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Parameterized generalized equations in their standard format

(PGE ) 0 ∈ f (p, x) + G (p, x)

where the problem data are:
f : P × X −→ Y single-valued mapping
G : P × X⇒ Y set-valued mapping
(P, d) is a metric (parameter) space
(X, ‖ · ‖), (Y, ‖ · ‖) are Banach spaces, 0 is the null vector in Y.

Main historical motivations:
- equality/inequality constraint systems;
- cone constraint systems;
- optimality conditions;
- variational inequalities;
- �xed points;
- equilibria.
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Main problem

The main problem addressed in this talk is to conduct a solution stability
analysis for parameterized set-valued inclusions, namely for the following
problem:

(PSV ) F (p, x) ⊆ C ,

where the problem data are:
F : P × X⇒ Y a set-valued mapping
C ⊆ Y a closed, convex cone, with {0} 6= C 6= Y.
(X, ‖ · ‖) and (Y, ‖ · ‖) are Banach spaces, 0 is the null vector in Y.
The solution mapping S : P ⇒ X associated with (PSV ) is de�ned as

S(p) = {x ∈ X : F (p, x) ⊆ C}.

Key feature: (PGE ) and (PSV ) seem to be problems with a di�erent
nature. (PSV ) can not be easily cast in the traditional generalized
equation format.
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A robust approach to uncertain optimization

Consider a cone constrained optimization problem with uncertainty

minϕ(x , ω) subject to f (x , ω) ∈ C ,

where x ∈ X is the decision vector, ω ∈ Ω is a data element
ϕ : X× Ω −→ R is the objective function (a�ected by uncertainty)
f : X× Ω −→ Y and C ⊂ Y de�ne the cone (uncertain) constraint.
If the decision environment is characterized by:

a crude knowledge of the data: all is known about ω is that ω ∈ Ω;

the constraint must be satis�ed, whatever the actual realization of
ω ∈ Ω is;

then, after [BenNem98], a robust approach to uncertain optimization
leads to consider F : X⇒ Y given by

F (x) = f (x ,Ω) = {y ∈ Y : f (x , ω), ω ∈ Ω},

and hence to face the set-valued inclusion F (x) ⊆ C .
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Ideal e�cient solutions in vector optimization

Let f : X −→ Y be a mapping taking values in a space (Y,≤C ) partially
ordered by a cone C and let R ⊂ X. x̄ ∈ R is said to be an ideal
C -e�cient solution to the problem

C -min f (x) subject to x ∈ R

if
f (x̄) ≤C f (x), ∀x ∈ R,

or equivalently, if
f (R) ⊆ f (x̄) + C .

By setting Ff ,R(x) = f (R)− f (x), one readily sees that x̄ is ideal
C -e�cient i� it solves the set-valued inclusion

Ff ,R(x) ⊆ C .
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Solution stability issues

Issues to be considered for a solution stability analysis: let S : P ⇒ X be
the solution mapping associated with a (PSV ).

1 (Solution existence: Fix p̄ ∈ P. Upon which conditions S(p̄) 6= ∅?)

2 Local solvability: If S(p̄) 6= ∅, upon which conditions S(p) 6= ∅ for
p near p̄?

3 Local stability: If p̄ ∈ int domS (i.e. S(p) 6= ∅, ∀p ∈ B(p̄, δ)),
when are the values S(p) 'near' S(p̄)? In which sense 'near'? Can
we measure such a nearness phenomenon?

4 Sensitivity: Whenever it is possible to quantify the changes of S,
under which conditions they are proportional to the changes of p.
Can we measure the 'rate of change'? Can we provide �rst-order
approximations of S?
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To embed the solution stability analysis of (PSV ) in the framework of
variational analysis one needs the above properties: let Φ : X ⇒ Y be a
mapping between metric spaces and (x̄ , ȳ) ∈ gphΦ. Φ is said:

to be Lipschitz lower semicontinuous at (x̄ , ȳ) if ∃δ, ` > 0:

(∗) Φ(x) ∩ B(ȳ , `d(x , x̄)) 6= ∅, ∀x ∈ B(x̄ , δ);

the modulus of Lipschitz lower semicontinuity of Φ is de�ned as

LiplscΦ(x̄ , ȳ) = inf{` > 0 : ∃δ > 0 for which (∗) holds}.

to be calm at (x̄ , ȳ) if ∃δ, ζ, ` > 0:

(∗∗) Φ(x) ∩ B(ȳ , ζ) ⊆ B(Φ(x̄), `d(x , x̄)), ∀x ∈ B(x̄ , δ);

the modulus of calmness of Φ at (x̄ , ȳ) is de�ned as

clmΦ(x̄ , ȳ) = inf{` > 0 : ∃δ, ζ > 0 for which (∗∗) holds}.
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to be Lipschitz upper semicontinuous at x̄ ∈ X if ∃δ, ` > 0:

(∗ ∗ ∗) Φ(x) ⊆ B(Φ(x̄), `d(x , x̄)), ∀x ∈ B(x̄ , δ);

the modulus of Lipschitz upper semicontinuity at x̄ is de�ned as

LipuscΦ(x̄) = inf{` > 0 : ∃δ > 0 for which (∗ ∗ ∗) holds}.

to have the Aubin property at (x̄ , ȳ) if ∃δ, ζ, ` > 0:

(+) Φ(x1) ∩ B(ȳ , ζ) ⊆ B(Φ(x2), `d(x1, x2)), ∀x1, x2 ∈ B(x̄ , δ);

the modulus of Aubin continuity of Φ at (x̄ , ȳ) is de�ned as

LipΦ(x̄ , ȳ) = inf{` > 0 : ∃δ, ζ > 0 for which (+) holds}.

to be Lipschitz continuous around x̄ if ∃δ, ` > 0:

(++) haus(Φ(x1),Φ(x2)) ≤ `d(x1, x2), ∀x1, x2 ∈ B(x̄ , δ).
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Remark (Connections between Lipschitzian properties)

1 Lipschitz lower semicontinuity and calmness are independent of each
other.

2 Lipschitz upper semicontinuity ⇒ Calmness ⇐ Aubin property ⇐
Lipschitz continuity

3 Whenever Φ : X −→ Y is single-valued near x̄ , Lipschitz lower
semicontinuity = Lipschitz upper semicontinuity = 'calmness' in the
sense of Rockafellar, i.e. ∃δ, ` > 0:

d(Φ(x),Φ(x̄)) ≤ `d(x , x̄), ∀x ∈ B(x̄ , δ),

which implies the classic continuity of Φ at x̄ .

4 Φ has the Aubin property at (x̄ , ȳ) i� Φ−1 is metrically regular
(equivalently, open at a linear rate) at (ȳ , x̄).
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In order to conduct a study of the solution stability of (PSV ), observe
that

S(p) = F+1(p, ·)(C ).

Standing assumptions:

1 domF = P × X ; F takes closed values;

2 (X , d) metrically complete.

Technique of analysis via merit function: de�ne
νF ,C : P × X −→ [0,+∞] (it measures the inclusion violation)

νF ,C (p, x) = exc(F (p, x),C ) = sup
y∈F (p,x)

dist (y ,C ),

where dist (y ,C ) = infc∈C d(y , c).

Remark (Functional characterization of S)
Under the above assumptions

S(p) = F+1(p, ·)(C ) = [νF ,C (p, ·) = 0] = νF ,C (p, ·)−1(0).
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Basic tool for the analysis in metric spaces: slopes

Given ϕ : X −→ R ∪ {±∞} and x0 ∈ ϕ−1(R) the extended-real value

|∇ϕ|(x0) =


0 if x0 is a local minimizer for ϕ,

lim sup
x→x0

ϕ(x0)− ϕ(x)

d(x , x0)
otherwise,

is called (strong) slope of ϕ at x0. The extended-real value

|∇ϕ|>(x0) = lim inf
x→x0

ϕ(x)↓ϕ(x0)

|∇ϕ|(x).

is called strict outer slope of ϕ at x0.
If ν : P × X −→ R ∪ {±∞} and (p̄, x̄) ∈ P × X , the extended-real value

|∇xν|(p̄, x̄) =


0 if (p̄, x̄) is a local minimizer

for ν,

lim sup
x→x̄

ν(p̄, x̄)− ν(p̄, x)

d(x , x̄)
otherwise

is called partial slope of ν, with respect to x , at (p̄, x̄).

Amos Uderzo Solution stability of set-valued inclusions



Introduction
Parameterized set-valued inclusions

Basic references

Lipschitzian properties
Stability analysis in metric spaces
Stability analysis in Banach spaces

A su�cient condition for Lipschitz lower semicontinuity of S

De�ne the following ad hoc variant of partial strict outer slope

|∇xνF ,C |>(p̄, x̄) = lim inf
(p,x)→(p̄,x̄)

νF,C (p,x)↓νF,C (p̄,x̄)

|∇νF ,C (p, ·)|(x).

Theorem (Lipschitz l.s.c. of S)
With reference to a (PSV ), let p̄ ∈ P and x̄ ∈ S(p̄). Suppose:
(i) ∃δ > 0: F (p, ·) : X ⇒ Y l.s.c. on X , ∀p ∈ B(p̄, δ);
(ii) F (·, x̄) : P ⇒ Y Lipschitz u.s.c. at p̄;
(iii) |∇xνF ,C |>(p̄, x̄) > 0.
Then, S : P ⇒ X is Lipschitz l.s.c. at (p̄, x̄) and

LiplscS(p̄, x̄) ≤ LipuscF (·, x̄)(p̄)

|∇xνF ,C |>(p̄, x̄)
.
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A su�cient condition for the calmness of S

By using the following di�erent variant of partial strict outer slope

|∇νF ,C (p̄, ·)|>(x̄) = lim inf
x→x̄

νF,C (p̄,x)↓νF,C (p̄,x̄)

|∇νF ,C (p̄, ·)|(x), one obtains

Theorem (Calmness of S)
With reference to a (PSV ), let p̄ ∈ P and x̄ ∈ S(p̄). Suppose:
(i) F (p̄, ·) : X ⇒ Y l.s.c. on X ;
(ii) F locally Lipschitz near (p̄, x̄);
(iii) |∇νF ,C (p̄, ·)|>(x̄) > 0.
Then, S : P ⇒ X is calm at (p̄, x̄) and

clmS(p̄, x̄) ≤ LipF (p̄, x̄)

|∇νF ,C (p̄, ·)|>(x̄)
.
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A su�cient condition for Lipschitz upper semicontinuity of S
De�ne modulus of Lipschitz continuity with respect to p, uniformly in x

Lipp F (p̄,X ) = inf{` > 0 : ∃δ > 0 : sup
x∈X

haus(F (p1, x),F (p2, x)) ≤ `d(p1, p2)

∀p1, p2 ∈ B(p̄, δ)}and a nonlocal regularization of the slope

τp̄ = inf{|∇νF ,C (p̄, ·)|(x) : x ∈ X\S(p̄)}

Theorem (Lipschitz upper semicontinuity of S)
With reference to (PSV ), let p̄ ∈ P, with S(p̄) 6= ∅. Suppose:
(i) F (p̄, ·) : X ⇒ Y l.s.c. on X ;
(ii) F is locally Lipschitz near p̄ with respect to p, uniformly in x ∈ X ;
(iii) it is τp̄ > 0.
Then, the solution mapping S : P ⇒ X is Lipschitz u.s.c. at p̄ and

LipuscS(p̄) ≤ Lipp F (p̄,X )

τp̄
.
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A su�cient condition for Aubin property of S

Given δ > 0, de�ne
σ∇(δ) = inf{|∇xνF ,C |(p, x) : (p, x) ∈ [B(p̄, δ)× B(x̄ , δ)]\gphS}.

Theorem (Local solvability and Aubin property of S)
With reference to (PSV ), let p̄ ∈ P, with S(p̄) 6= ∅. Suppose:
(i) ∃δ1 > 0: F (p, ·) l.s.c. on X , ∀p ∈ B(p̄, δ1);
(ii) F (·, x̄) Hausdor� C -u.s.c. at p̄;
(iii) ∃δ2 > 0: σ∇(δ2) > 0.
Then, ∃η, ζ > 0 such that
(t) S(p) ∩ B(x̄ , η) 6= ∅, ∀p ∈ B(p̄, ζ);

(tt) it holds dist (x ,S(p)) ≤ νF,C (p,x)
σ∇(δ2) , ∀(p, x) ∈ B(p̄, ζ)× B(x̄ , η).

Moreover, if
(v) ∃τ, s > 0: ∀x ∈ B(x̄ , s) F (·, x) Lipschitz with rank ` in B(p̄, τ), then
(ttt) S has the Aubin property at (p̄, x̄) and LipS(p̄, x̄) ≤ `/σ∇(δ2).
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Analysis in Banach spaces

In the more structured setting of Banach spaces, one can:

provide veri�able estimates of the partial strict outer slope of νF ,C
in terms of problem data (F and C );

study the �rst order behaviour of S by means of its generalized
derivatives (in the spirit of implicit function theorems).

Standing assumption:

C is a closed, convex nontrivial ({0} 6= C 6= Y) cone.
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Analysis tools in Banach spaces

De�nition (metric C -increase)

A set-valued mapping Φ : X⇒ Y is said to be
(i) metrically C -increasing on X if ∃α > 1 such that

(∗) ∀x ∈ X, ∀r > 0 ∃u ∈ B(x , r) : B(Φ(u), αr) ⊆ B(Φ(x) + C , r);

incΦ = sup{α > 1 : inclusion (∗) holds}

is the exact bound of metric C -increase of Φ.
(ii) metrically C -increasing around x̄ ∈ domΦ if ∃δ > 0, ∃α > 1:

∀x ∈ B(x̄ , δ), ∀r ∈ (0, δ) ∃u ∈ B(x , r) :

B(Φ(u), αr) ⊆ B(Φ(x) + C , r); (∗∗)

incΦ(x̄) = sup{α > 1 : inclusion (∗∗) holds}

is the exact bound of metric C -increase of Φ around x̄ .
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Remark (Scalar and single-valued case)

If C = (−∞, 0] and ϕ : X −→ R, Φ = ϕ is metrically C -increasing
around x̄ i� ∃incΦ(x̄) > 1 and δ > 0 such that for any α ∈ (1, incΦ(x̄))
and r ∈ (0, δ)

inf
x∈B(x̄,r)

ϕ(x) ≤ ϕ(x̄)− (α− 1)r .

Recall that, according to the decrease principle (in the sense of
Clarke-Ledyaev),

∃r , c > 0 : inf
x∈B(x̄,r)

|∇ϕ|(x) ≥ c ⇒ inf
x∈B(x̄,r)

ϕ(x) ≤ ϕ(x̄)− cr .

So, the metric C -increase property can be regarded as a set-valued
counterpart of a decrease principle (nonstationariety condition).
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Some example and connections with the regularity behaviour

Let Λ : X→ Rm be a linear bounded operator, C = Rm
+, with m ≥ 2.

Recall that Λ is onto i� ∃α > 0: ΛB ⊇ αB (Banach open mapping
principle). De�ne

surΛ = sup{α > 0 : ΛB ⊇ αB}, (Banach constant of Λ)

then, Λ is onto i� surΛ > 0 and the following characterization holds

surΛ = inf
‖u∗‖=1

‖Λ>u∗‖ = dist
(
0
∗,Λ>S∗

)
,

where Λ> denotes the adjoint operator to Λ and S∗ the dual unit sphere.

Example (Linear epimorphism as a metrically C -increasing mapping)

Let Λ : X→ Rm be such that surΛ > m ≥ 2. Then, Λ is metrically
Rm

+-increasing on X and incΛ ≥
√
m.
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Some example and connections with the regularity behaviour

Let f : X→ Rm be a smooth mapping, C = Rm
+, with m ≥ 2. Recall that

f covers at a linear rate around x̄ ∈ X if ∃α, δ > 0:

(∗) f (B(x , r)) ⊇ B(f (x), αr), ∀r ∈ (0, δ), ∀x ∈ B(x̄ δ).

De�ne
sur (f ; x̄) = sup{α > 0 : ∃δ > 0 : (∗) holds}.

Letting D̂f (x̄) be the strict (Fréchet) derivative of f at x̄ , f covers at a
linear rate around x̄ i� (by the Lyusternik-Graves theorem)

0 < sur (f ; x̄) = inf
‖u∗‖=1

‖D̂f (x̄)>u∗‖ = dist
(
0
∗, D̂f (x̄)>S∗

)
.

Example (Locally surjective/metrically regular mappings)

Let f : X→ Rm be strictly di�erentiable at x̄ and such that
sur (f ; x̄) > m ≥ 2. Then, f is metrically Rm

+-increasing around x̄ and
inc f (x̄) ≥

√
m.
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Other tools in Banach spaces

De�nition (C -concavity for set-valued mappings)

A set-valued mapping Φ : X⇒ Y is said to be C -concave on X if

Φ(tx1 + (1− t)x2) ⊆ tΦ(x1) + (1− t)Φ(x2) +C , ∀x1, x2 ∈ X, ∀t ∈ [0, 1].

Example (Io�e's fans)

A set-valued mapping H : X⇒ Y is called fan if it ful�ls the properties:
(i) 0 ∈ H(0);
(ii) H takes convex values;
(iii) H(tx) = tH(x), ∀t > 0, ∀x ∈ X;
(iv) H(x1 + x2) ⊆ H(x1) + H(x2), ∀x1, x2 ∈ X.
For instance, if G is a convex and weakly closed subset of linear bounded
operators between X and Y, then

ΦG(x) = {y ∈ Y : y = Λx , Λ ∈ G} is a fan.
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Estimating slopes by means of (convex) subdi�erentials

Remark

If F : P × X⇒ Y is C -concave with respect to x , for each p ∈ P, then
νF ,C : X −→ [0,+∞] is convex.

As a consequence |∇xνF ,C | can be estimated by dist (0∗, ∂νF ,C (p, ·)(x)).
In turn dist (0∗, ∂νF ,C (p, ·)(x)) can be estimated from below by
employing the C -increase property: under C -concavity and C -increase
assumptions on Φ, one has ∃η > 0 such that

inf
u∈B

ν′Φ(x ; u) ≤ 1− incΦ(x̄), ∀x ∈ B(x̄ , η) ∩ [νΦ > 0]

and

dist (0∗, ∂νΦ(p, ·)(x)) ≥ incΦ(x̄)− 1, ∀x ∈ B(x̄ , η) ∩ [νΦ > 0].
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As a consequence, one obtains the following estimates

Theorem (Slope estimates in the C -concave case)

With reference to (PSV ), let p̄ ∈ P and x̄ ∈ S(p̄). Suppose F (p, ·) l.s.c.,
C -concave and bounded-valued away from C , for every p ∈ B(p̄, δ). If

(i) F is metrically C -increasing w.r.t. x , uniformly in p, around (p̄, x̄),
then

|∇xνF ,C |>(p̄, x̄) ≥ incFx(p̄, x̄)− 1 > 0;

(ii) F (p̄, ·) is metrically C -increasing around x̄ , then

|∇νF ,C (p̄, ·)|>(x̄) ≥ incF (p̄, ·)(x̄)− 1 > 0;

(iii) F (p̄, ·) is metrically C -increasing on X, then

τp̄ ≥ incF (p̄, ·)− 1 > 0.
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Di�erentiation notions for set-valued mappings

Let Φ : X⇒ Y and x0 ∈ domΦ. A positively homogeneous set-valued
mapping HΦ(x0; ·) : X⇒ Y is said to be

an outer prederivative of Φ at x0 if ∀ε > 0 ∃δ > 0:

Φ(x) ⊆ Φ(x0) + HΦ(x0; x − x0) + ε‖x − x0‖B, ∀x ∈ B(x0, δ);

an inner prederivative of Φ at x0 if ∀ε > 0 ∃δ > 0:

Φ(x0) + HΦ(x0; x − x0) ⊆ Φ(x) + ε‖x − x0‖B, ∀x ∈ B(x0, δ).

Remark (Connection with the Bouligand derivative)

Whenever Φ and HΦ(x0; ·) are single-valued around x0, HΦ(x0; ·) turns
out to be a Bouligand derivative of Φ at x0 in the sense of Robinson.
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The contingent derivative of Φ at (x0, y0) ∈ gphΦ is the set-valued
mapping DΦ(x0, y0) : X⇒ Y de�ned via its graph by the equality

gphDΦ(x0, y0) = T(gphΦ; (x0, y0)),

where T(gphΦ; (x0, y0)) denotes the contingent (Bouligand tangent)
cone to gphΦ at (x0, y0).

The Fréchet coderivative of Φ at (x0, y0) ∈ gphΦ is the set-valued

mapping D̂∗Φ(x0, y0) : Y∗ ⇒ X∗ de�ned by

D̂∗Φ(x0, y0)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂(gphΦ; (x0, y0))}, where

N̂(gphΦ; (x0, y0)) =

{
w∗ ∈ X∗ × Y∗ : lim sup

gphΦ3(x,y)→(x0,y0)

〈w∗, (x , y)− (x0, y0)〉
‖(x , y)− (x0, y0)‖

≤ 0

}
denotes the Fréchet normal cone to gphΦ at (x0, y0).
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Error bounds and Aubin property of S

Given an outer prederivative HF (p,·) : X⇒ Y of F (p, ·) at x , de�ne

σHF (p,·) (x) = sup
u∈S
|C ∗HF (p,·)(x ; u)|,

where

K ∗S = {y ∈ Y : y + S ⊆ K} (Pontryagin di�erence of K and S)

and

|K ∗S | = sup{r > 0 : rB ⊆ K ∗S} = sup{r > 0 : rB + S ⊆ K}

measures how much S is inner to K .
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A su�cient condition for the Aubin property of S

Let (p̄, x̄) ∈ P × X, δ > 0 and
σH(p̄, x̄ ; δ) = inf{σHF (p,·) (x) : (p, x) ∈ [B(p̄, δ)× B(x̄ , δ]\gphS}.

Theorem (Local solvability, error bound and Aubin property of S)
With reference to (PSV ), let p̄ ∈ P and x̄ ∈ S(p̄). Suppose:
(i) ∃δ1 > 0 : ∀p ∈ B(p̄, δ1), F (p, ·) l.s.c. on X;
(ii) F (·, x̄) Hausdor� C -u.s.c. at p̄;
(iii) ∃δ2 > 0 : ∀p ∈ B(p̄, δ2) F (p, ·) admits an outer prederivative
HF (p,·)(x ; ·) at each x ∈ B(x̄ , δ2) and σH(p̄, x̄ ; δ2) > 0.
Then, ∃η, ζ > 0: S(p) ∩ B(x̄ , η) 6= ∅, ∀p ∈ B(p̄, ζ) and
dist (x ,S(p)) ≤ νF ,C (p, x)/σH(p̄, x̄ ; δ), ∀(p, x) ∈ B(p̄, ζ)× B(x̄ , η).
(v) If, in addition, ∃τ, s > 0 : ∀x ∈ B(x̄ , s) F (·, x) is Lipschitz with
constant ` in B(p̄, τ), then S has the Aubin property at (p̄, x̄) and
LipS(p̄, x̄) ≤ `

σH (p̄,x̄ ;δ2) .
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Henceforth, suppose also (P, ‖ · ‖) to be a normed linear space. In such a
setting, it is possible to investigate geometric properties of S.

A remarkable consequence on the �rst order (graphical) approximation of
S.

Corollary (Graphical derivative of S)
Under hypotheses (i)-(v) of the previous theorem, domDS(p̄, x̄) = P and
DS(p̄, x̄) : P⇒ X is Lipschitz continuous on P, with constant

LipDS(p̄, x̄) ≤ `

σH(p̄, x̄ ; δ2)
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Geometric properties of S under C -concavity of F

Proposition (Convexity of S)
With reference to (PSV ), suppose that F : P× X⇒ Y is C -concave on
P× X. Then, S : P⇒ X is a convex set-valued mapping. If
(p̄, x̄) ∈ gphS, then DS(p̄, x̄) : P⇒ X is a closed convex process.

By combining the Aubin property and the convexity of S, one obtains

Corollary (Lipschitz continuity of S under truncation)

With reference to (PSV ), let (p̄, x̄) ∈ gphS. Suppose that all hypotheses
(i)-(v) are satis�ed and F is C -concave on P× X. Then S has a
Lipschitz continuous (not necessarily, single-valued) graphical localization
around (p̄, x̄), i.e. ∃V neighbourhood of p̄ and ∃U of x̄ such that the
set-valued mapping p  S(p) ∩ U is Lipschitz continuous on V .
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Approximations of DS(p̄, x̄)

In the absence of convexity of S, there are formulae which provide
inner/outer approximations of DS(p̄, x̄) in terms of prederivatives of F .

Theorem (Inner approximation of DS(p̄, x̄))

With reference of (PSV ), let (p̄, x̄) ∈ gphS. Suppose that:
(i) F (·, x̄) Hausdor� C -u.s.c. at p̄;
(ii) ∃δ1 > 0: ∀p ∈ B(p̄, δ1), F (p, ·) l.s.c. on X;
(iii) ∃δ2 > 0: ∀p ∈ B(p̄, δ2), F (p, ·) has HF (p,·)(x ; ·) as an outer
prederivative at each x ∈ B(x̄ , δ2) and σH(p̄, x̄ ; δ2) > 0;
(iv) F has HF ((p̄, x̄); ·) as an outer (joint) prederivative at (p̄, x̄).
Then, it holds

DS(p̄, x̄)(p) ⊇ H+1

F ((p̄, x̄); (p, ·))(C ), ∀p ∈ P.
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Theorem (Outer approximation of DS(p̄, x̄))

With reference of (PSV ), let (p̄, x̄) ∈ gphS. Suppose that:
(i) F has HF ((p̄, x̄); ·) as an inner (joint) prederivative at (p̄, x̄);
(ii) HF ((p̄, x̄); ·) : P× X⇒ Y is l.s.c. on P× X.
Then, it holds

(�) DS(p̄, x̄)(p) ⊆
⋂

y∈F (p̄,x̄)

H+1

F ((p̄, x̄); (p, ·))(T(C ; y)), ∀p ∈ P.

Remark (Case F (p̄, x̄) ⊆ intC )

In the case F (p̄, x̄) ⊆ intC , formula (�) gives no information. On the
other hand, if F is u.s.c. at (p̄, x̄), in the present circumstance one has

DS(p̄, x̄)(p) = X, ∀p ∈ P.
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A dual �rst-order approximation of S

It is possible to provide further information about S near (p̄, x̄) via its
Fréchet coderivative.

Theorem (Coderivative of S)
With reference of (PSV ), let (p̄, x̄) ∈ gphS. Suppose that:
(i) F (·, x̄) Hausdor� C -u.s.c. at p̄;
(ii) ∃δ1 > 0: ∀p ∈ B(p̄, δ1), F (p, ·) l.s.c. on X;
(iii) ∃δ2 > 0: ∀p ∈ B(p̄, δ2), F (p, ·) has HF (p,·)(x ; ·) as an outer
prederivative at each x ∈ B(x̄ , δ2) and σH(p̄, x̄ ; δ2) > 0.
Then ∃ζ, η > 0: ∀(p, x) ∈ [intB(p̄, ζ)× intB(x̄ , η)] ∩ gphS it holds

D̂∗S(p, x)(x∗) = {p∗ ∈ P∗ : (p∗,−x∗) ∈ cone ∂̂νF ,C (p, x)},

where ∂̂νF ,C (p, x) denotes the Fréchet subdi�erential of νF ,C at (p, x)
and cone the conic hull of a set.
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Some open questions (representations of ∂νF ,C )

Let νF ,C : X −→ [0,+∞] be de�ned by νF ,C (x) = supy∈F (x) dist (y ,C )

and let F : X⇒ Y be de�ned by

F (x) = {y ∈ F (x) : dist (y ,C ) = νF ,C (x)} (farthest point mapping).

Under mild assumptions, it should be

co∗
⋃

y∈F (x̄)

D̂F ∗(x̄ , y) (∂dist (·,C ) (y)) ⊆ ∂νF ,C (x̄).

Problem 1: If F is C -concave, under proper assumptions on the stability
of F near x̄ , is it true that

co∗
⋃

y∈F (x̄)

D̂F ∗(x̄ , y) (∂dist (·,C ) (y)) = ∂νF ,C (x̄) ?

Problem 2: Extend such a characterization to the non convex/concave
case by using the Fréchet subdi�erential (or other subdi�erentials).
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Conclusions

Set-valued inclusions are problems which emerge in the robust
approach to uncertain optimization and in vector optimization.

Some perspectives on their solution stability can be drawn by tools
and techniques of variational analysis.

The resulting theoretical picture seems to be di�erent from that for
generalized equations (e.g. metric increase replaces metric
regularity, concavity replaces convexity).

Many aspects of the topic still remain to be investigated and
clari�ed.
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