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This talk is about evaluating probabilities of rare events in 

non-equilibrium stochastic systems. 

Why should one care about rare event?

Rare events may have dramatic or even devastating consequences 

Earthquakes, volcano eruptions, market crashes, population extinction, …

Practical reasons: 



Thermal equilibrium : macroscopic fluctuations are fully described, by the Boltzmann-
Gibbs distribution, in terms of the free energy of the system 

Non-equilibrium  fluctuations, especially large ones: we poorly understand their 
statistics, even for “simple” systems

A more fundamental reason touches the foundations of 
statistical physics:



Extinction of an isolated population after maintaining a thriving long-lived 
state is a dramatic phenomenon. It ultimately occurs, even in the absence of 

detrimental environmental variations,  because of a large fluctuation: an 
unusual chain of random events when population losses dominate over gains

Dodo.   Extinct since the 17th century Passenger pigeon. Extinct since the beginning of 
the 20th century

Tasmanian wolf. Extinct since the 
20th century



Outline

ü1. Extinction of well-mixed  populations due to demographic noise

ü2. Interplay of demographic and environmental noise

ü3. Extinction in two-population systems

ü4. Extinction of spatially distributed populations (very briefly)

ü5. Summary



A simple model of population extinction 
due to intrinsic (demographic) noise:

A single population of n(t) individuals who multiply and die, as 
described by a Markov jump process

A.A. Markov 1856-1922

Markov process: random process where future depends 
only on the present but not on the past

jump process: discrete state space



Extinction of a single population due to demographic noise
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Deterministic rate equation

Example: SIS model 
Nasell 1996,1999; Andersson and Djechiche 1998, Ovaskainen 2001, …

Birth and death rates
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Population ultimately goes extinct: 
A large fluctuation  brings it into 
absorbing state n=0

Interesting to predict:

- Mean time to extinction (MTE) 
- Extinction time statistics
- Quasi-stationary probability distribution of population sizes 

Discreteness of individuals and stochastic character of birth-death 
processes make a big difference!

a stochastic simulation of SIS model



Pn(t) : probability to find n individuals at time t
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P0(t) : probability of population extinction at time t

birth

Master equation for the Markov jump process

Previous analytical methods for the MTE:
• single-step processes: exact solution, then asymptotics
• Fokker-Planck approximation (aka diffusion approximation): leads to 
exponentially large errors in the MTE

Until about 10 years ago no satisfactory general methods existed 
for multi-step processes



At t>>tr extinction of established population proceeds as 
exponential decay of a long-lived quasi-stationary state
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pn and    are the lowest non-trivial eigenstate and inverse eigenvalue
of linear eigenvalue problem

: MTE, very large at K>>1

t

pn: QSD
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pn can be found in WKB approximation

WKB (Wentzel–Kramers–Brillouin) approximation appears in 
physics as the semi-classical approximation to quantum mechanics or, 
more generally, as a ray-equations approximation to wave equations. 

WKB is valid in the limit of short wavelengths

A similar-in-spirit approximation works, in the limit of weak noise, or K>>1
for continuous Markov processes

Freidlin and Wentzel, Graham, Dykman et al., Maier and Stein,…,
and for jump Markov processes

Kubo, Dykman et al, Elgart and Kamenev, Assaf and M, Kessler and Shnerb,…

Recent review: Assaf and M, J. Phys. A: Math. Theor. 50, 263001 (2017).
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where, for n>>1, we treat S(q) as a smooth function
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The WKB ansatz
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In the leading order in 1/K one arrives at a Hamilton-Jacobi equation

with Hamilton’s function



Downhill trajectory: p=0, deterministic rate equation

Solution boils down to finding a zero-energy trajectory 
of effective “mechanical system”

Most probable path to extinction (uphill trajectory): separatrix connecting 
fixed points (q=q1, p=0) and (q=0, p=-ln R0)
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extinction action
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Mean time to extinction is, up to a pre-factor, 

Pre-exponential factor can be also calculated, by matching the subleading-
order WKB solution with the recursive solution at for small n

Assaf and M 2007,2010, Kessler and Shnerb 2007 

exponentially long in K

Close to the transcritical bifurcation, d=R0-1<<1, the result is 
universal for a whole class of models:
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Fokker-Planck approx.

Gaussian approx.

WKB solution and numerical 
solution of Master eqn.

FP approximation: good for “typical fluctuations”, fails in tails
Gaveau, Moreau, and Toth 1996,  Elgart and Kamenev 2005, Doering, Sargsyan, and Sander 2005, 
Assaf and M 2007, Kessler and Shnerb 2007, …

A->2A,
2A->0



an over-damped particle motion in a potential

SIS model: no Allee effect Allee effect
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Now let’s go back to the deterministic rate equation and rewrite it as

bistability: q=0 and q=q2monostability: q=q1

Warder C. Allee (1885-1955)



Using WKB approximation

Mean time to extinction 
is, up to pre-exponent, 

)exp(~ SKDtSD
Elgart and Kamenev 2006

Prefactor has been also found 
M and Sasorov 2009, Escudero and Kamenev 2009, Assaf and M 2010

Again, a separatrix in q,p plane

Mean time to extinction with account of Allee effect

Close to the saddle-node bifurcation, d<<1, the result is 
universal for a whole class of models with strong Allee effect:
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What if, in addition to demographic noise, there are also 
environmental variations?

Model: Environmental noise modulates birth and/or death rates, 
r → r-x(t)



How do two noises - demographic and environmental – conspire to 
kill the population? What is effect of noise color?

A noise-modulated variant of SIS model
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Colored gaussian noise, defined by correlation function
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v: variance, tc: correlation time

Ornstein-Uhlenbeck noise

K=r/a carrying capacity
r → r-x(t)

It is debated in ecology “whether and under which conditions red noise 
increases or decreases extinction risk compared with uncorrelated (white) 

noise” (Schwager et al. 2006)
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Method of solution: WKB
Presence of noise color leads to a 4d phase space:

The problem is not soluble analytically 
unless there is additional small parameter

Kamenev, M and Shklovskii 2008

Non-perturbative



• Environmental noise causes exponential reduction of the MTE

• At fixed variance, positive correlations of the environmental noise 
quicken extinction

• The population-size dependence of the MTE changes from exponential 
without noise to a power law for strong short-correlated noise and to 
almost no dependence for long-correlated noise

• WKB theory yields most probable path to extinction, along with most 
probable realization of environmental noise

Joint action of demographic and environmental noises: 

x



Captures essence of most common childhood diseases that confer 
long-lasting immunity: measles, mumps and rubella 

Extinction in two-population systems: fixed point

Example: SI (Susceptible-Infected) model with population turnover

.

,

ISI
Ndt

dI

SI
N

SN
dt
dS

G-=

--=

b

bµµDeterministic 
rate equations



.

,

ISI
Ndt

dI

SI
N

SN
dt
dS

G-=

--=

b

bµµ

β < Γ: only infection-free steady state: attracting fixed point S=N, I=0

β > Γ: point S=N, I=0 is repelling, attracting endemic point appears:
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2)/)((4 bbµ GG-< Endemic fixed point is a stable focus

epidemic dynamics is oscillatory: multiple outbreaks of disease

2)/)((4 bbµ GG-> fixed point is a stable node
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t: mean time to disease extinction

Stochastic dynamics: Pnm(t) is “leaking” into disease-free state 
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Kamenev and M 2008

WKB theory

The most likely disease extinction trajectory is a heteroclinic orbit: it
exits from fixed point A and reaches the extinction hyperplane x=0 at 

fixed point B: 

deterministic trajectory
most likely path to disease 
extinction (found numerically)



Related problems

• Extinction in multi-population systems occupying a fixed 
point: other epidemic models (Dykman, Schwartz and Landsman 
2008, …), switching between active and dormant phenotypes (Lohmar
and M 2011), minimizing the extinction risk by migration (Khasin, M, 
Khain, and Sander 2012), extinction of meta-populations (Eriksson, 
Elias-Wolff and Mehlig 2012), competition between two species 
(Gabel, Redner and M 2013),…

• Optimization of vaccination protocols 
Khasin, Dykman and M 2010

•Immigration-extinction balance
M and Ovaskainen 2013, Be’er, Assaf and M 2015



Extinction of oscillating populations

Example: predator-prey model with prey competition
and predator satiation (Rosenzweig and MacArthur 1963)



Limit cycle

x=R/N 
y=F/N



Stochastic version of the RMA model
Smith and M 2016



Master equation for the stochastic RMA model

Smith and M 2016



WKB Hamiltonian

Numerical solution is based on the Floquet theory
§ optimal paths to extinction
§ extinction rates/times
§ relative probabilities of two extinction routes
§ change of these at the Hopf bifurcation of the birth of the limit cycle



Extinction of spatial populations

Deterministic model

Model: “Refuge” made of N>>1 identical habitat patches, or sites. On-site births 
and deaths, random migration between neighboring sites 
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When migration is fast this becomes continuous 
reaction-diffusion equation 
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+ boundary conditions

Elgart and Kamenev 2004, M and Sasorov 2011



Deterministic steady state
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Large fluctuations brings 
population to extinction. 
Two outgoing extinction 
fronts.

Allee effect: different cases possible depending on which of the states, 
q=0 or q=q2, is “more stable”, on boundary conditions, and on system size

Most interesting example: strong Allee effect (q=0 “more stable” deterministically)

Magenta curve: critical nucleus: 
unstable x-dependent 
steady-state solution 

Solved in WKB approximation, M and Sasorov 2011

Theory similar in spirit to classical nucleation theory of Langer 1967 
Finite size effects: Maier and Stein 2001, M and Sasorov 2011



Summary

üGeneral take-home message: Weak noise may have dramatic long-time 
consequences for dynamical systems 

üExtinction of a long-lived population typically proceeds along an optimal path: a 
special trajectory of effective “classical mechanics”

üFinding these special trajectories, and the mean time to extinction, is both 
hard work and fun

Thank you


