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Motivation. Inverse Problems

Let D C R” be a bounded domain with sufficiently smooth
boundary 0D. Given maps a: D — R and f : D — R, consider the
following boundary value problem (BVP):

-V - (a(x)Vu(x)) = f(x), in D, u(x) =0, on 9D.
This simple PDE models interesting real-world phenomena and has
been studied in great detail.

For example, u may represent the steady-state temperature at a
given point of a body; then a would be a variable thermal
conductivity coefficient, and f the external heat source.

The above BVP also models underground steady-state aquifers in
which the parameter a is the aquifer transmissivity coefficient, u is
the hydraulic head, and f is the recharge.

In the context of the above BVP there are two problems:

e Direct problem: Given a, f, compute v.
e Inverse problem: Given u, f, identify a.
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A Prototypical Stochastic BVP

In the applied models there exists a natural uncertainty, for example:
@ Parameters are estimated based on experiments that involve noise.
@ Partial (unknown) data or physical model limitations.

A sensible way is to treat these parameters as random variables and
consider a Stochastic PDE (SPDE).

@ We are given a probability space (2, F, i), a bounded domain
D C R" with 0D as its sufficiently smooth boundary.

@ Given random fields a: Q x D — R and f : Q x D — R, the direct
problem seeks a random field v : Q x D — R that almost surely
satisfies the following PDE with random data:

-V (a(w, x)Vu(w, x)) = f(w,x), in D, u(w,x) =0, on9dD. (1)

@ Given a measurement z of u, this talk focuses on the inverse
problem of estimating a so that z is closest to u in some sense.

Lord, Powell, Shardlow, An introduction to computational stochastic PDEs, Cambridge University Press,
New York, 2014, xii+503.
Babuska, Tempone, Zouraris, Galerkin nite element approximations of stochastic elliptic partial dierential
equations, SIAM J. Numer. Anal. 42 (2004), 800-825.

@ Bharucha-Reid, Random integral equations, Academic Press, New York-London; 1972, xiii+267.
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A Stochastic BVP and its Variational Formulation
Properties of the Parameter-to-Solution Map
Optimization Formulations and Existence Results

Finite-Dimensional Approximation

Numerical Results
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The Stochastic Variational Problem

@ Given a real Banach space X, a probability space (2, F, 1), and an
integer p € [1,00), the Bochner space LP(Q; X) consists of Bochner
integrable functions u : Q — X with finite p-th moment, that is,

1/p
ol = ([ o) =Bl <

@ If p =00, then L>®(Q; X) is the space of Bochner measurable
functions u : Q — X such that

esssup,,cqllu(w)||x < oco.

@ The variational formulation of the stochastic BVP (1) seeks
u €V :=L%(Q; H}(D)) such that for all v € V, we have

E[/Da(w,x)Vu(w,x)~Vv(w,x)dx] —E[/D F(w, x)v(w, x) dx| . (2)
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Solvability of the Stochastic Variational Form

@ We assume that there are constants kg and k; such that

0 < ko < a(w, x) < ki < 00, almost everywhere in Q x D.

@ Define a bilinear form s : V x V — R and a functional £: V — R by
s(u,v) :=E [/D a(w, x)Vu(w, x) - Vv(w,x)dx] ,
Lv):=E [/D f(w, x)v(w, x) dx] ,
@ The stochastic variational problem then reads: Find v € V such that

s(u,v) =4£(v), foreveryve V.

@ The unique solvability follows by the Lax-Milgram lemma.
@ Furthermore, there is a constant ¢; > 0 such that
[u(w, x)[[v < Cl||f(wvx)||L2(Q;H1(D)*)~
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Lipschitz continuity of the parameter-to-solution map

For any a(w, x) € A, the map a(w, x) — us(w, x) is Lipschitz continuous.

Proof.

Let uy(w, x) € V be the solution of (2) for a(w,x) € A and up(w,x) € V
be the solution of (2) for b(w, x) € A. Then, for all v € V, we have

E[/a(wx)Vua(wx) Vv(wxdx}: {/fwxv(wx ],
o}
E [/ b(w, x)Vup(w, x) - Vv(w,x)dx} =E {/ f(w, x)v(w, x) dx] .
D D
By simple algebraic manipulations, for a constant ¢ > 0, we obtain

[[ua(w; x) = up(w, x)|lv < clla(w, x) = b(w, X)|[L=(@xD)-

O

Akhtar A. Khan Stochastic Inverse Problems, RIT, Rochester, New York, USA



Differentiability of the parameter-to-solution map

Theorem

For each a(w, x) in the interior of A, the map a(w, x) — us(w, x) is
differentiable at a(w, x). The derivative du, := Du,(da) of u,(w,x) at
a(w, x) in the direction da(w, x) is the unique solution of the stochastic
variational problem: Find du,(w,x) € V such that

E [ /D ety 59Ty 53] Vv(w,x)dx}

- FE {/D da(w, x)Vuz(w, x) - Vv(w, x) dX] :

for every v(w, x) € V.
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Two Optimization Formulations for the Inverse Problem

@ The first one is commonly known output least-squares functional:
~ 1
Jo(a) = EE [Hua(w,x) — z(w7x)||2] , (3)

where u,(w, x) is the solution of (2) for a(w, x),

z(w, x) € L?(Q; L>(D)) is the measured data, and || - || is a suitable
norm, Three common choices are the L?(D)-norm, the
H(D)-norm, and the H'(D)-seminorm.

@ The second one is a new energy least-squares (ELS) functional:

Jo(a):%E [/Da(w,x)|V(ua(w,x)—z(w,x))|2dx . @)

where u,(w, x) is the solution of (2) for a(w, x) and

z(w, x) € L2(; H(D)) is the data.
Borggaard, J., & Van Wyk, H. W. (2015). Gradient-based estimation of uncertain parameters for elliptic partial
differential equations. Inverse Problems, 31(6), 065008.
Gockenbach, M. S., & Khan, A. A. (2007). An abstract framework for elliptic inverse problems: Part 1. an output

least-squares approach. Mathematics and mechanics of solids, 12(3), 259-276.
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Convexity of the ELS Objective

The ELS functional given in (4) is convex in the interior of the set A.

The first derivative of the ELS functional reads:

DJy(a)(0a)

1

= _EE [/D 0a(w, x)V(us(w, x) + z(w, x)) - V(ua(w, x) — z(w, x))dx| .

Moreover, for all a(w, x) in the interior of A, we have

D2Jo(a)(5a, 0a) > alldus(w, x)\ﬁ/
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Regularized ELS Objective

@ For a stable identification process, inverse problems need some type
of regularization.

@ We consider the following admissible set:
A:={aeH="L*(QH(D)): 0<k < a(w,x) < k a.s. Qx D},

where H is a separable Hilbert space compactly embedded into
B := L>(Q; L>°()), and H(D) is continuously embedded in L>°(£2)

@ We consider the regularized energy least-squares functional

iy (2) i= 3B | [ aw) Va2 )Pk + S a0l

acA

(5)
where u,(w, x) is the solution for a(w, x), z(w, x) € L2(; H}(D)) is the
data, k > 0 is a regularization parameter, and || - ||2, is the regularizer.

Theorem

For each k > 0, the ELS based problem (5) has a unique solution.
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Finite-dimensional noise and Parametrization (I)

A vital component of the study of stochastic PDEs and stochastic
optimization problems is the representation of the random fields by a
finite number of random variables.

Definition

A function v € L2(Q; L?(D)) of the form v(x,&(w)) for x € D and w € Q,
where & = (£1,62,...,ém) : Q=T CRMand =Ty xTp--- x [y, is
called a finite-dimensional noise. Here &, : Q— Ty, fork=1,..., M,
be real-valued random variables with M < oo.

If a random field v(x, &) is finite-dimensional noise, a change of variables
can be made for evaluating expectations. For instance, denoting by o,
the joint density of £, we have

”VHi?(Q;B(D)) =E |:||V||%Z(D)} = /FJ(Y)HV()/,')||%2(D)d)/~

Akhtar A. Khan Stochastic Inverse Problems, RIT, Rochester, New York, USA



Finite-dimensional noise and Parametrization (I1)

Consequently, by defining y, := &k (w) and setting y = (y1,¥2,-.-,¥Mm),
we associate a random field v(x, &) with a finite-dimensional noise by a
function v(x, y) in the weighted L? space

L2(T; L3(D)) := {v TxD—=R: /ra(y)||v(-,y)||§2(D)dy < oo} .

We assume that a(w, x) and f(w, x) are finite-dimensional noises and

given by
p
a(w, x) = a0(x) + Y ak(x)éx(w),
F(w,x) = ox) + Y filx)ék(w),

where the real-valued functions ax and fx are uniformly bounded.
It follows from the Doob-Dynkin lemma that a solution of (2) is
finite-dimensional noise and v is a function of £ where
E=(&,8,.-,&m) : Q=T and M := max{P, L}.
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Finite-dimensional noise and Parametrization (I11)

Then, the variational problem (2) reduces to the following parametric
deterministic variational problem: Find u(y,x) € V,, := L2(T; H}(D))
such that for every v(y,x) € V,,, we have

[0 [ atyx)Vuty vty xaxdy = [ o) [ Fyxvty.) dxa.

(6)
Consider the finite-dimensional noise variants of the OLS and the ELS:
Lo~ 1
min h(a) == 5 [ 90) [ [(unly. )~ 20, ) Pae . ™)
acA 2 r D
. 1
min-h(a) == 5 [ o) [ aly T (wnly. )~ 2l ) Loy (8)
acA 2 r D

where u,(y, x) solves (6) for a(y, x) and z(y, x) is the finite-dimensional
noise data.
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Finite-dimensional noise Derivative Characterization

Theorem

Let a be in the interior of A. Then, the derivative du, := Du,(da) of
ua(y, x) at a(y, x) in the direction da(y, x) is the unique solution of the
following parameterized variational problem such that for every v € V,,
we have

/ o) / 2y, X)Votis( ) V(s x)dx
r D
— = / o) / 83y, X)) - Fv{ys x) i .
r D

Furthermore, the derivative of the finite-dimensional noise ELS (8) reads:
Dy(a)(62)

=5 [[70) [ Faly)V(ealy ) + 200 20) - Vienly. ) = 2(y. )eke .
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Stochastic Galerkin Based Computational Framework

Let Vi be a finite-dimensional subspace of V. An element upx € Vi is
the stochastic Galerkin solution if for all v € Vj :

/ra(y)/Da(y,X)Vuhk(y,X)-VV(y,X)dX dy = /ra(y)/Df(y,X)V(y,X)dX dy.

Let V}, be an N-dimensional subspace of H3(D) and Si be a
Q-dimensional subspace of L2(T') with

Vh = Span{d)la ¢27 e 7¢N}7
Sk - Span{'l/}b 1/}23 cee an}‘

We assume that the basis {1, 12, ...,%¢g} is orthonormal with respect
to o, that is,

/ 0 (9) )Y )dy =B

r
where 0, is the Kronecker delta: 6,, =1 for n=m, §,,, = 0 for n £ m.
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Stochastic Galerkin. Finite Dimensional Spaces

We construct a finite-dimensional subspace of V,; by tensorising the basis
functions ¢; and v;. That is, the following NQ-dimensional subspace will
be the trial and test space for solving the discrete variational problem:

Vik := Vi ® Sk ::span{<;$,-1/1j| i=1...,N, j= 1,...,Q}.
Therefore, any v € V}, ® Sy has the representation

Q
=353 U9 = 3= |- 4100 = 3 e

i=1 j=1 j=1 Li=1 j=1

where
N
= Vidi(x)
i=1
It is convenient to introduce the following vectorized notation

V=[Vi Vo ... Vql'

where .
Vj = [Vlj R VNJ'} S RN.
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Stochastic Galerkin. Coefficient Expansion

For the unknown random field we have assumed the linear expansion:

a(y:x) = a0(x) + ) ysas(x) = D _ ysas(x), (9)

where, by convention, we denote yp = 1. The spatial components as are
discretized by using another P-dimensional space

Ap = span{p1, ..., pp}.

By following the same vectorial notation, we have

ZA,OQO,(X + Z (Z A,5<,0, ) Ys = ZASYS> (10)
s=0

s=1 \i=1

where the vectors A;(x) = (Ai) € RP for s =0..., M,

A=[A A ... Au]' eRPMIDXL
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Stochastic Galerkin. The Discrete Variational Problem

The discrete variational problem seeks upk(y, x) € Vi, ® Sq such that
[o010a0) ([ a0V umetr Vi) @y = [atyont) ([ v 00609ax) o,

foreveryi=1,...,N, n=1,...,Q.

N Q
By using the representation upx = > > Ukm®k(x)¥m(y), we obtain
k=1 m=1

M

( AO +Zgnn A)>U+Zzgnm 5 Un=F,, foreveryn=1,...,

m#n s=1

where for s € {0,..., M}, we define K(As) € R™" and g3, € R by
K(Ad = [ Ad)Vaul)Vai(x)x
D
Ein = [ TNl

Now, for s € {0,..., M}, we set G° = (g5,,) € R®*Q.
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Stochastic Galerkin. The Discrete Variational Problem

Summarising, the discrete variational problem can be written as the
following system:

M M M
K(Ag) + X2 glle(As) > gfzK(As) > ngK(As)
s=1 s=1 s=1
M M M Uy F
ZIE§1K(A5) K(Ao) + ZlgzszK(As) ZngSQK(AS) U2 F2
s= 5= 5= —
Ve Fo

M M
ZlgzsnK(At) K(Ao) + ElgéoK(As)
s= 5=

By using Kronecker product ®, we can express this system in a compact

form
M
[Z G* @ K(As)
s=0

U=F. (11)
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Stochastic Galerkin. Discrete ELS

minJH(a):%/ra(y)/Da(y,x)|V(ua—z)|2dxdy

acA
K
+5 o0ty Moy o

Then, the discrete version is given by

Jo(A) = f(u )7 <§:GS®K(AS)>(U—Z)

s=0
+ g AT (W @ (Qa + Ka))A, where

v, = /U(y)ysytdy, for every s, t =0,..., M,
r
(Qa)ij = / j(x)pi(x)dx, forevery i,j=1,...,P,
D

(Ka);; = /DVQOJ‘(X)VQO;(X)O’X, forevery i,j=1,...,P.
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e ELS Discrete ELS Derivative

We also recall that the continuous derivative formula is given by

Duo(a)(b) = —%/rcr(y)/Db(y,X)V(u—l—z)-V(u—z)dxdy—i—fc/rcf(y) 3y, %), B) 4t )

which leads to

M
DJ.(A)(B) = f%(u+ z)" [Z G*QK(Bs)| (U—=2Z)+ kAT (W® (Qa+ Ka)) B.

s=0

To obtain an explicit formula for the gradient VJ,(A), we use the notion of adjoint
stiffness matrix L(-) € RV*P satisfying

L(V)B = K(B)V, for every B R”, V e RV,

The gradient formula then reads:

1 Q Q
Ve(A) = lzlgg(u,-Jrz,-)TL(uj—zj) ..._Zlgg”(u,-Jrz,-)TL(uj—zj)
iJj= =

+ kAT (W (Qa + Ka)).-

Similar formulas can be given for the OLS functional.
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A Numerical Example

@ Two degrees of stochasticity example.

@ For D =(0,1) and for Y;(w), Ya(w) ~ U[0, 1] uniformly distributed
over [0,1], we define the random fields

3(w, x) = 3+ x% + Yi(w) cos(mx) + Ya(w)sin(27x),
(e, x) = x(1 — ) Y4 (w),

and compute the right-hand side f accordingly.

@ Stochastic domain given by [ = [0, 1] x [0, 1]. Here

o(y1,y2) =1

and orthornormal Legendre polynomials on [0, 1] x [0, 1] are
defined as tensorial product of the one dimensional ones.
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A Numerical Example (cont.)

We measure the expectation and the variance of the identification error
via the (relative) error functional. For example, for the ELS objective
functional, we estimate the identification error by the quantities:

@ ldentification errors

 Io(Ela(w, )] — Elaf!(w, x)])dx
Vo Ela(w, )P dx

oy Jo(Varlalie, )] - Varlaf! e )20

Vo Varla(e, x)J2dx

where aM is the estimated coefficient by the ELS approach.
Similarly, we measure the simulated data error by the quantities:

3

rAr/llean(

3

@ Simulation errors
_ y/Jo(Elu(e, x)] — Eun(af ). X)) 2dx
\/fDE [u(w,x)]2 dx
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A Numerical example. Identification and simulation errors

dim Vj, 5r’\r:,ean(a) 5%(3) En,\<,ean(u) 6\%,r(u) CPU time
50 4.5268e-03 | 4.0556e-02 | 2.6610e-05 | 4.4452e-06 443 s.
100 6.2400e-03 | 1.9205e-02 | 1.7895e-05 | 1.5850e-06 27.4 s.
150 6.3291e-03 | 2.8512e-02 | 1.8012e-05 | 1.5886e-06 95.3 s.

200 6.9930e-03 | 3.2212e-02 | 1.7258e-05 | 1.3371e-06 | 212.3s.

Numerical errors ELS with kK =1e-06
dimV,, [ M9 (a) M0 (a) M0 (v) MO () CPU time
50 1.1893e-02 | 3.7707e-02 | 5.5440e-05 | 3.6486e-06 6.11 s.
100 1.2621e-02 | 4.3191e-02 | 5.6433e-05 | 3.3801e-06 459 s.
150 1.4543e-02 | 6.5231e-02 | 7.2858e-05 | 4.7766e-06 126 s.

200 1.2355e-02 | 5.0199e-02 | 5.6855e-05 | 4.1495e-06 326 s.

Numerical errors H*-0LS with x =1e-06
dim Vj, 6#2%(3) 663(3(2) grlrrfe)an(u) 8\eaor(u) CPU time
50 7.7033e-02 | 3.9343e-01 | 8.9804e-04 | 5.3416e-05 498 s.
100 7.5412e-02 | 5.0431e-01 | 9.2701e-04 | 6.4441e-05 37.5s.
150 7.6292¢-02 | 4.3639e-01 | 9.1230e-04 | 5.8506e-05 151 s.
200 7.6757e-02 | 4.6106e-01 | 9.2280e-04 | 6.0029e-05 825 s.

. - a
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A Numerical example. Parameter identification

parameter af"s

—Ewm
|- = B & VoG

2 1
(c) Estimated parameter a- —°-° (d) Estimated parameter a} —°-°

Akhtar A. Khan Stochastic Inverse Problems, RIT, Rochester, New York, USA



A Numerical example. Data Simulation

0.18 // 0.18 /,’_\
’ 7’

014 ,' AN 014 // \\
012 ,’ \\ 0.12 ,’ \\
0.1 7 \ 0.1 ’ \

, \ , .
o5, \ ooer \
oot 1 P \ X - o \
004 l' ,»’— ‘"‘\\ \\ 004 /, ,," “~~\ ‘\
ocetyf »7 S\ oeety/ 7 SO\

. 12—oL . H'-oL
(c) Simulated data ws(ay o 5) (d) Simulated data us(a,, o 5)
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Future Goals

@ |dentification of Stochastic Material Parameters

@ Stochastic Gradient and Stochastic Extra-gradient for Inverse
Problems
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