Touchard Polynomials, Stirling Numbers and Random Permutations

Ross Pinsky

Department of Mathematics, Technion
32000 Haifa, ISRAEL

September 3, 2018
Notation:

\[[n] = \{1, 2, \cdots, n\} \]

\(S_n = \) permutations of \([n]\)
Notation:

\([n] = \{1, 2, \cdots, n\}\)

\(S_n = \) permutations of \([n]\)

\(|S_n| = n!\)
Notation:

\[[n] = \{1, 2, \cdots, n\} \]

\[S_n = \text{permutations of } [n] \]

\[|S_n| = n! \]

\[S_6 \ni \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} = (142)(36)(5), \]
Notation:

\([n] = \{1, 2, \cdots, n\}\)

\(S_n = \text{permutations of } [n]\)

\(|S_n| = n!\)

\(S_6 \ni \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} = (124)(36)(5),\)

\(S_6 \ni \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 5 & 1 & 2 \end{pmatrix} = (136245) = (624513)\)
Notation:

\[[n] = \{1, 2, \cdots, n\} \]

\(S_n = \) permutations of \([n]\)

\(|S_n| = n!\)

\(S_6 \ni \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} = (124)(36)(5), \)

\(S_6 \ni \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 5 & 1 & 2 \end{pmatrix} = (136245) = (624513) \)

\(\sigma_2 \) is a 6-cycle in \(S_6 \). There are 5! different 6-cycles in \(S_6 \).
Notation:

\[[n] = \{1, 2, \cdots, n\} \]

\(S_n = \) permutations of \([n]\)

\(|S_n| = n! \)

\(S_6 \ni \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} = (124)(36)(5), \)

\(S_6 \ni \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 5 & 1 & 2 \end{pmatrix} = (136245) = (624513) \)

\(\sigma_2 \) is a 6-cycle in \(S_6 \). There are 5! different 6-cycles in \(S_6 \).

There are \((n - 1)!\) different \(n \)-cycles in \(S_n \).
Rising Factorials

\[x^{(n)} := x(x+1) \cdots (x+n-1) \]
Rising Factorials

\[x^{(n)} := x(x+1) \cdots (x+n-1) \left(\equiv \sum_{k=1}^{n} a_{nk} x^k \right), \quad x \in \mathbb{R}, \quad n \geq 1. \quad (1) \]
Rising Factorials

\[x^{(n)} := x(x+1) \cdots (x+n-1) \left(\equiv \sum_{k=1}^{n} a_{nk} x^k \right), \quad x \in \mathbb{R}, \quad n \geq 1. \quad (1) \]

Unsigned Stirling Numbers of the First Kind:

\[|s(n, k)| := \]

the number of permutations in \(S_n \) with exactly \(k \) cycles, \(1 \leq k \leq n \)
Rising Factorials

\[x^{(n)} := x(x+1) \cdots (x+n-1) \left(\equiv \sum_{k=1}^{n} a_{nk}x^k \right), \quad x \in \mathbb{R}, \ n \geq 1. \tag{1} \]

Unsigned Stirling Numbers of the First Kind:

|s(n, k)| :=

the number of permutations in \(S_n \) with exactly \(k \) cycles, \(1 \leq k \leq n \)

Recurrence relation

\[
|s(n, n)| = 1, \quad |s(n, 1)| = (n - 1)!, \quad n \geq 1;
|s(n + 1, k)| = n|s(n, k)| + |s(n, k - 1)|, \quad 2 \leq k \leq n. \tag{2}
\]
Rising Factorials

\(x^{(n)} := x(x+1) \cdots (x+n-1) \left(\equiv \sum_{k=1}^{n} a_{nk} x^k \right), \ x \in \mathbb{R}, \ n \geq 1. \ (1) \)

Unsigned Stirling Numbers of the First Kind:

\(|s(n, k)| := \) the number of permutations in \(S_n \) with exactly \(k \) cycles, \(1 \leq k \leq n \)

Recurrence relation

\[|s(n, n)| = 1, \quad |s(n, 1)| = (n - 1)!, \quad n \geq 1; \]
\[|s(n + 1, k)| = n |s(n, k)| + |s(n, k - 1)|, \quad 2 \leq k \leq n. \quad (2) \]

It is easy to check that the coefficients \(\{a_{nk}\} \) in (1) also satisfy (2); thus, \(a_{nk} = |s(n, k)|. \)
Rising Factorials

\[x^{(n)} := x(x+1) \cdots (x+n-1) \left(\equiv \sum_{k=1}^{n} a_{nk} x^k \right), \quad x \in \mathbb{R}, \ n \geq 1. \quad (1) \]

Unsigned Stirling Numbers of the First Kind:

\[|s(n, k)| := \text{the number of permutations in } S_n \text{ with exactly } k \text{ cycles, } 1 \leq k \leq n \]

Recurrence relation

\[|s(n, n)| = 1, \quad |s(n, 1)| = (n - 1)!, \quad n \geq 1; \]
\[|s(n + 1, k)| = n|s(n, k)| + |s(n, k - 1)|, \quad 2 \leq k \leq n. \quad (2) \]

It is easy to check that the coefficients \(\{a_{nk}\} \) in (1) also satisfy (2); thus, \(a_{nk} = |s(n, k)| \). Therefore

\[x^{(n)} = \sum_{k=1}^{n} |s(n, k)| x^k. \quad (3) \]
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \ x \in \mathbb{R}, \ n \geq 1. \quad (4)\]
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \; x \in \mathbb{R}, \; n \geq 1. \tag{4}\]

Substituting \(-x\) for \(x\) in (4), we have

\[(-x)_n = -x(-x - 1) \cdots (-x - n + 1) = \]
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \quad x \in \mathbb{R}, \quad n \geq 1. \] \hfill (4)\]

Substituting \(-x\) for \(x\) in (4), we have
\[(-x)_n = -x(-x - 1) \cdots (-x - n + 1) = (-1)^n x(x + 1) \cdots (x + n - 1)\]
Falling Factorials

\[(x)_n := x(x-1) \cdots (x-n+1), \ x \in \mathbb{R}, \ n \geq 1. \quad (4)\]

Substituting \(-x\) for \(x\) in (4), we have

\[(-x)_n = -x(-x-1) \cdots (-x-n+1) = (-1)^n x(x+1) \cdots (x+n-1) = (-1)^n x^{(n)}. \]
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \ x \in \mathbb{R}, \ n \geq 1. \quad (4)\]

Substituting \(-x\) for \(x\) in (4), we have

\[(-x)_n = -x(-x - 1) \cdots (-x - n + 1) = (-1)^n x(x+1) \cdots (x+n-1) = (-1)^n x^{(n)}.\]

Substituting above \(-x\) for \(x\), we have

\[(x)_n = (-1)^n (-x)^{(n)} \text{ from (3)} = (-1)^n \sum_{k=1}^{n} |s(n, k)|(-x)^k\]
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \; x \in \mathbb{R}, \; n \geq 1. \quad (4)\]

Substituting \(-x\) for \(x\) in (4), we have

\[(-x)_n = -x(-x - 1) \cdots (-x - n + 1) = (-1)^n x(x + 1) \cdots (x + n - 1) = (-1)^n x^{(n)}.\]

Substituting above \(-x\) for \(x\), we have

\[(x)_n = (-1)^n (-x)^{(n)} \text{ from (3)} = (-1)^n \sum_{k=1}^{n} s(n, k)|(-x)^k =\]

\[\sum_{k=1}^{n} (-1)^{n-k} s(n, k)|x^k.\]
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \ x \in \mathbb{R}, \ n \geq 1. \] (4)

Substituting \(-x\) for \(x\) in (4), we have

\[(-x)_n = -x(-x - 1) \cdots (-x - n + 1) = (-1)^n x(x + 1) \cdots (x + n - 1) = (-1)^n x^{(n)}.\]

Substituting above \(-x\) for \(x\), we have

\[(x)_n = (-1)^n (-x)^{(n)} \text{ from (3)} \sum_{k=1}^{n} |s(n, k)|(-x)^k = \]

\[\sum_{k=1}^{n} (-1)^{n-k} |s(n, k)| x^k. \] (5)

Define \(s(n, k) := (-1)^{n-k} |s(n, k)|\). The \(s(n, k)\) are called the \textbf{Stirling Numbers of the First Kind}.
Falling Factorials

\[(x)_n := x(x - 1) \cdots (x - n + 1), \quad x \in \mathbb{R}, \quad n \geq 1. \tag{4}\]

Substituting \(-x\) for \(x\) in (4), we have

\[(-x)_n = -x(-x - 1) \cdots (-x - n + 1) = (-1)^n x(x + 1) \cdots (x + n - 1) = (-1)^n x^{(n)}.\]

Substituting above \(-x\) for \(x\), we have

\[(x)_n = (-1)^n (-x)^{(n)} \quad \text{from (3)} \quad (-1)^n \sum_{k=1}^{n} |s(n, k)| (-x)^k = \]

\[\sum_{k=1}^{n} (-1)^{n-k} |s(n, k)| x^k. \tag{5}\]

Define \(s(n, k) := (-1)^{n-k} |s(n, k)|.\) The \(s(n, k)\) are called the **Stirling Numbers of the First Kind**. From (5) we have

\[(x)_n = \sum_{k=1}^{n} s(n, k) x^k. \tag{6}\]
Stirling Numbers of the Second Kind

\[S(n, k) := \text{number of ways to partition the set } [n] \text{ into } k \text{ nonempty sets.} \]
Stirling Numbers of the Second Kind

\[S(n, k) : = \text{number of ways to partition the set } [n] \text{ into } k \text{ nonempty sets.} \]

Example: \(S(4, 3) = 5: \)

\{1, 2\}, \{3\}, \{4\}
\{1, 3\}, \{2\}, \{4\}
\{1\}, \{2\}, \{3, 4\}
\{1\}, \{3\}, \{2, 4\}
\{2\}, \{3\}, \{1, 4\}
Stirling Numbers of the Second Kind

\[S(n, k) := \text{number of ways to partition the set } [n] \text{ into } k \text{ nonempty sets.} \]

Example: \(S(4, 3) = 5: \)

\[
\begin{align*}
\{1, 2\}, \{3\}, \{4\} \\
\{1, 3\}, \{2\}, \{4\} \\
\{1, 4\}, \{2\}, \{3\} \\
\{2, 3\}, \{1\}, \{4\} \\
\{2, 4\}, \{1\}, \{3\}
\end{align*}
\]
Stirling Numbers of the Second Kind

\[S(n, k) := \text{number of ways to partition the set } [n] \text{ into } k \text{ nonempty sets.} \]

Theorem.

\[x^n = \sum_{k=1}^{n} S(n, k)(x^k), \quad (7) \]

Proof.

Consider functions \(f : [n] \rightarrow X \), where \(|X| = x \in \mathbb{N} \).

How many such functions are there?

The answer by direct count: \(x^n \).

An alternative indirect count: For \(k = 1, 2, \ldots, n \), let \(c_k \) denote the number of such functions with \(|\text{Im}(f)| = k \). (If \(x < n \), then \(c_k = 0 \) for \(x < k \leq n \).)

So the answer by this indirect count is \(\sum_{k=1}^{n} c_k \).

Thus, \(x^n = \sum_{k=1}^{n} c_k \).

To complete the proof we now show that \(c_k = S(n, k)(x^k) \).
Stirling Numbers of the Second Kind

\[S(n, k) := \text{number of ways to partition the set } [n] \text{ into } k \text{ nonempty sets.} \]

Theorem.

\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad (7) \]
Stirling Numbers of the Second Kind

\(S(n, k) := \) number of ways to partition the set \([n]\) into \(k\) nonempty sets.

Theorem.

\[
x^n = \sum_{k=1}^{n} S(n, k)(x)_k,
\]

Proof. Consider functions \(f : [n] \to X \), where \(|X| = x \in \mathbb{N} \).
Stirling Numbers of the Second Kind

$S(n, k) :=$ number of ways to partition the set $[n]$ into k nonempty sets.

Theorem.

$$x^n = \sum_{k=1}^{n} S(n, k)(x)_k,$$ \hspace{1cm} (7)

Proof. Consider functions $f : [n] \to X$, where $|X| = x \in \mathbb{N}$. How many such functions are there?
Stirling Numbers of the Second Kind

\[S(n, k) := \text{number of ways to partition the set } [n] \text{ into } k \text{ nonempty sets.} \]

Theorem.

\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad (7) \]

Proof. Consider functions \(f : [n] \to X \), where \(|X| = x \in \mathbb{N} \).

How many such functions are there?

The answer by direct count: \(x^n \).
S(n, k) := number of ways to partition the set \([n]\) into \(k\) nonempty sets.

Theorem.

\[
x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \tag{7}
\]

Proof. Consider functions \(f : [n] \to X\), where \(|X| = x \in \mathbb{N}\).

How many such functions are there?

The answer by direct count: \(x^n\).

An alternative indirect count:
Stirling Numbers of the Second Kind

\(S(n, k) := \) number of ways to partition the set \([n]\) into \(k\) nonempty sets.

Theorem.

\[
x^n = \sum_{k=1}^{n} S(n, k)(x)_k,
\]

(7)

Proof. Consider functions \(f : [n] \to X\), where \(|X| = x \in \mathbb{N}\). How many such functions are there?

The answer by direct count: \(x^n\).

An alternative indirect count:

For \(k = 1, 2, \cdots, n\), let \(c_k\) denote the number of such functions with \(|\text{Im}(f)| = k\). (If \(x < n\), then \(c_k = 0\) for \(x < k \leq n\).)
Stirling Numbers of the Second Kind

$S(n, k) :=$ number of ways to partition the set $[n]$ into k nonempty sets.

Theorem.

$$x^n = \sum_{k=1}^{n} S(n, k)(x)_k,$$ \hfill (7)

Proof. Consider functions $f : [n] \to X$, where $|X| = x \in \mathbb{N}$. How many such functions are there?

The answer by direct count: x^n.

An alternative indirect count:
For $k = 1, 2, \cdots, n$, let c_k denote the number of such functions with $|\text{Im}(f)| = k$. (If $x < n$, then $c_k = 0$ for $x < k \leq n$.)

So the answer by this indirect count is $\sum_{k=1}^{n} c_k$.

Ross Pinsky

Touchard Polynomials, Stirling Numbers and Random Permutations
Stirling Numbers of the Second Kind

$S(n, k) :=$ number of ways to partition the set $[n]$ into k nonempty sets.

Theorem.

$$x^n = \sum_{k=1}^{n} S(n, k)(x)_k,$$

Proof. Consider functions $f : [n] \to X$, where $|X| = x \in \mathbb{N}$. How many such functions are there?

The answer by direct count: x^n.

An alternative indirect count:

For $k = 1, 2, \cdots, n$, let c_k denote the number of such functions with $|\text{Im}(f)| = k$. (If $x < n$, then $c_k = 0$ for $x < k \leq n$.)

So the answer by this indirect count is $\sum_{k=1}^{n} c_k$.

Thus, $x^n = \sum_{k=1}^{n} c_k$.

Ross Pinsky

Touchard Polynomials, Stirling Numbers and Random Permutations
Stirling Numbers of the Second Kind

\(S(n, k) := \) number of ways to partition the set \([n]\) into \(k\) nonempty sets.

Theorem.

\[
\sum_{k=1}^{n} S(n, k)(x)_k = x^n, \tag{7}
\]

Proof. Consider functions \(f : [n] \rightarrow X \), where \(|X| = x \in \mathbb{N}\).

How many such functions are there?

The answer by direct count: \(x^n\).

An alternative indirect count:
For \(k = 1, 2, \cdots, n \), let \(c_k \) denote the number of such functions with \(|\text{Im}(f)| = k\). (If \(x < n\), then \(c_k = 0\) for \(x < k \leq n\).)

So the answer by this indirect count is \(\sum_{k=1}^{n} c_k\).

Thus, \(x^n = \sum_{k=1}^{n} c_k\). To complete the proof we now show that \(c_k = S(n, k)(x)_k\).
Consider functions $f : [n] \to X$, where $|X| = x \in \mathbb{N}$. Let c_k denote the number of such functions with $|\text{Im}(f)| = k$. Proof that $c_k = S(n, k)(x)_k$:
Consider functions $f : [n] \rightarrow X$, where $|X| = x \in \mathbb{N}$. Let c_k denote the number of such functions with $|\text{Im}(f)| = k$.

Proof that $c_k = S(n, k)(x)_k$:

For f with $|\text{Im}(f)| = k$, let $\text{Im}(f) = \{x_1, \cdots, x_k\}$.
Consider functions $f : [n] \rightarrow X$, where $|X| = x \in \mathbb{N}$. Let c_k denote the number of such functions with $|\text{Im}(f)| = k$.

Proof that $c_k = S(n, k)(x)_k$:

For f with $|\text{Im}(f)| = k$, let $\text{Im}(f) = \{x_1, \ldots, x_k\}$. Then $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \ldots, f^{-1}(\{x_k\})$ is a partition of $[n]$ into k non-empty sets, which we will denote by $\{B_1, \ldots, B_k\}$.

\blacksquare Ross Pinsky

Touchard Polynomials, Stirling Numbers and Random Permutations
Consider functions \(f : [n] \to X \), where \(|X| = x \in \mathbb{N} \). Let \(c_k \) denote the number of such functions with \(|\text{Im}(f)| = k \).

Proof that \(c_k = S(n, k)(x)_k \):

For \(f \) with \(|\text{Im}(f)| = k \), let \(\text{Im}(f) = \{x_1, \ldots, x_k\} \). Then \(f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \ldots, f^{-1}(\{x_k\}) \) is a partition of \([n]\) into \(k \) non-empty sets, which we will denote by \(\{B_1, \ldots, B_k\} \).

Now:

1. There are \(S(n, k) \) ways to choose the sets \(\{B_1, \ldots, B_k\} \);
Consider functions $f : [n] \to X$, where $|X| = x \in \mathbb{N}$. Let c_k denote the number of such functions with $|\text{Im}(f)| = k$. Proof that $c_k = S(n, k)(x)_k$:

For f with $|\text{Im}(f)| = k$, let $\text{Im}(f) = \{x_1, \cdots, x_k\}$. Then $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\})$ is a partition of $[n]$ into k non-empty sets, which we will denote by $\{B_1, \cdots, B_k\}$.

Now:
1. There are $S(n, k)$ ways to choose the sets $\{B_1, \cdots, B_k\}$;
2. There are $(x)_k$ ways to choose the $\{x_1, \cdots, x_k\}$;
Consider functions $f : [n] \rightarrow X$, where $|X| = x \in \mathbb{N}$. **Let** c_k **denote the number of such functions with** $|\text{Im}(f)| = k$.

Proof that $c_k = S(n, k)(x)_k$:

For f with $|\text{Im}(f)| = k$, let $\text{Im}(f) = \{x_1, \ldots, x_k\}$. Then $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \ldots, f^{-1}(\{x_k\})$ is a partition of $[n]$ into k non-empty sets, which we will denote by $\{B_1, \ldots, B_k\}$.

Now:
1. There are $S(n, k)$ ways to choose the sets $\{B_1, \ldots, B_k\}$;
2. There are $(x)_k$ ways to choose the $\{x_1, \ldots, x_k\}$;
3. There are $k!$ ways to make the correspondence between $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \ldots, f^{-1}(\{x_k\})$ and $\{B_1, \ldots, B_k\}$.
Consider functions \(f : [n] \rightarrow X \), where \(|X| = x \in \mathbb{N} \). Let \(c_k \) denote the number of such functions with \(|\text{Im}(f)| = k \).

Proof that \(c_k = S(n, k)(x)_k \):

For \(f \) with \(|\text{Im}(f)| = k \), let \(\text{Im}(f) = \{x_1, \cdots, x_k\} \). Then \(f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\}) \) is a partition of \([n]\) into \(k \) non-empty sets, which we will denote by \(\{B_1, \cdots, B_k\} \).

Now:
1. There are \(S(n, k) \) ways to choose the sets \(\{B_1, \cdots, B_k\} \);
2. There are \(\binom{x}{k} \) ways to choose the \(\{x_1, \cdots, x_k\} \);
3. There are \(k! \) ways to make the correspondence between \(f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\}) \) and \(\{B_1, \cdots, B_k\} \).

Thus \(c_k = S(n, k) \times \binom{x}{k} \times k! \).
Consider functions $f : [n] \rightarrow X$, where $|X| = x \in \mathbb{N}$. Let c_k denote the number of such functions with $|\text{Im}(f)| = k$.

Proof that $c_k = S(n, k)(x)_k$:

For f with $|\text{Im}(f)| = k$, let $\text{Im}(f) = \{x_1, \cdots, x_k\}$. Then

$f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\})$ is a partition of $[n]$ into k non-empty sets, which we will denote by $\{B_1, \cdots, B_k\}$.

Now:

1. There are $S(n, k)$ ways to choose the sets $\{B_1, \cdots, B_k\}$;
2. There are $\binom{x}{k}$ ways to choose the $\{x_1, \cdots, x_k\}$;
3. There are $k!$ ways to make the correspondence between $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\})$ and $\{B_1, \cdots, B_k\}$.

Thus $c_k = S(n, k) \times \binom{x}{k} \times k! = S(n, k) \frac{x!}{(x-k)!}$
Consider functions $f : [n] \to X$, where $|X| = x \in \mathbb{N}$. Let c_k denote the number of such functions with $|\text{Im}(f)| = k$.

Proof that $c_k = S(n, k)(x)_k$:

For f with $|\text{Im}(f)| = k$, let $\text{Im}(f) = \{x_1, \cdots, x_k\}$. Then $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\})$ is a partition of $[n]$ into k non-empty sets, which we will denote by $\{B_1, \cdots, B_k\}$.

Now:
1. There are $S(n, k)$ ways to choose the sets $\{B_1, \cdots, B_k\}$;
2. There are $\binom{x}{k}$ ways to choose the $\{x_1, \cdots, x_k\}$;
3. There are $k!$ ways to make the correspondence between $f^{-1}(\{x_1\}), f^{-1}(\{x_2\}), \cdots, f^{-1}(\{x_k\})$ and $\{B_1, \cdots, B_k\}$.

Thus $c_k = S(n, k) \times \binom{x}{k} \times k! = S(n, k) \frac{x!}{(x-k)!} = S(n, k)(x)_k$.
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1 \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1 \]
\[
x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1
\]
\[
(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1
\]

\(S(n, k)\) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets

\(|s(n, k)|\) (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles

\(s(n, k) = (-1)^{n-k}|s(n, k)|\) (Stirling number of the first kind)
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1 \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1 \]

\(S(n, k) \) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets.

\(|s(n, k)| \) (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles.

\[s(n, k) = (-1)^{n-k}|s(n, k)| \] (Stirling number of the first kind)

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0, \) for \(k > n. \)
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1 \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1 \]

\(S(n, k) \) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets

\(|s(n, k)|\) (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles

\[s(n, k) = (-1)^{n-k}|s(n, k)| \] (Stirling number of the first kind)

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0, \) for \(k > n. \)

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k). \)
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1 \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1 \]

\(S(n, k) \) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets

\[|s(n, k)| \] (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles

\[s(n, k) = (-1)^{n-k}|s(n, k)| \] (Stirling number of the first kind)

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0 \), for \(k > n \).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k) \).

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n, k) \).
\(x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \ n \geq 1 \)
\((x)_n = \sum_{k=1}^{n} s(n, k)x^k, \ n \geq 1 \)

\(S(n, k) \) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets

\(|s(n, k)| \) (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles

\(s(n, k) = (-1)^{n-k}|s(n, k)| \) (Stirling number of the first kind)

Extend the definitions of \(S(n, k)\) and \(s(n, k)\) to all \(n, k \geq 1\) by defining \(S(n, k) = s(n, k) = 0\), for \(k > n\).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty\) matrix with entries \(S_{nk} = S(n, k)\).
Let \(s = \{s_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty\) matrix with entries \(s_{nk} = s(n, k)\).

Corollary. \(Ss = sS = Id. \)
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \ n \geq 1 \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \ n \geq 1 \]

S(n, k) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets

\(|s(n, k)|\) (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles

\[s(n, k) = (-1)^{n-k}|s(n, k)| \] (Stirling number of the first kind)

Extend the definitions of \(S(n, k)\) and \(s(n, k)\) to all \(n, k \geq 1\) by defining \(S(n, k) = s(n, k) = 0\), for \(k > n\).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty}\) denote the \(\infty \times \infty\) matrix with entries

\[S_{nk} = S(n, k). \]

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty}\) denote the \(\infty \times \infty\) matrix with entries

\[s_{nk} = s(n, k). \]

Corollary. \(Ss = sS = Id.\)

That is, \(\sum_{j=1}^{\infty} S(n, j)s(j, m) = \begin{cases} 1, & \text{if } n = m; \\ 0, & \text{if } n \neq m. \end{cases}\)
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1 \quad (*) \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1 \quad (**) \]

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0 \), for \(k > n \).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k) \).

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n, k) \).

Corollary. \(Ss = sS = I_d \).

Proof.
\(x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \ n \geq 1 \quad (*) \)

\((x)_n = \sum_{k=1}^{n} s(n, k)x^k, \ n \geq 1 \quad (**) \)

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0, \) for \(k > n. \)

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k). \)

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n, k). \)

Corollary. \(Ss = sS = I_d. \)

Proof. Consider the real vector space \(V \) of polynomials of the form \(\sum_{k=1}^{n} c_k x^k, \ n \geq 1, c_k \in \mathbb{R}. \)
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \; n \geq 1 \quad (*) \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \; n \geq 1 \quad (**) \]

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0 \), for \(k > n \).

Let \(S = \{ S_{nk} \}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k) \).

Let \(s = \{ s_{nk} \}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n, k) \).

Corollary. \(Ss = sS = Id. \)

Proof. Consider the real vector space \(V \) of polynomials of the form \(\sum_{k=1}^{n} c_kx^k, \; n \geq 1, c_k \in \mathbb{R}. \).

Of course, \(B_1 := \{ x, x^2, x^3, \cdots \} \) is a basis for \(V \).
\[x^n = \sum_{k=1}^{n} S(n, k)(x)_k, \quad n \geq 1 \quad (*) \]
\[(x)_n = \sum_{k=1}^{n} s(n, k)x^k, \quad n \geq 1 \quad (**) \]

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0 \), for \(k > n \).

Let \(S = \{ S_{nk} \}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k) \).

Let \(s = \{ s_{nk} \}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n, k) \).

Corollary. \(Ss = sS = Id. \)

Proof. Consider the real vector space \(V \) of polynomials of the form \(\sum_{k=1}^{n} c_kx^k, \quad n \geq 1, \quad c_k \in \mathbb{R}. \)

Of course, \(B_1 := \{ x, x^2, x^3, \ldots \} \) is a basis for \(V \).

By \((*) \), \(B_2 := \{ (x)_1, (x)_2, (x)_3, \ldots \} \) is also a basis for \(V \).
\[x^n = \sum_{k=1}^{n} S(n,k)(x)_k, \quad n \geq 1 \quad (*) \]
\[(x)_n = \sum_{k=1}^{n} s(n,k)x^k, \quad n \geq 1 \quad (**). \]

Extend the definitions of \(S(n,k) \) and \(s(n,k) \) to all \(n, k \geq 1 \) by defining \(S(n,k) = s(n,k) = 0 \), for \(k > n \).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n,k) \).

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n,k) \).

Corollary. \(Ss = sS = I_d \).

Proof. Consider the real vector space \(V \) of polynomials of the form \(\sum_{k=1}^{n} c_k x^k, \quad n \geq 1, \ c_k \in \mathbb{R}. \)

Of course, \(B_1 := \{x, x^2, x^3, \cdots\} \) is a basis for \(V \).

By \((*) \), \(B_2 := \{(x)_1, (x)_2, (x)_3, \cdots\} \) is also a basis for \(V \).

By \((*) \) and \((**) \), the matrices \(S \) and \(s \) transform between the two basis, and thus \(Ss = sS = I. \) \qed
\(S(n, k) \) (Stirling number of the second kind) is the number of ways to partition \([n]\) into \(k\) nonempty subsets

\(|s(n, k)|\) (unsigned Stirling number of the first kind) is the number of permutations of \([n]\) which have \(k\) cycles

\[s(n, k) = (-1)^{n-k}|s(n, k)| \] (Stirling number of the first kind)

Extend the definitions of \(S(n, k)\) and \(s(n, k)\) to all \(n, k \geq 1\) by defining \(S(n, k) = s(n, k) = 0\), for \(k > n\).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty}\) denote the \(\infty \times \infty\) matrix with entries \(S_{nk} = S(n, k)\).

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty}\) denote the \(\infty \times \infty\) matrix with entries \(s_{nk} = s(n, k)\).

Corollary. \(SS = sS = Id\)

That is, \(\sum_{j=1}^{\infty} S(n, j)s(j, m) = \begin{cases} 1, & \text{if } n = m; \\ 0, & \text{if } n \neq m. \end{cases}\)
\(S(n, k) \) (Stirling number of the second kind) is the number of ways to partition \([n] \) into \(k \) nonempty subsets

\(|s(n, k)|\) (unsigned Stirling number of the first kind) is the number of permutations of \([n] \) which have \(k \) cycles

\[s(n, k) = (-1)^{n-k}|s(n, k)| \] (Stirling number of the first kind)

Extend the definitions of \(S(n, k) \) and \(s(n, k) \) to all \(n, k \geq 1 \) by defining \(S(n, k) = s(n, k) = 0 \), for \(k > n \).

Let \(S = \{S_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(S_{nk} = S(n, k) \).

Let \(s = \{s_{nk}\}_{n,k=1}^{\infty} \) denote the \(\infty \times \infty \) matrix with entries \(s_{nk} = s(n, k) \).

Corollary. \(Ss = sS = Id \)

That is, \(\sum_{j=1}^{\infty} S(n, j)s(j, m) = \begin{cases} 1, & \text{if } n = m; \\ 0, & \text{if } n \neq m. \end{cases} \)

Example: \(n = 8, m = 4 \):

\[0 = \sum_{j=1}^{\infty} S(8, j)s(j, 4) = S(8, 4) - S(8, 5)|s(5, 4)| + S(8, 6)|s(6, 4)| - S(8, 7)|s(7, 4)| + |s(8, 4)|. \]
Recalling the Poisson distribution

Let X be a random variable with the distribution $\text{Pois}(\lambda), \lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \; j = 0, 1, 2, \ldots.$$
Recalling the Poisson distribution

Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 0, 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := EX^n$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := E X^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n \overset{(7)}{=} \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{n} S(n, k)(j)_k$$
Let X be a random variable with the distribution $\text{Poiss}(\lambda)$, $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n; \lambda} := EX^n$

$$\mu_{n; \lambda} = \sum_{j=0}^{\infty} (e^{-\lambda} \frac{\lambda^j}{j!}) j^n (7) \sum_{j=0}^{\infty} (e^{-\lambda} \frac{\lambda^j}{j!}) \sum_{k=1}^{n} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} (e^{-\lambda} \frac{\lambda^j}{j!}) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k$$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \quad j = 1, 2, \ldots .$$

nth moment: $\mu_{n;\lambda} := E X^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n \quad (7) \quad \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{n} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k \quad \text{ (because } (j)_k = 0, \ k > j \text{)}$$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \; j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := E X^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n \quad (7) \quad \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{n} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k \quad \text{(because } (j)_k = 0, \; k > j)$$

$$= e^{-\lambda} \sum_{k=1}^{n} S(n, k) \sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k.$$
Let X be a random variable with the distribution $\text{Poiss}(\lambda), \lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := EX^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{n} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \min(j, n) \sum_{k=1}^{\infty} S(n, k)(j)_k \quad \text{(because} \ (j)_k = 0, \ k > j)$$

$$= e^{-\lambda} \sum_{k=1}^{n} S(n, k) \sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k.$$

But $\sum_{j=1}^{\infty} \frac{\lambda^j}{j!} (j)_k = \sum_{j=k}^{\infty} \frac{\lambda^j}{(j-k)!}$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := E X^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k \quad \text{(because (j)_k = 0, \ k > j)}$$

$$= e^{-\lambda} \sum_{k=1}^{n} S(n, k) \sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k.$$

But $\sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k = \sum_{j=k}^{\infty} (j-k)! = \lambda^k \sum_{j=k}^{\infty} \frac{\lambda^{j-k}}{(j-k)!}$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := EX^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n \overset{(7)}{=} \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{n} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j, n)} S(n, k)(j)_k \quad \text{(because $(j)_k = 0, \ k > j$)}$$

$$= e^{-\lambda} \sum_{k=1}^{n} S(n, k) \sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k.$$

But $\sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k = \sum_{j=k}^{\infty} \frac{\lambda^j}{(j-k)!} = \lambda^k \sum_{j=k}^{\infty} \frac{\lambda^{j-k}}{(j-k)!} = \lambda^k \sum_{l=0}^{\infty} \frac{\lambda^l}{l!}$
Let X be a random variable with the distribution $\text{Poiss}(\lambda)$, $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := \mathbb{E}X^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n \quad \overset{(7)}{=} \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{n} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k \quad \text{(because } (j)_k = 0, \ k > j)$$

$$= e^{-\lambda} \sum_{k=1}^{n} S(n, k) \sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k.$$

But $\sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k = \sum_{j=k}^{\infty} \frac{\lambda^j}{(j-k)!} = \lambda^k \sum_{j=k}^{\infty} \frac{\lambda^{j-k}}{(j-k)!} = \lambda^k \sum_{l=0}^{\infty} \frac{\lambda^l}{l!} = \lambda^k e^\lambda.$
Let X be a random variable with the distribution $\text{Poiss}(\lambda)$, $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \quad j = 1, 2, \cdots.$$

nth moment: $\mu_{n;\lambda} := E X^n$

$$\mu_{n;\lambda} = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k =$$

$$= \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) \sum_{k=1}^{\min(j,n)} S(n, k)(j)_k \quad \text{(because $(j)_k = 0$, $k > j$)}$$

$$= e^{-\lambda} \sum_{k=1}^{n} S(n, k) \sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k.$$

But $\sum_{j=k}^{\infty} \frac{\lambda^j}{j!} (j)_k = \sum_{j=k}^{\infty} \frac{\lambda^j}{(j-k)!} = \lambda^k \sum_{j=k}^{\infty} \frac{\lambda^{j-k}}{(j-k)!} = \lambda^k \sum_{l=0}^{\infty} \frac{\lambda^l}{l!} = \lambda^k e^\lambda$. Thus,

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k.$$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \; j = 1, 2, \ldots$$

n-th moment: $\mu_{n;\lambda} := E(X^n) = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := EX^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$$

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k)x^k$
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

\[P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \quad j = 1, 2, \ldots. \]

n-th moment: $\mu_{n;\lambda} := E X^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

\[\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k \]

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k) x^k$

\[\mu_{n;\lambda} = T_n(\lambda) \]
Let X be a random variable with the distribution $\text{Poiss}(\lambda)$, $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := EX^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$$

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k)x^k$

$$\mu_{n;\lambda} = T_n(\lambda)$$

(Compare T_n with (6).)
Let X be a random variable with the distribution Poiss(λ), $\lambda > 0$:

$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}$, $j = 1, 2, \ldots$.

nth moment: $\mu_{n;\lambda} := EX^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k)x^k$

$\mu_{n;\lambda} = T_n(\lambda)$

(Compare T_n with (6).)

$$\sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = EX^n = \mu_{n;\lambda} = T_n(\lambda) := \sum_{k=1}^{n} S(n, k) \lambda^k$$
Let X be a random variable with the distribution $\text{Poiss}(\lambda)$, $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots .$$

nth moment: $\mu_{n;\lambda} := E X^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$$

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k) x^k$

$$\mu_{n;\lambda} = T_n(\lambda)$$

(Compare T_n with (6).)

$$\sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = E X^n = \mu_{n;\lambda} = T_n(\lambda) := \sum_{k=1}^{n} S(n, k) \lambda^k$$

When $\lambda = 1$:

$$\frac{1}{e} \sum_{j=0}^{\infty} \frac{j^n}{j!} = E X^n = \mu_{n;1} = T_n(1) := \sum_{k=1}^{n} S(n, k)$$
Let X be a random variable with the distribution $\text{Poiss}(\lambda), \lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \ldots.$$

nth moment: $\mu_{n;\lambda} := E X^n = \sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n$

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$$

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k) x^k$

$$\mu_{n;\lambda} = T_n(\lambda)$$

(Compare T_n with (6).)

$$\sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = E X^n = \mu_{n;\lambda} = T_n(\lambda) := \sum_{k=1}^{n} S(n, k) \lambda^k$$

When $\lambda = 1$:

$$\frac{1}{e} \sum_{j=0}^{\infty} \frac{j^n}{j!} = E X^n = \mu_{n;1} = T_n(1) := \sum_{k=1}^{n} S(n, k) := B_n,$$

where B_n is the nth Bell number:

$B_n = \text{the total number of partitions of } [n]$.
Let X be a random variable with the distribution $\text{Poiss}(\lambda)$, $\lambda > 0$:

$$P(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j = 1, 2, \cdots.$$

nth moment: $\mu_{n;\lambda} := E X^n$

$$\mu_{n;\lambda} = \sum_{k=1}^{n} S(n, k) \lambda^k$$

Touchard Polynomial: $T_n(x) := \sum_{k=1}^{n} S(n, k) x^k$

$$\mu_{n;\lambda} = T_n(\lambda)$$

$$\sum_{j=0}^{\infty} \left(e^{-\lambda} \frac{\lambda^j}{j!} \right) j^n = E X^n = \mu_{n;\lambda} = T_n(\lambda) := \sum_{k=1}^{n} S(n, k) \lambda^k$$

When $\lambda = 1$:

$$\frac{1}{e} \sum_{j=0}^{\infty} \frac{j^n}{j!} = E X^n = \mu_{n;\lambda} = T_n(1) := \sum_{k=1}^{n} S(n, k) := B_n, \quad (8)$$

where B_n is the nth Bell number:

$B_n =$ the total number of partitions of $[n]$.

(8) is known as Dobiński’s formula.
Random Permutations

Uniform probability measure on S_n:
$$P_n(\sigma) := \frac{1}{n!}, \sigma \in S_n$$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma)$ = the number of cycles in σ.

For $\theta > 0$, define the following probability measure on S_n:
$$P(\theta)_n(\sigma) = \theta^{k_n(\sigma)} N_n(\theta),$$
where $N_n(\theta) = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)}$ is the normalizing constant.

We have
$$N_n(\theta) = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)} = \sum_{k=1}^{n} \theta^{|s(n,k)|} (3),$$

Thus,
$$P(\theta)_n(\sigma) = \theta^{k_n(\sigma)} \theta^{|s(n,k)|}, \sigma \in S_n.$$

$\theta > 1$: the measure favors permutations with many cycles
$\theta \in (0,1)$: the measure favors permutations with few cycles
$\theta = 1$: uniform measure
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}$, $\sigma \in S_n$
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}$, $\sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) =$ the number of cycles in σ.

For $\theta > 0$, define the following probability measure on S_n:

$P(\theta)_n(\sigma) = \frac{\theta^{k_n(\sigma)}}{N_n,\theta}$, where

$N_n,\theta = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)}$ is the normalizing constant.

We have

$N_n,\theta = \sum_{n k_1 = 1} \theta^{k_1} |s(n,k_1)| (3) = \theta^n |s(n,k_1)|$.

Thus,

$P(\theta)_n(\sigma) = \frac{\theta^{k_n(\sigma)}}{\theta^n |s(n,k_1)|}$, $\sigma \in S_n$.

$\theta > 1$: the measure favors permutations with many cycles

$\theta \in (0,1)$: the measure favors permutations with few cycles

$\theta = 1$: uniform measure
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}, \sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) = \text{the number of cycles in } \sigma.$
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}$, $\sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) =$ the number of cycles in σ.

For $\theta > 0$, define the following probability measure on S_n:

$$P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{N_{n, \theta}},$$

where $N_{n, \theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)}$ is the normalizing constant.

$\theta > 1$: the measure favors permutations with many cycles

$\theta \in (0, 1)$: the measure favors permutations with few cycles

$\theta = 1$: uniform measure
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}, \sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) =$ the number of cycles in σ.

For $\theta > 0$, define the following probability measure on S_n:

$$P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{N_{n,\theta}}, \text{ where } N_{n,\theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)} \text{ is the normalizing constant.}$$

We have $N_{n,\theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)} = \sum_{k=1}^{n} \theta^k |s(n, k)|$
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}, \ \sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) =$ the number of cycles in σ.

For $\theta > 0$, define the following probability measure on S_n:

$$ P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{N_{n,\theta}}, $$

where $N_{n,\theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)}$ is the normalizing constant.

We have $N_{n,\theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)} = \sum_{k=1}^{n} \theta^k |s(n, k)| \overset{(3)}{=} \theta(n)$.

$\theta > 1$: the measure favors permutations with many cycles

$\theta \in (0, 1)$: the measure favors permutations with few cycles

$\theta = 1$: uniform measure
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}, \ \sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) =$ **the number of cycles in** σ.

For $\theta > 0$, define the following probability measure on S_n:

$$P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{N_{n,\theta}},$$

where $N_{n,\theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)}$ is the normalizing constant.

We have

$$N_{n,\theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)} = \sum_{k=1}^n \theta^k |s(n, k)| \overset{(3)}{=} \theta(n).$$

Thus,

$$P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{\theta(n)}, \ \sigma \in S_n.$$
Random Permutations

Uniform probability measure on S_n: $P_n(\sigma) := \frac{1}{n!}$, $\sigma \in S_n$

We now define a family of non-uniform probability measures on S_n:

Let $k_n(\sigma) =$ the number of cycles in σ.

For $\theta > 0$, define the following probability measure on S_n: $P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{N_{n, \theta}}$, where $N_{n, \theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)}$ is the normalizing constant.

We have $N_{n, \theta} = \sum_{\sigma \in S_n} \theta^{k_n(\sigma)} = \sum_{k=1}^n \theta^k |s(n, k)| \overset{(3)}{=} \theta(n)$.

Thus, $P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{\theta(n)}$, $\sigma \in S_n$.

$\theta > 1$: the measure favors permutations with many cycles
$\theta \in (0, 1)$: the measure favors permutations with few cycles
$\theta = 1$: uniform measure
\[P_n^{(\theta)}(\sigma) = \frac{\theta^{kn(\sigma)}}{\theta(n)}, \quad \sigma \in S_n. \]

\(\theta > 1 \): the measure favors permutations with many cycles
\(\theta \in (0, 1) \): the measure favors permutations with few cycles
\(\theta = 1 \): uniform measure
\[P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{\theta^{(n)}} , \ \sigma \in S_n. \]

\(\theta > 1 \): the measure favors permutations with many cycles

\(\theta \in (0, 1) \): the measure favors permutations with few cycles

\(\theta = 1 \): uniform measure

Let \(C_j^{(n)}(\sigma) = \) the number of \(j \)-cycles in \(\sigma \in S_n, \ j = 1, \cdots, n. \)
\[P_n^{(\theta)}(\sigma) = \frac{\theta^{kn(\sigma)}}{\theta(n)}, \sigma \in S_n. \]

\(\theta > 1 \): the measure favors permutations with many cycles
\(\theta \in (0, 1) \): the measure favors permutations with few cycles
\(\theta = 1 \): uniform measure

Let \(C_j^{(n)}(\sigma) \) = the number of \(j \)-cycles in \(\sigma \in S_n, j = 1, \ldots, n. \)

Then for each \(\theta > 0 \), we can think of \(\{C_j^{(n)}\}_{j=1}^n \) as random variables on the probability space \((S_n, P_n^{(\theta)})\).
\[P_n^{(\theta)}(\sigma) = \frac{\theta^{kn(\sigma)}}{\theta(n)}, \ \sigma \in S_n. \]

\(\theta > 1 \): the measure favors permutations with many cycles
\(\theta \in (0, 1) \): the measure favors permutations with few cycles
\(\theta = 1 \): uniform measure

Let \(C_j^{(n)}(\sigma) \) = the number of \(j \)-cycles in \(\sigma \in S_n \), \(j = 1, \cdots, n \).

Then for each \(\theta > 0 \), we can think of \(\{ C_j^{(n)} \}_{j=1}^n \) as random variables on the probability space \((S_n, P_n^{(\theta)}) \).

Theorem. For any \(j \), the distribution of \(C_j^{(n)} \) under \(P_n^{(\theta)} \) converges weakly to the distribution \(\text{Poiss}(\frac{\theta}{j}) \) as \(n \to \infty \).
\[P_n^{(\theta)}(\sigma) = \frac{\theta^{kn(\sigma)}}{\theta(n)}, \quad \sigma \in S_n. \]

\(\theta > 1 \): the measure favors permutations with many cycles
\(\theta \in (0, 1) \): the measure favors permutations with few cycles
\(\theta = 1 \): uniform measure

Let \(C_j^{(n)}(\sigma) \) the number of \(j \)-cycles in \(\sigma \in S_n, \quad j = 1, \ldots, n. \)

Then for each \(\theta > 0 \), we can think of \(\{ C_j^{(n)} \}_{j=1}^n \) as random variables on the probability space \((S_n, P_n^{(\theta)}) \).

Theorem. For any \(j \), the distribution of \(C_j^{(n)} \) under \(P_n^{(\theta)} \) converges weakly to the distribution \(\text{Poiss}(\frac{\theta}{j}) \) as \(n \to \infty \). That is,

\[
\lim_{n \to \infty} P_n^{(\theta)}(C_j^{(n)} = m) = e^{-\frac{\theta}{j}} \frac{(\frac{\theta}{j})^m}{m!}, \quad \text{for} \quad m = 0, 1, \ldots.
\]
\[
P_n^{(\theta)}(\sigma) = \frac{\theta^{k_n(\sigma)}}{\theta(n)}, \quad \sigma \in S_n.
\]

\(\theta > 1\): the measure favors permutations with many cycles
\(\theta \in (0, 1)\): the measure favors permutations with few cycles
\(\theta = 1\): uniform measure

Let \(C_j^{(n)}(\sigma) = \) the number of \(j\)-cycles in \(\sigma \in S_n\), \(j = 1, \cdots, n\).

Then for each \(\theta > 0\), we can think of \(\{C_j^{(n)}\}_{j=1}^n\) as random variables on the probability space \((S_n, P_n^{(\theta)})\).

Theorem. For any \(j\), the distribution of \(C_j^{(n)}\) under \(P_n^{(\theta)}\) converges weakly to the distribution \(\text{Pois}(\frac{\theta}{j})\) as \(n \to \infty\). That is,
\[
\lim_{n \to \infty} P_n^{(\theta)}(C_j^{(n)} = m) = e^{-\frac{\theta}{j}} \frac{(\frac{\theta}{j})^m}{m!}, \text{ for } m = 0, 1, \cdots.
\]

Remark. \(C_1^{(n)}(\sigma)\) is the number of fixed points of \(\sigma\):
\(C_1^{(n)} = |\{k \in [n] : \sigma_k = k\}|. \) So under \(P_n^{(\theta)}\), the distribution of the number of fixed points in a permutation in \(S_n\) converges as \(n \to \infty\) to the Poisson distribution with parameter \(\theta\). In particular, under the uniform measure \((\theta = 1)\), it converges to the Poisson distribution with parameter 1.
Theorem. For any j, the distribution of $C_j^{(n)}$ under $P_n^{(\theta)}$ converges weakly to the distribution $\text{Poiss}(\theta_j)$ as $n \to \infty$. That is,
\[
\lim_{n \to \infty} P_n^{(\theta)}(C_j^{(n)} = m) = e^{-\theta_j} \frac{(\theta_j)^m}{m!}, \text{ for } m = 0, 1, \cdots.
\]
Proof for $\theta = 1$ (the same method works with virtually no extra work for all θ).
Theorem. For any j, the distribution of $C_j^{(n)}$ under $P_n^{(\theta)}$ converges weakly to the distribution Poiss($\frac{\theta}{j}$) as $n \to \infty$. That is,

$$\lim_{n \to \infty} P_n^{(\theta)}(C_j^{(n)} = m) = e^{-\frac{\theta}{m}} \frac{(\frac{\theta}{j})^m}{m!}, \text{ for } m = 0, 1, \ldots.$$

Proof for $\theta = 1$ (the same method works with virtually no extra work for all θ).

Method of moments: It is enough to show that for all m, the mth moment of $C_j^{(n)}$ converges to the mth moment of the distribution Poiss($\frac{1}{j}$).
Theorem. For any j, the distribution of $C_j^{(n)}$ under $P_n^{(\theta)}$ converges weakly to the distribution $\text{Poiss}(\frac{\theta}{j})$ as $n \to \infty$. That is,
$$\lim_{n \to \infty} P_n^{(\theta)}(C_j^{(n)} = m) = e^{-\frac{\theta}{m} \left(\frac{\theta}{j}\right)^m}, \text{ for } m = 0, 1, \ldots.$$

Proof for $\theta = 1$ (the same method works with virtually no extra work for all θ).

Method of moments: It is enough to show that for all m, the mth moment of $C_j^{(n)}$ converges to the mth moment of the distribution $\text{Poiss}(\frac{1}{j})$.

That is, it is enough to show that
$$\lim_{n \to \infty} E_n^{(1)}(C_j^{(n)})^m = \mu_{m;\frac{1}{j}} = T_m\left(\frac{1}{j}\right).$$
Proof that \(\lim_{n \to \infty} E_n^{(1)}(C_j^{(n)})^m = \mu_{m;\frac{1}{j}} = T_m\left(\frac{1}{j}\right) \).
Proof that $\lim_{n \to \infty} E_n^{(1)}(C_j^{(n)})^m = \mu_{m; \frac{1}{j}} = T_m(\frac{1}{j})$.

We will show that

$$E_n^{(1)}(C_j^{(n)})^m = \mu_{m; \frac{1}{j}} = T_m(\frac{1}{j}), \text{ for } n \geq mj.$$
Proof that \(\lim_{n \to \infty} E_n^{(1)} (C_j^{(n)})^m = \mu_{m; \frac{1}{j}} = T_m(\frac{1}{j}) \).

We will show that

\[
E_n^{(1)} (C_j^{(n)})^m = \mu_{m; \frac{1}{j}} = T_m(\frac{1}{j}), \text{ for } n \geq mj.
\]

For \(D \subset [n] \) with \(|D| = j \), define

\[
1_D(\sigma) = \begin{cases}
1, & \text{if } \sigma \text{ has a cycle consisting of the elements of } D; \\
0, & \text{otherwise}.
\end{cases}
\]
Proof that $\lim_{n \to \infty} E_n^{(1)} (C_j^{(n)})^m = \mu_m; \frac{1}{j} = T_m(\frac{1}{j})$.

We will show that

$$E_n^{(1)} (C_j^{(n)})^m = \mu_m; \frac{1}{j} = T_m(\frac{1}{j}), \text{ for } n \geq mj.$$

For $D \subset [n]$ with $|D| = j$, define

$$1_D(\sigma) = \begin{cases}
1, & \text{if } \sigma \text{ has a cycle consisting of the elements of } D; \\
0, & \text{otherwise}.
\end{cases}$$

Then $C_j^{(n)}(\sigma) = \sum_{D \subset [n]:|D|=j} 1_D(\sigma)$
Proof that \(\lim_{n \to \infty} E_n^{(1)}(C_j^{(n)})^m = \mu_m; \frac{1}{j} = T_m\left(\frac{1}{j}\right) \).

We will show that

\[
E_n^{(1)}(C_j^{(n)})^m = \mu_m; \frac{1}{j} = T_m\left(\frac{1}{j}\right), \text{ for } n \geq mj.
\]

For \(D \subset [n] \) with \(|D| = j \), define

\[
1_D(\sigma) = \begin{cases}
1, & \text{if } \sigma \text{ has a cycle consisting of the elements of } D; \\
0, & \text{otherwise.}
\end{cases}
\]

Then \(C_j^{(n)}(\sigma) = \sum_{D \subset [n] : |D| = j} 1_D(\sigma) \) and

\[
(C_j^{(n)}(\sigma))^m = \left(\sum_{D_1 \subset [n] : |D_1| = j} 1_{D_1}(\sigma) \right) \cdots \left(\sum_{D_m \subset [n] : |D_m| = j} 1_{D_m}(\sigma) \right) =
\]

\[
\sum_{(D_1, D_2, \ldots, D_m) : |D_1| = \cdots = |D_m| = j} \prod_{l=1}^m 1_{D_l}(\sigma).
\]
Proof that \(\lim_{n \to \infty} E_n^{(1)} (C_j^{(n)})^m = \mu_{m; \frac{1}{j}} = T_m \left(\frac{1}{j} \right) \).

We will show that

\[E_n^{(1)} (C_j^{(n)})^m = \mu_{m; \frac{1}{j}} = T_m \left(\frac{1}{j} \right), \text{ for } n \geq mj. \]

For \(D \subset [n] \) with \(|D| = j \), define

\[1_D(\sigma) = \begin{cases} 1, & \text{if } \sigma \text{ has a cycle consisting of the elements of } D; \\ 0, & \text{otherwise}. \end{cases} \]

Then \(C_j^{(n)}(\sigma) = \sum_{D \subset [n]: |D| = j} 1_D(\sigma) \) and

\[
(C_j^{(n)}(\sigma))^m = \left(\sum_{D_1 \subset [n]: |D_1| = j} 1_{D_1}(\sigma) \right) \cdots \left(\sum_{D_m \subset [n]: |D_m| = j} 1_{D_m}(\sigma) \right) = \\
\sum \prod_{l=1}^{m} 1_{D_l}(\sigma).
\]

So

\[E_n^{(1)} (C_j^{(n)})^m = \sum (D_1, D_2, \ldots, D_m): |D_l| = \cdots = |D_m| = j P_n^{(1)} \left(\prod_{l=1}^{m} 1_{D_l} = 1 \right). \]
\[E_n^{(1)} \left(C_j^{(n)} \right)^m = \sum_{(D_1, D_2, \ldots, D_m) : |D_1| = \cdots = |D_m| = j} P_n^{(1)} \left(\prod_{l=1}^{m} 1_{D_l} = 1 \right). \]
\[E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1,D_2,\ldots,D_m):|D_1|=\cdots=|D_m|=j} P_n^{(1)}\left(\prod_{l=1}^m 1_{D_l} = 1\right). \]

Now \(\prod_{l=1}^m 1_{D_l} \neq 0 \).
\[E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1,D_2,\ldots,D_m):|D_l|=\cdots=|D_m|=j} P_n^{(1)} \left(\prod_{l=1}^m 1_{D_l} = 1 \right). \]

Now \(\prod_{l=1}^m 1_{D_l} \neq 0 \), (that is, there exists some \(\sigma \in D_n \) such that \(\prod_{l=1}^m 1_{D_l}(\sigma) \neq 0 \)).
\[E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1, D_2, \ldots, D_m) : |D_1| = \cdots = |D_m| = j} P_n^{(1)}(\prod_{l=1}^m 1_{D_l} = 1). \]

Now \(\prod_{l=1}^m 1_{D_l} \neq 0 \), (that is, there exists some \(\sigma \in D_n \) such that \(\prod_{l=1}^m 1_{D_l}(\sigma) \neq 0 \), if and only if for each pair \(i_1, i_2 \in [n] \), either \(D_{i_1} = D_{i_2} \) or \(D_{i_1} \cap D_{i_2} = \emptyset \).
\[E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1,D_2,\ldots,D_m):|D_1|=\cdots=|D_m|=j} P_n^{(1)}\left(\prod_{l=1}^{m} 1_{D_l} = 1\right). \]

Now \(\prod_{l=1}^{m} 1_{D_l} \neq 0 \), (that is, there exists some \(\sigma \in D_n \) such that \(\prod_{l=1}^{m} 1_{D_l}(\sigma) \neq 0 \), if and only if for each pair \(i_1, i_2 \in [n] \), either \(D_{i_1} = D_{i_2} \) or \(D_{i_1} \cap D_{i_2} = \emptyset \).

That is, if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_i\}_{i=1}^{k} \) such that \(\{D_l\}_{l=1}^{m} = \{A_i\}_{i=1}^{k} \).
\[E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1,D_2,\ldots,D_m) : |D_1|=\cdots=|D_m|=j} P_n^{(1)} \left(\prod_{l=1}^m 1_{D_l} = 1 \right). \]

Now \(\prod_{l=1}^m 1_{D_l} \neq 0 \), (that is, there exists some \(\sigma \in D_n \) such that \(\prod_{l=1}^m 1_{D_l}(\sigma) \neq 0 \), if and only if for each pair \(i_1, i_2 \in [n] \), either \(D_{i_1} = D_{i_2} \) or \(D_{i_1} \cap D_{i_2} = \emptyset \).

That is, if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_i\}_{i=1}^k \) such that \(\{D_l\}_{l=1}^m = \{A_i\}_{i=1}^k \).

In this case, \(\prod_{l=1}^m 1_{D_l} = \prod_{i=1}^k 1_{A_i} \).
\[
E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1, D_2, \ldots, D_m) : |D_1| = \ldots = |D_m| = j} P_n^{(1)}\left(\prod_{l=1}^{m} 1_{D_l} = 1\right).
\]

Now \(\prod_{l=1}^{m} 1_{D_l} \neq 0\), (that is, there exists some \(\sigma \in D_n\) such that \(\prod_{l=1}^{m} 1_{D_l}(\sigma) \neq 0\), if and only if for each pair \(i_1, i_2 \in [n]\), either \(D_{i_1} = D_{i_2}\) or \(D_{i_1} \cap D_{i_2} = \emptyset\).

That is, if and only if there exist a \(k \in [m]\) and disjoint sets \(\{A_i\}_{i=1}^{k}\) such that \(\{D_l\}_{l=1}^{m} = \{A_i\}_{i=1}^{k}\).

In this case, \(\prod_{l=1}^{m} 1_{D_l} = \prod_{i=1}^{k} 1_{A_i}\), and

\[
P_n^{(1)}\left(\prod_{l=1}^{m} 1_{D_l} = 1\right) = P_n^{(1)}\left(\prod_{i=1}^{k} 1_{A_i} = 1\right) = \frac{(j-1)!^k (n-kj)!}{n!}.
\]
\[E_n^{(1)}(C_j^{(n)})^m = \sum_{(D_1,D_2,\ldots,D_m) : |D_1|=\cdots=|D_m|=j} P_n^{(1)}(\prod_{l=1}^{m} 1_{D_l} = 1). \]

Now \(\prod_{l=1}^{m} 1_{D_l} \neq 0 \), (that is, there exists some \(\sigma \in D_n \) such that \(\prod_{l=1}^{m} 1_{D_l}(\sigma) \neq 0 \)), if and only if for each pair \(i_1, i_2 \in [n] \), either \(D_{i_1} = D_{i_2} \) or \(D_{i_1} \cap D_{i_2} = \emptyset \). That is, if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_i\}_{i=1}^{k} \) such that \(\{D_l\}_{l=1}^{m} = \{A_i\}_{i=1}^{k} \).

In this case, \(\prod_{l=1}^{m} 1_{D_l} = \prod_{i=1}^{k} 1_{A_i} \), and

\[P_n^{(1)}(\prod_{l=1}^{m} 1_{D_l} = 1) = P_n^{(1)}(\prod_{i=1}^{k} 1_{A_i} = 1) = \frac{(j-1)!^k (n-kj)!}{n!}. \]

(Here we use the assumption that \(n \geq mj \), which insures that \(n \geq kj \).)
\[E_{n}^{(1)}(C_{j}^{(n)})^{m} = \sum (D_{1}, D_{2}, \ldots, D_{m} : |D_{1}| = \ldots = |D_{m}| = j) \cdot P_{n}^{(1)}\left(\prod_{j=1}^{m} 1_{D_{j}} = 1\right). \]

Now \(\prod_{j=1}^{m} 1_{D_{j}} \neq 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_{i}\}_{i=1}^{k} \) such that \(\{D_{i}\}_{i=1}^{m} = \{A_{i}\}_{i=1}^{k} \). In this case,
\[
\prod_{j=1}^{m} 1_{D_{j}} = \prod_{i=1}^{k} 1_{A_{i}}, \quad \text{and} \quad P_{n}^{(1)}\left(\prod_{j=1}^{m} 1_{D_{j}} = 1\right) = P_{n}^{(1)}\left(\prod_{i=1}^{k} 1_{A_{i}} = 1\right) = \frac{(j-1)! \cdot (n-kj)!}{n!}.
\]
\[E_n^{(1)} (C_j^{(n)})^m = \sum (D_1, D_2, \ldots, D_m) : |D_l| = \cdots = D_m = j \, P_n^{(1)} \left(\prod_{l=1}^m 1_{D_l} = 1 \right). \]

Now, \(\prod_{l=1}^m 1_{D_l} \neq 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_i\}_{i=1}^k \) such that \(\{D_l\}_{l=1}^m = \{A_i\}_{i=1}^k \). In this case, \(\prod_{l=1}^m 1_{D_l} = \prod_{i=1}^k 1_{A_i} \), and

\[P_n^{(1)} \left(\prod_{l=1}^m 1_{D_l} = 1 \right) = P_n^{(1)} \left(\prod_{i=1}^k 1_{A_i} = 1 \right) = \frac{(j-1)!^k (n-kj)!}{n!}. \]

The number of ways to construct \(k \) disjoint (ordered) sets \((A_1, \ldots, A_k) \), each with \(j \) elements from \([n]\), is

\[\frac{n!}{(j!)^k (n-jk)!}. \]
\[E_n^{(1)} \left(C_j^{(n)} \right)^m = \sum (D_1, D_2, \ldots, D_m) : |D_l| = \cdots = |D_m| = j \cdot P_n^{(1)} \left(\prod_{l=1}^{m} 1D_l = 1 \right). \]

Now \(\prod_{l=1}^{m} 1D_l \neq 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_i\}_{i=1}^{k} \) such that \(\{D_l\}_{l=1}^{m} = \{A_i\}_{i=1}^{k} \). In this case, \(\prod_{l=1}^{m} 1D_l = \prod_{i=1}^{k} 1A_i \), and

\[P_n^{(1)} \left(\prod_{l=1}^{m} 1D_l = 1 \right) = P_n^{(1)} \left(\prod_{i=1}^{k} 1A_i = 1 \right) = \frac{(j-1)!^k (n-kj)!}{n!}. \]

The number of ways to construct \(k \) disjoint (ordered) sets \((A_1, \ldots, A_k)\), each with \(j \) elements from \([n]\), is

\[\binom{n}{j} \binom{n-j}{j} \cdots \binom{n-(m-1)j}{j} = \frac{n!}{(j!)^k (n-jk)!}. \]

Given \(\{A_i\}_{i=1}^{k} \), the number of ways to choose \(\{D_l\}_{l=1}^{m} \) so that \(\{D_l\}_{l=1}^{m} = \{A_i\}_{i=1}^{k} \) is equal to \(S(m, k) \).
\[E_{n}^{(1)}(C_{j}^{(n)})^{m} = \sum(D_{1},D_{2},\ldots,D_{m})|D_{l}|=\cdots=D_{m}|=j P_{n}^{(1)}\left(\prod_{l=1}^{m} 1_{D_{l}} = 1 \right). \]

Now \(\prod_{l=1}^{m} 1_{D_{l}} \not\equiv 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_{i}\}_{i=1}^{k} \) such that \(\{D_{l}\}_{l=1}^{m} = \{A_{i}\}_{i=1}^{k} \). In this case, \(\prod_{l=1}^{m} 1_{D_{l}} = \prod_{i=1}^{k} 1_{A_{i}} \), and
\[
P_{n}^{(1)}(\prod_{l=1}^{m} 1_{D_{l}} = 1) = P_{n}^{(1)}(\prod_{i=1}^{k} 1_{A_{i}} = 1) = \frac{(j-1)!}{n!} \frac{(n-kj)!}{(j!)^{k}(n-jk)!}.
\]
The number of ways to construct \(k \) disjoint (ordered) sets \((A_{1},\ldots,A_{k}) \), each with \(j \) elements from \([n] \), is
\[
\binom{n}{j} \binom{n-j}{j} \cdots \binom{n-(m-1)j}{j} = \frac{n!}{(j!)^{k}(n-jk)!}.
\]
Given \(\{A_{i}\}_{i=1}^{k} \), the number of ways to choose \(\{D_{l}\}_{l=1}^{m} \) so that \(\{D_{l}\}_{l=1}^{m} = \{A_{i}\}_{i=1}^{k} \) is equal to \(S(m,k) \). So
\[
E_{n}^{(1)}(C_{j}^{(n)})^{m} = \sum_{k=1}^{m} \frac{(j-1)!}{n!} \frac{(n-kj)!}{(j!)^{k}(n-jk)!} \times S(m,k).
\]

Ross Pinsky
Touchard Polynomials, Stirling Numbers and Random Permutations
\[E_n^{(1)} \left(C_j^{(n)} \right)^m = \sum \left(D_1, D_2, \ldots, D_m \right) : |D_1| = \cdots = |D_m| = j P_n^{(1)} \left(\prod_{l=1}^m 1_{D_l} = 1 \right). \]

Now \(\prod_{l=1}^m 1_{D_l} \neq 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{ A_i \}_{i=1}^k \) such that \(\{ D_l \}_{l=1}^m = \{ A_i \}_{i=1}^k \). In this case, \(\prod_{l=1}^m 1_{D_l} = \prod_{i=1}^k 1_{A_l} \), and

\[P_n^{(1)} \left(\prod_{l=1}^m 1_{D_l} = 1 \right) = P_n^{(1)} \left(\prod_{i=1}^k 1_{A_l} = 1 \right) = \frac{(j-1)!}{n!} \frac{(n-kj)!}{(j!)^k (n-jk)!}. \]

The number of ways to construct \(k \) disjoint (ordered) sets \((A_1, \ldots, A_k) \), each with \(j \) elements from \([n]\), is

\[\binom{n}{j} \binom{n-j}{j} \cdots \binom{n-(m-1)j}{j} = \frac{n!}{(j!)^k (n-jk)!}. \]

Given \(\{ A_i \}_{i=1}^k \), the number of ways to choose \(\{ D_l \}_{l=1}^m \) so that \(\{ D_l \}_{l=1}^m = \{ A_i \}_{i=1}^k \) is equal to \(S(m, k) \). So

\[E_n^{(1)} \left(C_j^{(n)} \right)^m = \sum_{k=1}^m \left(\frac{(j-1)!}{n!} \frac{(n-kj)!}{(j!)^k (n-jk)!} \right) \sum_{k=1}^m \left(\frac{1}{j} \right)^k S(m, k) = \]
\[E_n^{(1)}(C_j^{(n)})^m = \sum (D_1,D_2,\ldots,D_m) : |D_1| = \cdots = |D_m| = j \ P_n^{(1)}\left(\prod_{l=1}^m 1_{D_l} = 1 \right). \]

Now \(\prod_{l=1}^m 1_{D_l} \not\equiv 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{A_i\}_{i=1}^k \) such that \(\{D_l\}_{l=1}^m = \{A_i\}_{i=1}^k \). In this case, \(\prod_{l=1}^m 1_{D_l} = \prod_{i=1}^k 1_{A_i} \), and

\[P_n^{(1)}\left(\prod_{l=1}^m 1_{D_l} = 1 \right) = P_n^{(1)}\left(\prod_{i=1}^k 1_{A_i} = 1 \right) = \frac{(j-1)!}{n!} \frac{(n-kj)!}{(j!)^k(n-jk)!}. \]

The number of ways to construct \(k \) disjoint (ordered) sets \((A_1, \cdots, A_k) \), each with \(j \) elements from \([n]\), is

\[\binom{n}{j} \binom{n-j}{j} \cdots \binom{n-(m-1)j}{j} = \frac{n!}{(j!)^k(n-jk)!}. \]

Given \(\{A_i\}_{i=1}^k \), the number of ways to choose \(\{D_l\}_{l=1}^m \) so that \(\{D_l\}_{l=1}^m = \{A_i\}_{i=1}^k \) is equal to \(S(m,k) \). So

\[E_n^{(1)}(C_j^{(n)})^m = \sum_{k=1}^m \frac{(j-1)!}{n!} \frac{(n-kj)!}{(j!)^k(n-jk)!} \times \frac{n!}{(j!)^k(n-jk)!} \times S(m,k) = \sum_{k=1}^m \left(\frac{1}{j} \right)^k S(m,k) = T_m\left(\frac{1}{j} \right). \]
\[E_n^{(1)} \left(C_j^{(n)} \right)^m = \sum \left(D_1, D_2, \ldots, D_m : |D_1| = \cdots = |D_m| = j \right) P_n^{(1)} \left(\prod_{l=1}^{m} 1_{D_l} = 1 \right). \]

Now \(\prod_{l=1}^{m} 1_{D_l} \neq 0 \) if and only if there exist a \(k \in [m] \) and disjoint sets \(\{ A_i \}_{i=1}^{k} \) such that \(\{ D_l \}_{l=1}^{m} = \{ A_i \}_{i=1}^{k} \). In this case, \(\prod_{l=1}^{m} 1_{D_l} = \prod_{i=1}^{k} 1_{A_i} \), and

\[P_n^{(1)} \left(\prod_{l=1}^{m} 1_{D_l} = 1 \right) = P_n^{(1)} \left(\prod_{i=1}^{k} 1_{A_i} = 1 \right) = \frac{(j-1)!^k (n-kj)!}{n!}. \]

The number of ways to construct \(k \) disjoint (ordered) sets \((A_1, \cdots, A_k) \), each with \(j \) elements from \([n] \), is

\[\binom{n}{j} \left(\binom{n-j}{j} \right) \cdots \left(\binom{n-(m-1)j}{j} \right) = \frac{n!}{(j!)(n-jk)!}. \]

Given \(\{ A_i \}_{i=1}^{k} \), the number of ways to choose \(\{ D_l \}_{l=1}^{m} \) so that \(\{ D_l \}_{l=1}^{m} = \{ A_i \}_{i=1}^{k} \) is equal to \(S(m, k) \). So

\[E_n^{(1)} \left(C_j^{(n)} \right)^m = \sum_{k=1}^{m} \frac{(j-1)!^k (n-kj)!}{n!} \times \frac{n!}{(j!)(n-jk)!} \times S(m, k) = \]

\[\sum_{k=1}^{m} \left(\frac{1}{j} \right)^k S(m, k) = T_m \left(\frac{1}{j} \right) = \mu_{m; \frac{1}{j}}. \]