point $x \in \mathbb{S}^{1}$ s.t. $f(x)=-g(x)$. This implies that the value -1 is not in the image of the map $h=f / g=f \bar{g}$. Therefore, we must have $\operatorname{deg} h=0$, implying that $\operatorname{deg} f=\operatorname{deg} g$.

It is interesting to investigate the above question for other norms, or seminorms. The special case of the $W^{1, p}$-seminorm, $\|h\|_{W^{1, p}}=\left(\int_{\mathbb{S}^{1}}\left|h^{\prime}\right|^{p}\right)^{1 / p}$, for any $p \in[1, \infty)$ was studied in [1]. From the results in [1] one gets that the answer to the question is "yes" with optimal $\delta=2^{(1 / p)+1} \pi^{(1 / p)-1}$. This is a direct consequence of the formula proved in [1] for the $W^{1, p}$. distance between homotopy classes:

$$
\begin{equation*}
\operatorname{dist}_{W^{1, p}}\left(\mathscr{E}_{d_{1}}, \mathscr{E}_{d_{2}}\right):=\inf _{f \in \mathscr{E}_{d_{1}}} \inf _{g \in \mathscr{E}_{d_{2}}} d_{W^{1, p}}(f, g)=2^{(1 / p)+1} \pi^{(1 / p)-1}\left|d_{1}-d_{2}\right| \tag{1}
\end{equation*}
$$

where $\mathscr{E}_{d}:=\left\{f \in C^{\infty}\left(\mathbb{S}^{1} ; \mathbb{S}^{1}\right): \operatorname{deg} f=d\right\}$.
Some estimates for the distances between homotopy classes for other $W^{m, p}$-seminorms were obtained in [2]. However no explicit formulas analogous to (1) are known even when $m=2$. Obtaining such formulas is one of the main objectives of the proposed project.

Pre-requisites. The minimal required knowledge is Calculus at the level of first year. Any knowledge in Real Analysis and/or Functional Analysis could be useful, but is not obligatory.

References

[1] J. Rubinstein and I. Shafrir, The distance between homotopy classes of \mathbb{S}^{1}-valued maps in multiply connected domains, Israel J. Math., 160 (2007), 41-59.
[2] H. Brezis, P. Mironescu and I. Shafrir, Distances between homotopy classes of $W^{s, p}\left(\mathbb{S}^{N} ; \mathbb{S}^{N}\right)$, ESAIM Control Optim. Calc. Var. 22 (2016), 1204-1235.

