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Problem of Interest

• We want to efficiently solve the following convex problem

minimize f(x) subject to 〈ai, x〉 ≤ bi, i = 1, . . . ,m, (1)

• The function f : Rn → R is strongly convex and has Lipschitz continuous gradients

• The number m ≥ 2 of inequalities is assumed to be large.

• Such a problem arises in machine learning (training a classifier):

- Each data point induces a constraint

- f(·) corresponds to a ”regularizer” that we choose (such as ‖ · ‖2)

• When f ≡ 0, the randomized Kaczmarz algorithm can solve the resulting feasibility

problem with a geometric rate [Strohmer and Vershynin 2008]

• Geometric rate results also exist for a general convex sets Xi admitting efficient

projections [Nedić 2010, Richtarik and Necoara 2018]

• If max-type penalty is used, the resulting penalized problem is non-differentiable:

minimize f(x) +
γ

m

m∑
i=1

max{0, 〈ai, x〉 − bi}

- At best, the number k of iterations is in the order of O(1/k) (subgradient method)

• Goal: to apply algorithm converging with a geometric rate, i.e. SAGA for example
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Proposed Approach: Basic Idea
• Consider a penalized problem of the form

minimize f(x) +
γ

m

m∑
i=1

hδ(x; ai, bi),

where hδ(x; ai, bi) is a convex penalty function associated with constraint 〈ai, x〉 ≤ bi
and γ > 0 and δ > 0 are penalty parameters
• Our choice of the penalty function is guided by the desire that the resulting penalized

objective is strongly convex and has Lipschitz gradients
• So we will choose hδ(x; ai, bi) to have Lipschitz continuous gradients
• Hence, SAGA or other fast incremental approaches can be applied for solving the

penalized problem; however, the penalized problem is not necessarily equivalent to the

original problem
• Main goal: Determine the parameters δ and γ, so that the solution of the penalized

problem is

• Feasible for the original problem and

• Sub-optimal for the original problem with a desired pre-specified accuracy
• It turns out, we can accomplish this by choosing:

• Inexact penalty function that induces a positive penalty inside the feasible set
• The approach will work for the class of functions that have bounded level sets
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Penalized Problem

min
x
Fγδ(x), Fγδ(x) = f(x) +

γ

m

m∑
i=1

hδ(x; ai, bi),

hδ(x; a, b) =


〈a,x〉−b
‖a‖ , if 〈a, x〉 − b > δ,

(〈a,x〉−b+δ)2

4δ‖a‖ , if − δ ≤ 〈a, x〉 − b ≤ δ,

0, if 〈a, x〉 − b < −δ.
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Figure 1: Penalty function hδ(x; 1,1) for the constraint x ≤ 1, x ∈ R. The case
δ = 0 corresponds to h0(x; 1,1) = max{0, x− 1}
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Some properties of the penalty function hδ(x; a, b):

• h0(x; a, b) = dist(x,Xi), Xi = {x | 〈ai, x〉 ≤ bi}, i = 1, . . . ,m.

• If 0 < δ ≤ δ′, then hδ(x; a, b) ≤ hδ′(x; a, b) for all x ∈ Rn.

• For δ > 0, we have ‖∇hδ(x; a, b)−∇hδ(y; a, b)‖ ≤ 1
2δ
‖x− y‖ for all x, y ∈ Rn.

• If x satisfies 〈ai, x〉 ≤ bi, then hδ(x; ai, bi) ≤ δ
4‖ai‖

.

An important consequence: nested level sets for any γ > 0, δ < δ′, and any t ∈ R,

{x | Fγδ′(x) ≤ t} ⊆ {x | Fγδ(x) ≤ t} ⊆ {x | f(x) ≤ t}.
Thus, if f has bounded level sets, so does Fγδ(x) for any γ > 0 and δ > 0.

Assumption

• The feasible set X = {x | 〈ai, x〉 ≤ bi, i = 1, . . . ,m} has a nonempty interior:

there is x̂ such that: 〈ai, x̂〉 ≤ bi − ε for all i = 1, . . . ,m.

We let Xi = {x | 〈ai, x〉 ≤ bi}, so that X = ∩mi=1Xi.

Given a system of linear equations/inequalities, there is β > 0 such that

β

m∑
i=1

dist(x,Xi) ≥ dist(x,X) for all x ∈ Rn,

β is a Hoffman bound(O. Guler, A. Hoffman, and U. Rothblum 1992), and

dist(x, Y ) = ‖x−ΠY [x]‖ for a convex closed set Y ⊂ Rn and any x ∈ Rn

For our affine set X, Hoffman bound β depends on the vectors ai
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Strongly Convex f

• Let x∗ be the optimal solution of the original problem, i.e., x∗ = argminx∈X f(x)

• Let εa be the desired accuracy for solving the problem

Proposition 1 Let X have nonempty interior, and let f be strongly convex with a con-

stant µ > 0. Let δ and γ be such that

0 < δ < min

{
ε,

16α2
min

β2m2

}
, γ ≤

2µ

δ
εaαmin

γ ≥ max

{
L

(
1

mβ
−
√
δ

4αmin

)−1

, 4mLαmax

(
1√
δ

+
βm

αmin

)}
,

where L is a Lipschitz constant for f over some suitably defined level set,

αmin = mini ‖ai‖ and αmax = maxi ‖ai‖. Then, the solution x∗γδ of the penalized

problem minx Fγδ(x) satisfies

x∗γδ ∈ X, ‖x∗γδ − x∗‖2 ≤ εa.
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Proof: Main Steps

• When the vector x∗γδ is feasible i.e., x∗γδ ∈ X, we have

f(x∗) ≤ f(x∗γδ). (2)

Since the penalty functions are non-negative, we have hδ(x∗γδ; ai, bi) ≥ 0 for all

i = 1, . . . ,m. The point x∗ is feasible but it may be penalized, in which case

hδ(x∗; ai, bi) ≤ δ
4‖ai‖

. Therefore, we have

hδ(x
∗; ai, bi)− hδ(x∗γδ; ai, bi) ≤

δ

4‖ai‖
for all i = 1, . . . ,m. (3)

Using the relations (2) and (3), we obtain

Fγδ(x
∗)− Fγδ(x∗γδ) = f(x∗)− f(x∗γδ) +

γ

m

(
m∑
i=1

hδ(x
∗; ai, bi)− hδ(x∗γδ; ai, bi)

)
≤

γδ

4αmin
.

By the strong convexity of Fγδ and the fact that x∗γδ is the minimum of Fγδ(x), it

follows that

‖x∗ − x∗γδ‖2 ≤
2

µf
(Fγδ(x

∗)− Fγδ(x∗γδ)) ≤
γδ

2µfαmin
≤ εa, (4)
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where the last inequality in the preceding relation is due to the choice of γ ≤
2µf
δ
αminεa.

• Proving the feasibility of x∗γδ is much more involved. Define

x̂∗γδ = ΠX[x∗γδ].

We consider two possibilities: ‖x̂∗γδ − x∗γδ‖ ≥
√
δ and ‖x̂∗γδ − x∗γδ‖ <

√
δ.

Case 1: ‖x̂∗γδ − x∗γδ‖ >
√
δ. Recall that we have hδ(x; ai, bi) ≥ dist(x,Xi) for all i.

Thus, by the definition of the functions Fγδ, for any x ∈ Rn we can write

Fγδ(x) ≥ f(x) +
γ

m

m∑
i=1

dist(x,Xi).

Then, by Hoffman’s lemma, for some β > 0 we have

Fγδ(x) ≥ f(x) +
γ

mβ
dist(x,X) for all x ∈ Rn.

Letting x = x∗γδ in the preceding relation, we obtain

Fγδ(x
∗
γδ) ≥ f(x∗γδ) +

γ

mβ
‖x̂∗γδ − x∗γδ‖+ f(x̂∗γδ)− f(x̂∗γδ)

≥
γ

mβ
‖x̂∗γδ − x∗γδ‖ − L‖x̂∗γδ − x∗γδ‖+ f(x̂∗γδ)

=

(
γ

mβ
− L

)
‖x̂∗γδ − x∗γδ‖+ Fγδ(x̂

∗
γδ)−

γ

m

m∑
i=1

hδ(x̂
∗
γδ; ai, bi),
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where in the second inequality we use the assumption that the norms of the subgradients

in the subdifferential set ∂f(x) are bounded by L in a region containing the point

x = x̂∗γδ (requires a lemma to assert this). Taking into the account that hδ(x; ai, bi) ≤
δ

4‖ai‖
when x ∈ Xi, and using x̂∗γδ ∈ X ⊆ Xi, we see that

Fγδ(x
∗
γδ) ≥

(
γ

mβ
− L

)
‖x∗γδ − x̂∗γδ‖+ Fγδ(x̂

∗
γδ)−

γδ

4m

m∑
i=1

1

‖ai‖
.

The conditions on γ imply that γ ≥ Lmβ. Using the relations γ ≥ Lmβ and

‖x̂∗γδ − x∗γδ‖ >
√
δ, we further obtain

Fγδ(x
∗
γδ) >

(
γ

mβ
− L

)√
δ −

γδ

4αmin
+ Fγδ(x̂

∗
γδ) ≥ Fγδ(x̂∗γδ), (5)

where the last inequality is obtained by using
(

γ
mβ
− L

)√
δ − γδ

4αmin
≥ 0, equivalent

γ

mβ
− L−

γ
√
δ

4αmin
≥ 0 ⇐⇒ γ

(
1

mβ
−
√
δ

4αmin

)
≥ L.

The last inequality holds by the conditions imposed on the parameters γ and δ. Thus,

relation (5) implies that

Fγδ(x
∗
γδ) > Fγδ(x̂

∗
γδ),

which contradicts the fact that x∗γδ is an unconstrained minimizer of Fγδ.

8



November 15, 2021 Workshop on Optimization and Operator Theory Technion, Haifa, Israel

Case 2: ‖x̂∗γδ − x∗γδ‖ ≤
√
δ. Uses the interior-point assumption and a special

construction. Specifically, it relies on the following result.

Lemma 1 Let the interior-point assumption hold and let δ be such that 0 < δ ≤ ε.
Then, for any x /∈ X there exists a feasible point xin ∈ X such that

(a) hδ(xin; aj, bj) = 0 for all j = 1, . . . ,m,

(b) ‖x− xin‖ ≤ ‖x−ΠX[x]‖+ βmδ
min1≤i≤m ‖ai‖

,

where β is Hoffman’s bound.

Figure 2: Illustration of the set Xδ.
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Connecting with SAGA by Defazio et al. 2014

Algorithm 1 SAGA-based Fast Incremental Method for Solving Penalized
Problem
• Let x0 ∈ Rn and ∇f(φ0

i ) + γ∇hδ
(
φ0
i ; ai, bi

)
with φ0

i = x0 be available
for i = 1, . . . ,m.

• Pick an index j ∈ {1,2, . . . ,m} uniformly at random.

• Set φt+1
j = xt and store ∇f(φt+1

j ) + γ∇hδ
(
φt+1
j ; aj, bj

)
.

• xt+1 = xt − α[∇f(φt+1
j ) + γ∇hδ

(
φt+1
j ; aj, bj

)
−∇f(φtj)

− γ∇hδ
(
φtj; aj, bj

)
+ 1

m

∑m
i=1 (∇f(φti) + γ∇hδ (φti; ai, bi))].
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Applying SAGA to the Penalized Problem

Proposition 2 Let the interior-point assumption hold, and let the function f be strongly

convex with a parameter µ > 0 and have Lipschitz continuous gradients with a constant

Lf > 0. Let x∗ = argminx∈X f(x), and assume that an accuracy level εa is given.

Consider Algorithm SAGA applied to the penalized problem:

min
x

1

m

m∑
i=1

(f(x) + γhδ(x; ai, bi)) ,

where the penalty parameters γ and δ are chosen to satisfy the conditions of Proposi-

tion 1, and the step size is given by

α =
1

2(µm+ Lf + γαmax
2δ

)
,

with αmax = maxi ‖ai‖.
Then, the following convergence rate result is valid for the iterates of the algorithm:

E[‖xt −ΠX[xt]‖2] ≤ O
(
qtγ
)
, E[‖xt − x∗‖]2 ≤ O

(
qtγ
)

+ 2εa,

qγ = 1−
µ

2(µm+ Lf + γαmax
2δ

)
.

Proof: Immediately from Proposition 1 and a rate result from Defazio et al. 2014.
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Convergence Result for Merely Convex Function f
Proposition 3 Let the interior-point assumption hold. Let f be convex function with

bounded level sets and Lipschitz continuous gradients with a constant Lf , and let f∗ =

minx ∈ Xf(x). Let εa a desired accuracy. Consider the iterates xk produced by SAGA

method applied to the penalized problem:

min
x

1

m

m∑
i=1

(f(x) + γhδ(x; ai, bi)) ,

where γ and δ are chosen such that the conditions of Proposition 1 are satisfied, and

the stepsize is given by

α =
1

3(Lf + γαmax/(2δ))
Then, for the iterate averages

x̄k =
1

k

k−1∑
i=0

xi

the following hold relation holds

E[f(x̄k)]− f∗ ≤ O(1/k) + 2εa for all k,

Moreover, there exists some T > 0 such that for all k,

−γεa ≤ E[f(x̄k)]− f∗
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Simulation Results

f(x) =
1

2
‖Φx− x0‖2 Ax ≤ b, A ∈ Rm×n, n = 30

where x0 is chosen randomly according to a zero-mean normal distribution with covariance

matrix Σ = 10I. Constraint set X is constructed so that the optimal point x0 is on

its boundary. The SAGA algorithm applied to the penalized problem is compared to

an algorithm that, at time t, selects one constraint Xωt randomly from the collection

X1, . . . , Xm, and performs a gradient update∗

xt+1 = ΠXωt
[xt − αt∇f(xt)],

where αt is a diminishing stepsize (not summable, but square summable).

The full gradient method is also simulated.

The algorithms are run for 1,000 iterations, and the relative error is plotted

‖xt − x∗‖
‖x∗‖

along the iterate sequence.

∗Nedić 2011
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Figure 3: Full-Gradient, PA/SAGA (our penalized approach) and
Random Projections, m = 1500.
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Summary and Extensions

• We provided a novel penalty re-formulation for a convex minimization problem with

linear constraints.

• The structure of the penalty functions that we used to penalize the linear constraints,

and the suitable choices of the penalty parameters render the penalized unconstrained

problem with solutions that are feasible for the original constrained problem.

• With an additional constraint on the penalty parameters imposed by a desired accuracy

level, the solutions of the penalized unconstrained problem are guaranteed to be

arbitrarily close to the solution set of the original problem.

• An advantage of the proposed penalty reformulation is in the ability to employ fast

incremental gradient methods, such as SAGA.

• We have a convergence result for our penalty approach also when f has bounded level

sets (not necessarily strongly convex)
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• Difficulty: our results rely on the availability of Hoffman constant β,

β

m∑
i=1

dist(x,Xi) ≥ dist(x,X) for all x ∈ Rn,

which is hard to (upper) estimate; see recent work by J.Pena, J. Vera L.F. Zuluaga New

characterizations of Hoffman constants for systems of linear constraints, Mathemat-

ical Programming 187, p. 79–109, 2021, arxiv https://arxiv.org/pdf/1905.02894.pdf

• As a remedy, we have considered an approach where we vary the penalty parameter

γ with time at each iteration and show that such a method converges to the optimal

point

• Details are in our paper:

T. Tatarenko and AN A Smooth Inexact Penalty Reformulation of Convex Problems

with Linear Constraints, SIAM J. on Optim., 31 (3), 2141–2170, 2021
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