Hilbert function spaces of analytic functions in a
complex variable

Supervisors: Satish Pandey and Orr Shalit

A Hilbert function space is a Hilbert space consisting of "bona fide"
functions on a set X, in which the functional f ~ f(x) that takes a function f
and returns its value f(x) at a point x € X is a bounded functional. Here is an
example: the space of all analytic functions f(z) = Y a,z" in the unit disc with
square summable Taylor coefficients, i.e., }|a,|? < o (on the other hand
L*(0,1) is not an example, because functions are only defined "almost
everywhere"; the point evaluation f ~ f(x) is meaningless).

The fact that point evaluation is a bounded functional makes a connection
between function theory and Hilbert space theory, and a very rich theory
emerges in which function theory and operator theory can benefit one from
the other.

In this project the students will learn the rudiments of Hilbert function space
theory, and dive into the study of some concrete problems concerning Hilbert
function spaces of recent interest. For example, a central question that we
might tackle is: how does the geometry of the set of points on which a Hilbert
function space “lives” (a subset in the complex plane) reflect in the structure of
the function space? Another question is: when are two such Hilbert function
spaces isomorphic?

Wait a minute: aren't all (separable) Hilbert spaces isomorphic? As abstract
Hilbert spaces yes, but if you add the additional structure of a Hilbert function
space things are quite different.

This project is made for students who love complex function theory and/or
functional analysis, and therefore it is best suited for those students who have
completed a course in at least one of these subjects.

Links:
https://noncommutativeanalysis.wordpress.com/2013/01/19/advanced-
analysis-notes-16-hilbert-function-spaces-basics/

https://noncommutativeanalysis.wordpress.com/2013/01/23/advanced-
analysis-notes-17-hilbert-function-spaces-picks-interpolation-theorem/
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