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We study optimization on solution sets of com-

mon fixed point problems. Our goal is to ob-

tain a good approximate solution of the prob-

lem in the presence of computational errors.

We show that an algorithm generates a good

approximate solution, if the sequence of com-

putational errors is bounded from above by a

small constant. Moreover, if we know compu-

tational errors for our algorithm, we find out

what an approximate solution can be obtained

and how many iterates one needs for this. The

talk is based on the recent book titled “Opti-

mization on Solution Sets of Common Fixed

Point Problems”.
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For every z ∈ R1 denote by ⌊z⌋ the largest

integer which does not exceed z:

⌊z⌋ = max{i ∈ R1 : i is an integer and i ≤ z}.

For every nonempty set D, every function f :

D → R1 and every nonempty set C ⊂ D we set

inf(f, C) = inf{f(x) : x ∈ C}

and

argmin(f, C) = argmin{f(x) : x ∈ C}

= {x ∈ C : f(x) = inf(f, C)}.
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Let X be a Hilbert space equipped with an

inner product denoted by ⟨·, ·⟩ which induces a

complete norm ∥ · ∥. For each x ∈ X and each

r > 0 set

BX(x, r) = {y ∈ X : ∥x− y∥ ≤ r}

and set

B(x, r) = BX(x, r)

if the space X is understood.

For each x ∈ X and each nonempty set E ⊂ X

set

d(x,E) = inf{∥x− y∥ : y ∈ E}.

For each nonempty open convex set U ⊂ X

and each convex function f : U → R1, for every

x ∈ U set

∂f(x) = {l ∈ X :

f(y)− f(x) ≥ ⟨l, y − x⟩ for all y ∈ U}
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which is called the subdifferential of the func-

tion f at the point x. Denote by Card(A) the

cardinality of a set A. We suppose that the

sum over an empty set is zero.

We study the subgradient algorithm and its

modifications for minimization of convex func-

tions, under the presence of computational er-

rors.

Usually the problem, studied in the literature,

is described by an objective function and a set

of feasible points. For this algorithm each it-

eration consists of two steps. The first step is

a calculation of a subgradient of the objective

function while in the second one we calculate

a projection on the feasible set. In each of

these two steps there is a computational error.

In general, these two computational errors are

different.
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In our recent research (see A. J. Zaslavski, Nu-

merical Optimization with Computational Er-

rors, Springer Optimization and Its Applica-

tions, Springer, 2016 (AZ16a), A. J. Zaslavski,

Convex Optimization with Computational Er-

rors, Springer Optimization and Its Applica-

tions, Springer, 2020 (AZ0a), A. J. Zaslavski,

The Projected Subgradient Algorithm in Con-

vex Optimization, SpringerBriefs in Optimiza-

tion, 2020 (AZ20b)) we show that the algo-

rithm generate a good approximate solution, if

all the computational errors are bounded from

above by a small positive constant. Moreover,

if we know computational errors for the two

steps of our algorithm, we find out what an

approximate solution can be obtained and how

many iterates one needs for this. It should

be mentioned that in AZ16a, AZ20a analo-

gous results were obtained for many others im-

portant algorithms in optimization and in the

game theory.
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We use the subgradient projection algorithm
for constrained minimization problems in Hilbert
spaces equipped with an inner product denoted
by ⟨·, ·⟩ which induces a complete norm ∥ · ∥.

Let C be a nonempty closed convex subset of
X, U be an open convex subset of X such that
C ⊂ U and let f : U → R1 be a convex function.

Suppose that there exist L > 0, M0 > 0 such
that

C ⊂ BX(0,M0),

|f(x)− f(y)| ≤ L∥x− y∥ for all x, y ∈ U.

It is not difficult to see that for each x ∈ U ,

∅ ̸= ∂f(x) ⊂ BX(0, L).

For every nonempty closed convex set D ⊂ X

and every x ∈ X there is a unique point PD(x) ∈
D satisfying

∥x− PD(x)∥ = inf{∥x− y∥ : y ∈ D}.
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We consider the minimization problem

f(z) → min, z ∈ C.

Suppose that {ak}∞k=0 ⊂ (0,∞). Let us de-

scribe our algorithm.

Subgradient projection algorithm

Initialization: select an arbitrary x0 ∈ U .

Iterative step: given a current iteration vector

xt ∈ U calculate

ξt ∈ ∂f(xt)

and the next iteration vector xt+1 = PC(xt −
atξt).
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In AZ16a we study this algorithm under the

presence of computational errors. We suppose

that δ ∈ (0,1] is a computational error pro-

duced by our computer system, and study the

following algorithm.

Subgradient projection algorithm with com-

putational errors

Initialization: select an arbitrary x0 ∈ U .

Iterative step: given a current iteration vector

xt ∈ U calculate

ξt ∈ ∂f(xt) +BX(0, δ)

and the next iteration vector xt+1 ∈ U such

that

∥xt+1 − PC(xt − atξt)∥ ≤ δ.
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In Chapter 2 of AZ20a we consider more com-

plicated, but more realistic, version of this al-

gorithm. Clearly, for the algorithm each iter-

ation consists of two steps. The first step is

a calculation of a subgradient of the objective

function f while in the second one we calculate

a projection on the set C. In each of these two

steps there is a computational error produced

by our computer system. In general, these two

computational errors are different. This fact is

taken into account in the following projection

algorithm studied in Chapter 2 of AZ20a.
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Suppose that {ak}∞k=0 ⊂ (0,∞) and δf , δC ∈
(0,1].

Initialization: select an arbitrary x0 ∈ U .

Iterative step: given a current iteration vector

xt ∈ U calculate

ξt ∈ ∂f(xt) +BX(0, δf)

and the next iteration vector xt+1 ∈ U such

that

∥xt+1 − PC(xt − atξt)∥ ≤ δC.

Note that in practice for some problems the

set C is simple but the function f is compli-

cated. In this case δC is essentially smaller than

δf . On the other hand, there are cases when

f is simple but the set C is complicated and

therefore δf is much smaller than δC.
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In Chapter 2 of AZ20a we proved the following

result.

Theorem 1 Let δf , δC ∈ (0,1], {ak}∞k=0 ⊂ (0,∞)

and let

x∗ ∈ C

satisfy

f(x∗) ≤ f(x) for all x ∈ C.

Assume that {xt}∞t=0 ⊂ U , {ξt}∞t=0 ⊂ X,

∥x0∥ ≤ M0 +1

and that for each integer t ≥ 0,

ξt ∈ ∂f(xt) +BX(0, δf)

and

∥xt+1 − PC(xt − atξt)∥ ≤ δC.
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Then for each natural number T ,

T∑
t=0

at(f(xt)− f(x∗))

≤ 2−1∥x∗ − x0∥2 + δC(T +1)(4M0 +1)

+δf(2M0 +1)
T∑

t=0

at +2−1(L+1)2
T∑

t=0

a2t .
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Moreover, for each natural number T ,

f((
T∑

t=0

at)
−1

T∑
t=0

atxt)− f(x∗),

min{f(xt) : t = 0, . . . , T} − f(x∗)

≤ 2−1(
T∑

t=0

at)
−1∥x∗ − x0∥2

+(
T∑

t=0

at)
−1δC(T +1)(4M0 +1)

+δf(2M0 +1)+ 2−1(
T∑

t=0

at)
−1(L+1)2

T∑
t=0

a2t .
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We are interested in an optimal choice of at,

t = 0,1, . . . . Let T be a natural number and

AT =
∑T

t=0 at be given. It is shown in AZ20a

that the best choice is at = (T + 1)−1AT , t =

0, . . . , T .

Let T be a natural number and at = a > 0,

t = 0, . . . , T . It is shown in AZ20a that the

best choice of a is

a = (2δC(4M0 +1))1/2(L+1)−1.

Now we can think about the best choice of T .

It is not difficult to see that it should be at the

same order as ⌊δ−1
C ⌋.

In AZ20b we generalize the results obtained

in AZ20a for the subgradient projection algo-

rithm in the case when instead of the projec-

tion operator on C it is used a quasi-nonexpansive

retraction on C.
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Fixed point subgradient algorithms

In our analysis it was used the fact that we can
calculate a projection operator PC with small
computational errors. Of course, this is possi-
ble only when the C is simple, like a simplex or
a half-space. In practice the situation is more
complicated. In real world applications the set
C is an intersection of a finite family of sim-
ple closed convex sets Ci, i = 1, . . . , Cm. To
calculate the mapping PC is impossible and in-
stead of it one has to work with projections
PCi

, i = 1, . . . ,m on the simple sets C1, . . . , Cm

considering the products
∏m
i=1 PCi

(the itera-
tive algorithm), convex combination of PCi

, i =
1, . . . ,m (the Cimmino algorithm) and a more
recent and advanced dynamic string-averaging
algorithm introduced by Y. Censor, T. Elfving,
and G. T. Herman in (2001) for solving a con-
vex feasibility problem, when a given collection
of sets is divided into blocks and the algorithms
operate in such a manner that all the blocks
are processed in parallel.
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In Chapter 2 of the book A. J. Zaslavski, Op-

timization on Solution Sets of Common Fixed

Point Problems, Springer Optimization and Its

Applications, 2021 (AZ21) we consider a min-

imization of a convex function on a common

fixed point set of a finite family of quasinonex-

pansive mappings in a Hilbert space. Our goal

is to obtain a good approximate solution of

the problem in the presence of computational

errors. We use the Cimmino subgradient algo-

rithm, the iterative subgradient algorithm and

the dynamic string-averaging subgradient algo-

rithm and show that each of them generates a

good approximate solution, if the sequence of

computational errors is bounded from above by

a small constant. Moreover, if we known com-

putational errors for our algorithm, we find out

what an approximate solution can be obtained

and how many iterates one needs for this.
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Let (X, ⟨·, ·⟩) be a Hilbert space with an inner

product ⟨·, ·⟩ which induces a complete norm

∥ · ∥.

Suppose that m is a natural number, c̄ ∈ (0,1],

Pi : X → X, i = 1, . . . ,m, for every integer

i ∈ {1, . . . ,m},

Fix(Pi) := {z ∈ X : Pi(z) = z} ̸= ∅

and that the inequality

∥z − x∥2 ≥ ∥z − Pi(x)∥2 + c̄∥x− Pi(x)∥2

holds for every for every integer i ∈ {1, . . . ,m},
every point x ∈ X and every point z ∈ Fix(Pi).

Set

F = ∩m
i=1Fix(Pi).
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For every positive number ϵ and every integer

i ∈ {1, . . . ,m} set

Fϵ(Pi) = {x ∈ X : ∥x− Pi(x)∥ ≤ ϵ},

F̃ϵ(Pi) = Fϵ(Pi) +B(0, ϵ),

Fϵ = ∩m
i=1Fϵ(Pi),

F̃ϵ = ∩m
i=1F̃ϵ(Pi)

and

F̂ϵ = Fϵ + (0, ϵ).

A point belonging to the set F is a solution of

our common fixed point problem while a point

which belongs to the set F̃ϵ is its ϵ-approximate

solution.
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Let M∗ > 0 satisfy

F ∩B(0,M∗).

and let f : X → R1 be a convex continuous

function. In AZ21a we consider the minimiza-

tion problem

f(x) → min, x ∈ F.

Assume that

inf(f, F ) = inf(f, F ∩B(0,M∗)).

Fix α > 0. Let us describe our first algorithm.
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Cimmino subgradient algorithm

Initialization: select an arbitrary x0 ∈ X.

Iterative step: given a current iteration vector
xk ∈ X calculate

lk ∈ ∂f(xk),

pick wk+1 = (wk+1(1), . . . , wk+1(m)) ∈ Rm such
that

wk+1(i) ≥ 0, i = 1, . . . ,m,

m∑
i=1

wk+1(i) = 1

and define the next iteration vector

xk+1 =
m∑

i=1

wk+1(i)Pi(xk − αlk).

In AZ21a this algorithm is studied under the
presence of computational errors and two con-
vergence results are obtained.
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Fix

∆ ∈ (0,m−1).

We suppose that δf ∈ (0,1] is a computa-

tional error produced by our computer system,

when we calculate a subgradient of the objec-

tive function f while δp ∈ [0,1] is a compu-

tational error produced by our computer sys-

tem, when we calculate the operators Pi, i =

1, . . . ,m. Let α > 0 be a step size.
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Cimmino subgradient algorithm with com-
putational errors

Initialization: select an arbitrary x0 ∈ X.

Iterative step: given a current iteration vector
xk ∈ X calculate

ξk ∈ ∂f(xk) +B(0, δf),

pick wk+1 = (wk+1(1), . . . , wk+1(m)) ∈ Rm such
that

wk+1(i) ≥ ∆, i = 1, . . . ,m,

m∑
i=1

wk+1(i) = 1,

calculate

yk,i ∈ B(Pi(xk − αξk), δp), i = 1, . . . ,m

and the next iteration vector and xt+1 ∈ X

such that

∥xt+1 −
m∑

i=1

wt+1(i)yt,i∥ ≤ δp.
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In this algorithm, as well for other algorithms

considered in the book, we assume that the

step size does not depend on the number of

iterative step k. The same analysis can be

done when step sizes depend on k. On the

other hand, as it was shown in AZ16a, AZ20a,

in the case of computational errors the best

choice of step sizes is step sizes which do not

depend on iterative step numbers.

In the following result obtained in AZ21a we

assume the the objective function f satisfies a

coercivity growth condition.
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Theorem 2 Let the function f be Lipschitz

on bounded subsets of X, lim∥x∥→∞ f(x) = ∞,

M ≥ 2M∗ +8, L0 ≥ 1,

M1 > sup{|f(u)| : u ∈ B(0,M∗ +4)}+4,

f(u) > M1 +4 for all u ∈ X \B(0,2−1M),

|f(z1)− f(z2)| ≤ L0∥z1 − z2∥

for all z1, z2 ∈ B(0,3M +4),

δf , δp ∈ [0,1], α > 0 satisfy

α ≤ L−2
0 , α ≥ δf(6M+L0+2), α ≥ 2δp(6M+2),

(1.1)

T be a natural number and let

γT = max{α(L0 +1),

(∆c̄)−1/2(4M2T−1+α(L0+1)(12M+4))1/2+δp}.

24



Assume that {xt}Tt=0 ⊂ X, {ξt}T−1
t=0 ⊂ X,

(wt(1), . . . , wt(m)) ∈ Rm, t = 1, . . . , T,

m∑
i=1

wt(i) = 1, t = 1, . . . , T,

wt(i) ≥ ∆, i = 1, . . . ,m, t = 1, . . . , T,

x0 ∈ B(0,M)

and that for all integers t ∈ {0, . . . , T − 1},

B(ξt, δf) ∩ ∂f(xt) ̸= ∅,

yt,i ∈ B(Pi(xt − αξt), δp), i = 1, . . . ,m,

∥xt+1 −
m∑

i=1

wt+1(i)yt,i∥ ≤ δp.
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Then

∥xt∥ ≤ 2M +M∗, t = 0, . . . , T

and

min{max{∆c̄
m∑

i=0

∥xt−αξt−yt,i∥2−α(L0+1)(12M+4),

2α(f(xt)− inf(f, F ))− 4δp(6M +3)

−α2L2
0 − 2α(6M + L1 +1)} :

t = 0, . . . , T − 1} ≤ 4M2T−1.
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Moreover, if t ∈ {0, . . . , T − 1} and

max{∆c̄
m∑

i=0

∥xt−αξt−yt,i∥2−α(L0+1)(12M+4),

2α(f(xt)− inf(f, F ))− 4δp(6M +3)

−α2L2
0−2αδf(6M+L0+1)} ≤ 4M2T−1, (1.2)

then

f(xt) ≤ inf(f, F ) + 2M2(Tα)−1

+2α−1δp(6M +3)+2−1αL2
0+ δf(6M +L0+3)

(1.3)

and

xt ∈ F̂γT .
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In AZ21awe also obtain an extension of this

result when instead of assuming that f sat-

isfies the growth condition we suppose that

there exists r0 ∈ (0,1] such that the set Fr0 is

bounded.

In Theorem 2 the computational errors δf , δp

are fixed. Assume that they are positive. Let

us choose α, T . First, we choose α in order to

minimize the right-hand side of (1.3). Since T

can be an arbitrary large we need to minimize

the function

2α−1δp(6M +3)+ 2−1αL2
0, α > 0.

Its minimizer is

α = 2L−1
0 (δp(6M +3))1/2.
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Since α satisfies (1.1) we obtain the following

restrictions on δf , δp:

δf ≤ 2L−1
0 δ

1/2
p (6M +3)1/2(6M + L0 +2)−1,

δp ≤ 4−1L−2
0 (6M +3)−1.

In this case

γT = max{2L−1
0 (δp(6M +3))1/2(L0 +1),

(∆c̄)−1/2(4M2T−1

+2L−1
0 (δp(6M+3))1/2(L0+1)(12M+4))1/2+δp}.

We choose T with the same order as δ−1
p For

example, T = ⌊δ−1
p ⌋. In this case in view of

Theorem 2, there exists t ∈ {0, . . . , T − 1} such

that then

f(xt) ≤ inf(f, F ) + c1δ
1/2
p + δf(6M + L0 +3)

and xt ∈ F̂
c2δ

1/4
p

where c1, c2 are positive con-

stants which depend on M,L0,∆, c̄.
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Let us explain how we can obtain t satisfying

(1.2). Set

E = {t ∈ {0, . . . , T −1} : ∆c̄
m∑

i=0

∥xt−αξt−yt,i∥2

≤ α(L0 +1)(12M +4)+ 4M2Tα−1}

and find t∗ ∈ E such that f(xt∗) ≤ f(xt) for all

t ∈ E. This t satisfies (1.2).

In AZ21a we also establish analogs of Theo-

rem 1.2 for the iterative subgradient algorithm

and the dynamic string-averaging subgradient

algorithm.
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