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EVP, Ekeland & Turnbull (1983), Ekeland (1972)

Let (X,d) be a complete metric space and φ : X→ R ∪ {+∞} be an
extended real-valued function which is lower semicontinuous,
bounded from below, and not identically equal to +∞. For any ε > 0,
for any ε-minimum solution x0 of φ, for any λ > 0, there exists some
point x∗ ∈ dom φ such that

(i) φ(x∗) ≤ φ(x0);
(ii) d(x0, x∗) ≤ λ;
(iii) φ(x) + (ε/λ)d(x∗, x) > φ(x∗), ∀ x 6= x∗.

(i) and (ii) can be written as φ(x∗) + (ε/λ)d(x∗, x) ≤ φ(x0).

Consider S : X⇒ X with

S(x) :=
{
y ∈ X| φ(y) ≤ φ(x)− (ε/λ)d(x, y)

}
.

Then, x∗ ∈ S(x0) and S(x∗) = {x∗}.
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EVP via Change Model

1. Status quo: the bundle of activities x in the previous period.

2. Stay or change: x↷ x or x↷ y

3. Motivation to change: payoffs

M(x, y) = f(y)− f(x)

4. Resistance to change: costs

R(x, y) = C(x, y)− C(x, x)

5. Worthwhile to change

M(x, y) ≥ r R(x, y)

6. Variational traps W(x∗) = {x∗}

W(x∗) = {x : worthwhile to change x∗ ↷ x} = {x∗}
⇐⇒ ∀x 6= x∗, M(x∗, x) < r R(x∗, x)
⇐⇒ x∗ is a maximal solution of g(x) = f(x)− r C(x∗, x). 3



Cost Requirements

1. Costs to be able to stay are zero, C(x, x) = 0 for all x ∈ X.

2. Costs to be able to change are positive, C(x, y) > 0 for all x 6= y.

3. The cost to be able to change from x to y is not necessarily
equal to the cost to be able to change from y to x.

4. Direct costs are cheaper than or as equal as indirect costs,
C(x, y) ≤ C(x, z) + C(z, y) for all x, y, x ∈ X.

Examples: C1(x, y) = |x− y| and C2(x, y) = y− x if y ≥ x and 1
otherwise.
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Quasimetrics and Metric Spaces

A quasi-metric space is a set X equipped with a function
q : X× X 7−→ R+ := [0,∞) on X× X having the following three
properties:

(q1) q(x, y) ≥ 0 (non-negativity);
(q2) if x = y, then q(x, y) = 0 (equality implies indistinct);
(q3) q(x, z) ≤ q(x, y) + q(y, z) (triangularity).

If, in addition, it satisfies the symmetry property q(x, x′) = q(x′, x) for
all x, x′ ∈ X, then q is a metric. We denote by (X,q) the space X with
the quasi-metric q. Quasi-metrics were introduced by Hausdorff in
1914 in his famous “Grundzüge der Mengenlehre” which is the
foundation of the theory of topological and metric spaces.
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Examples on Quasimetric Spaces

• The Sorgenfrey quasimetric on R is defined by q(x, y) = y− x if
y ≥ x and q(x, y) = 1 otherwise.
• The quasimetric on R is defined by q(x, y) = max(y− x, 0).
• The real half-line quasimetric is defined by q(x, y) = max(0, ℓn yx ) on
the set of strictly positive reals.
• A circular railroad line moves only in a counterclockwise direction
around a circular track, represented by the unit circle S1. The
circular-railroad quasi-metric from any point, x ∈ S1, to any other
point, y ∈ S1, is simply the counterclockwise circular arc length from
x to y in S1.
• Consider X := {u ∈ L1(Ω,Rp) : ‖u‖∞ ≤ 1} equipped with the weak
L1- topology. The dissipation distance related to the energetic
formulation of energetic models for rate- independent systems is
defined by q(u1,u2) = ‖u1 − u2‖L1 .
• The Minkowski gauge function is defined on Rn by
qB(x, y) = inf{α > 0 : y− x ∈ αB}, where B is convex and compact.
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Definitions

Given a quasimetric space (X,q), i.e., a nonempty set X equipped with
a quasi-metric q, we say that a sequence {xn}

(i) is forward convergent to x∗, if lim
n→+∞

q(x∗, xn) = 0;

(ii) is a forward Cauchy sequence, if for each ε > 0, there exists
n̄ ∈ N such that q(xm, xn) < ε, for m ≥ n ≥ n̄;

(iii) the space (X,q) is forward Hausdorff, if every forward convergent
sequence has an unique forward limit;

(iv) the space (X,q) is forward-forward complete, if every forward
Cauchy sequence is forward convergent.

Since a quasimetric is not symmetric, there are the corresponding
backward concepts.
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Remarks

Let (X,q) be a quasi-metric space and A be a nonempty subset of X.
Then:
• a sequence {xn} is forward convergent in (X,q) is not necessary
forward Cauchy;
• if {xn} is both forward and backward convergent to x∗, then x∗ is
the only limit point of {xn} of any kind;
• if {xn} has more than one forward limit points, then {xn} has no
backward limit point;
• if {xn} is forward convergent to a and backward convergent to b,
then q(a,b) = 0;
• if {xn} is forward convergent to a and q(a,b) = 0, then it is
backward convergent to b;
• the function q(·,A) : X→ R+ = [0,∞) defined by

q(x,A) := inf
u∈A

q(x,u)

is forward lower semicontinuous.
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Example

Let X be a closed unit interval [0, 1] with the quasi-metric on X
defined by

q(x, y) =
{
x− y if x ≥ y,
1 if x < y.

Consider the sequence {xn} where xn = 1/n. Since
q(xn, xm) = 1/n− 1/m < 1/n for all m,n ∈ N with m > n, {xn} is a
forward Cauchy sequence.
Take an arbitrary number x ∈ (0, 1]. For any integer n ∈ N with
n > 1/x, one has xn = 1/n < x and thus q(xn, x) = 1, i.e., x is not a
forward limit of {xn}.
Obviously, 0 is the only forward limit of {xn}.
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Binary Relations Induced from Domination Structures

Let Y be a linear space partially equipped with a domination set
0 ∈ D 6= ∅. The binary relation ≤C is defined by:

y1 ≤D y2 if and only if y1 ∈ y2 − D for all y1, y2 ∈ Y.

When C is a proper, closed, convex, and pointed cone C, the binary
relation ≤D is a partial order.

Assume that each element of Y has its own domination set. Then, the
set-valued mapping D : Y⇒ Y is called a domination structure in the
linear space Y. We introduce the following binary relations:

(i) The nondomination binary relation ≤N is defined by

v ≤N y :⇐⇒ y ∈ v+D(v).

(ii) The efficiency binary relation ≤E is defined by

v ≤E y :⇐⇒ v ∈ y−D(y).
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Nondominated and Efficient Solutions

Let f : X→ Y be a mapping from a nonempty set to a linear space,
and let D : Y⇒ Y be a domination structure in the image space Y.
Given x ∈ dom f, we say that:

(i) x is a nondominated solution of f w.r.t. D, or a D-nondominated
solution, or a ≤N-minimal solution, if

∀x ∈ dom f, f(x) ≤N f(x) =⇒ f(x) ≤N f(x).

(ii) x is a efficient solution of f w.r.t. D, or a D-efficient solution, or a
≤E-minimal solution, if

∀x ∈ dom f, f(x) ≤E f(x) =⇒ f(x) ≤E f(x).
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Should I change? or should I regret to have changed?.

Efficiency binary relation: should I change? Yes, if the advantages to
move from y to v (change rather than stay) in the payoff space is
A(y, v) := y− v = f(x)− f(u) = A(x,u) ∈ D(y) = D(f(x)), which means
that there are ex ante advantages to move from y to v, i.e., from x to u.

Nondomination binary relation: should I regret to have changed? No,
if the agent would prefer to change from y to v after moving, i.e., to
go from x to u rather than to stay at y provided that the new amount
of pains v = f(u) is perceived ex post as lower than the old amount
of pains y = f(x).
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Dancs-Hegedüs-Medvegyev Fixed Point Theorem (1983)

Let (X,d) be a complete metric space, and let Φ : X⇒ X be a
set-valued mapping satisfying the following conditions:

(A1) x ∈ Φ(x) for all x ∈ X;
(A2) x2 ∈ Φ(x1) =⇒ Φ(x2) ⊆ Φ(x1) for all x1, x2 ∈ X;
(A3) For each generalized Picard sequence {xn} of Φ, d(xn, xn+1) → 0;
(A4) Φ(x) is a closed set for all x ∈ X;

Then, for every starting point x0 ∈ X, there is a convergent sequence
{xn} ⊆ X whose limit x∗ is a fixed point of Φ, i.e., Φ(x∗) = {x∗}.

Theorem (DHMFPT) =⇒ Theorem (EVP)
where Sτ,d(x) =

{
y ∈ X| φ(y) ≤ φ(x)− τd(x, y)

}
.
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Proof. Set S(xn+1) :=
{
x ∈ X| φ(x) ≤ φ(xn)− d(xn, x)

}
.

We have S(x0) ⊇ S(x1) ⊇ . . . ⊇ S(xn) ⊇ S(xn+1) ⊇ . . . ⊇ S(x∗) = {x∗}.
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A Revised Version of Fixed Point Theorem, BG (2021)

Let (X,d) be a complete metric space, x0 ∈ X and Φ : X⇒ X be a
dynamic system. Suppose that each generalized Picard sequence
(xn) of Φ whose starting point is x0 satisfies the following conditions:

(B1) Φ(xn+1) ⊆ clΦ(xn) for all n ∈ IN.
(B2) d(xn, xn+1) → 0 as n→ +∞.
(B3) If xn → x and xn+1 6= xn for all n ∈ IN, then Φ(x) ⊆ clΦ(xn) for all

n ∈ IN.

Then, there is a fixed point x∗ ∈ clΦ(x0) ∪ {x0} of the system Φ; i.e.,
Φ(x∗) ⊆ {x∗}. Assume furthermore that Φ(x∗) 6= ∅, then Φ(x∗) = {x∗}.
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Examples

Let (X1,d) be the complete metric space given by the set
X1 = {1/n : n ∈ IN\{0}} ∪ {0} and the metric d(x1, x2) = |x1 − x2|, for
all x1, x2 ∈ X1. Consider the point x0 = 1 and the following dynamic
system Φ1 : X1 ⇒ X1:

Φ1(x) =


{0} if x = 0,

{1/m : m ∈ IN\{0},m > n} if x = 1/n and n is even,
{1/m : m ∈ IN\{0},m > n} ∪ {0} if x = 1/n and n is odd.

As all assumptions are satisfied, it follows that there exists a point
x̄ ∈ X1 such that Φ1(x̄) ⊆ {x̄}. Obviously, x̄ = 0 and Φ1(0) = {0}.
Notice that 1/n /∈ Φ1(1/n), for all n ∈ IN\{0}, Φ1(1/n) is not closed
provided that n is even, and 1/m ∈ Φ1(1/n), Φ1(1/m) 6⊆ Φ1(1/n) as
long as n is even and m > n is odd. Thus, assumptions in the original
fixed point theorem are not fulfilled and so it cannot be applied. For
instance, for all n ∈ IN\{0}, 1

2n+1 ∈ Φ1(
1
2n ) but Φ1(

1
2n+1 ) 6⊆ Φ1(

1
2n ).
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Examples

Assumption (B2) cannot be dropped. Indeed, the dynamic system
Φ2 : X1 ⇒ X1, Φ2(x) = X1 for all x ∈ X1, satisfies assumptions (B1) and
(B3), but it has not any fixed point. It is obvious that hypothesis (B2)
is not fulfilled.

Hypothesis (B3) cannot be removed. For instance, the dynamic
system Φ3 : X1 ⇒ X1, Φ3(0) = X1 and
Φ3(1/n) = {1/m : m ∈ IN\{0},m > n} fulfills (B1) and (B2), but is
doesn’t satisfy (B3). Clearly, Φ3 has not any fixed point.

Assumption (B1) is also needed. For instance, let

X2 =
{
sn :=

n∑
m=1

1/m : n ∈ IN\{0}
}
.

It is obvious that (X2,d) is a complete metric space. The dynamic
system Φ3 : X2 ⇒ X2, Φ3(sn) = {sn+1}, for all n ∈ IN\{0} fulfills
hypotheses (B2) and (B3), but it has not any fixed point. It is easy to
check that Φ3(sn+1) 6⊆ Φ3(sn), for all n ∈ IN\{0}. 17



Nonlinear Scalarization Function, GKNR (2017)

Let Y be a real linear space, D be a nonempty set in Y and k be a
nonempty element in Y. D is said to be a domination set if 0 ∈ D.

The vectorial closure of D in the direction k is defined by

vclkD := {y ∈ Y | ∀λ > 0, ∃t ∈ [0, λ], y+ tk ∈ D}.

The function φkD : Y→ R ∪ {±∞} defined by

φkD(y) := inf{t ∈ R : y ∈ tk− D} with inf ∅ = +∞.

is called Gerstewitz’ nonlinear scalarization function.

Assume that D is free-disposal in the direction k; i.e., D+ cone(k) ⊆ D
and D ∩ − cone(k) = {0}. Then, the following hold:

• domφkD = D+ Rk.
• ∀y ∈ Y, ∀t ∈ R, φkD(y+ tk) = φkD(y) + t.
• φkD(y) ≤ t⇐⇒ y ∈ t− vclkD.
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Some Properties of Gerstewitz’ Scalarizing Functions

Let ∅ 6= D ⊆ Y and k ∈ Y \ {0} satisfy D+ [0,+∞)k ⊆ D. Then the
following hold:

(a) φkD is l.s.c. over its domain domφkD = Rk− D iff D is a closed set.
Moreover, its t-level set is given by

{y ∈ Y | φkD(y) ≤ t} = tk− D, ∀ t ∈ R

and φkD(y+ tk) = φkD(y) + t, ∀ y ∈ Y, ∀ t ∈ R.
(b) φkD is convex if and only if the set D is convex, and φkD is

positively homogeneous if and only if D is a cone.
(c) φkD is proper if and only if D does not contain lines parallel to k.
(d) φkD is finite-valued, i.e. domφkD = Y, if and only if Rk− D = Y and

D does not contain lines parallel to k.
(e) Given B ⊆ Y. φkD is B-monotone if and only if D+ B ⊆ D.
(f) φkD is subadditive if and only if D+ D ⊆ D.
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Efficiency EVP, BMST (2021)

Let (X,q) be a quasimetric space, let Y be a linear space equipped
with a variable domination structure D : Y⇒ Y, and let f : X→ Y be a
vector-valued mapping. Given k ∈ Y \ {0}, x0 ∈ X, y0 := f(x0),
Θ := D(y0), and ε ≥ 0, we consider the set-valued mapping W : X⇒ X
defined by

W(x) :=
{
u ∈ X

∣∣ f(x)− f(u)−
√
εq(x,u)k ∈ D(f(x0))

}
and the extended-real-valued function ψ : X→ R∪ {±∞} defined by

ψ(x) := φΘ,k(f(x)− f(x0)).
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Efficiency EVP, BMST (2020)

Impose the following assumptions:

(E1) (boundedness condition) The scalarized function ψ is bounded
from below over W(x0).

(E2) (limiting monotonicity condition) For every infinite nonconstant
generalized Picard sequence {xn} of the set-valued mapping W
the convergence of the series

∑∞
n=0 q(xn, xn+1) yields the

existence of x∗ such that

∀n ∈ IN, x∗ ∈ W(xn).

(E3) (scalarization condition) Θ is k-vectorial closed with 0 ∈ Θ,
Θ+Θ ⊆ Θ, Θ+ cone (k) ⊆ Θ, and Θ ∩ (− cone (k)) = {0}.

Then, there exists x∗ ∈ W(x0) satisfying the inclusion

W(x∗) ⊆ {x∗} :=
{
u ∈ X

∣∣ q(x∗,u) = 0
}
.
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Efficiency EVP, BMST (2021)

If in addition the condition

(E4) (uniqueness limit condition) (X,q) is forward-Hausdorff

is satisfied, then the conclusions of this theorem reduce to

(i) f(x0)− f(x∗)−
√
εq(x0, x∗)k ∈ D(f(x0)) and

(ii) ∀x ∈ X \ {x∗}, f(x∗)− f(x)−
√
εq(x∗, x)k 6∈ D(f(x0)).

Furthermore, imposing the domination condition

(E5) D(f(x∗)) ⊆ D(f(x0))

ensures that

∀x ∈ X \ {x∗}, f(x∗)− f(x)−
√
εq(x∗, x)k 6∈ D(f(x∗)).

If finally the starting point x0 is an εk-efficient solution of f w.r.t. D,
then x∗ can be chosen so that in addition to (i) and (ii) we have

(iii) q(x0, x∗) ≤
√
ε.
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A Sketch of the Proof

Starting with x0, we assume that xn is given. If W(xn) = {xn}, then
x∗ = xn satisfies the desired conclusion. Otherwise, choose
xn+1 ∈ W(xn) \ {xn} satisfying

ψ(xn+1) ≤ inf
u∈W(xn)

ψ(u) + 1
2n+1 .

It is obvious that such an element xn+1 exists due to the
boundedness from below of the function ψ assumed in (E1). We aim
at verifying that the consecutively different generalized Picard
sequence {xn} forward-converges to the desired element by splitting
the proof into several steps.
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A Sketch of the Proof

• If u ∈ W(x), then f(u) ≤Θ f(x) and W(u) ⊆ W(x).

• For every u ∈ W(xn) we have the estimate

∀n ∈ IN, ∀x ∈ W(xn),
√
εq(xn,u) ≤

1
2n .

• The series
∑∞

n=1 q(xn, xn+1) is convergent.

• The inclusion in W(x∗) ⊆ {x∗} :=
{
u ∈ X

∣∣ q(x∗,u) = 0
}
is satisfied.

• Imposing (E4) gives us assertions (i) and (ii) of the theorem.

• The domination inclusion in (E5) yields

∀x ∈ X \ {x∗}, f(x∗)− f(x)−
√
εq(x∗, x)k 6∈ D(f(x∗)).

• If x0 is an εk-efficient solution of f w.r.t. D, we have (iii).
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Illustration for the Efficiency EVP

Let X := Rand Y := R2, and let f : X→ Y be defined by

f(x) :=
{
(x, 2x − 1) if x < 0,
(x, 1) if x ≥ 0.

The domination structure D : R2 ⇒ R2 is given by

D(y) :=
{
cone

{
(1, 0), (|y1|, |y2|)

}
if y1 < 0 and y2 < 0,

R2+ otherwise.

Take ε = 1, x0 = 0, k = (1, 1), and d(x,u) = 1/2|x− u|. In this case we
have ψ(x) = φR2+,k. It is easy to check that:

a) W(0) = [−0.5, 0] and W(−0.5) = {−0.5}.
b) f is φR2+,k-bounded from below.
c) f is not R2+-lower semicontinuous since

lev(f, 0R2) =
{
x ∈ X

∣∣ f(x) ∈ 0− R2+
}
= (−∞, 0)

is not a closed set in R.
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Illustration for the Efficiency EVP

d) f(−0.5) = (−0.5,−1+ 1/
√
2), f(0) = (0, 1),

D(f(−0.5)) = cone {(1, 0), (0.5, 1− 1/
√
2)}, and D(f(0)) = R2+. It is

obvious that f(−0.5) ≤D(f(x0)) f(0) and D(f(−0.5)) ⊆ D(f(0)), and
hence condition (E5) is satisfied.

e) Condition (E2) holds since for any nonconstant generalized
Picard sequences in W0 (without loss of generality it can
assumed that xn < 0) we have that W(xn) is closed whenever
n ∈ IN. Then, the existence of x∗ follows from the classical Cantor
theorem.
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Vectorial EVP

Let X 6= ∅, f : X→ Y, W : X⇒ X with
W(x) := {u ∈ E | f(u) + q(x,u)k ≤D f(x)}, x0 ∈ dom f. Assume that

(D1) q is a quasi-metric on W(x0) and ≤D is a preorder.
(D2) φqD is bounded from below on f(W(x0))− f(x0).
(D3) f is a strictly φkD-decreasing lower-semi-continuous on W(x0) in

the sense that for every Picard sequence (xn) of W, one has

∀n ∈ IN, φkD(f(xn+1)) < φkD(f(xn))
=⇒ ∃x∗ ∈ X,q(xn, x∗) → 0 and ∀n ∈ IN, f(x∗) ≤D f(xn).

(D4) For each distinct Picard sequence {xn} of W, q(xn, x∗) → 0 and
q(xn, y∗) → 0 imply x∗ = y∗.

Then, these exists x∗ ∈ W(x0) such that W(x∗) = {x∗}.
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Remarks

In Theorem 5.1 in [Soleimani, JOTA 2014] and Theorem 3.8 [Bao et al,
JCA 2017], the boundedness condition (E1): f is bounded from below;
the condition (E2): f is (k,D(y0))-lower semicontinuity in the sense
that M(t) = {x ∈ X : f(x) ∈ tk− clD(y0)} is closed for all t ∈ R; the
scalarization condition (E3) is assumed for all domination sets D(y)
for y ∈ Y.

In Theorem 3.12 [BEST, JCA 2017], the boundedness condition (E1): f is
quasibounded from below w.r.t. D(y0); the condition (E2): f is
D(y0)-lower semicontinuity in the sense that
Lev (y; f) = {x ∈ X : f(x) ∈ y−D(y0)} is closed for all y ∈ y; the
scalarization condition (E3): D(y0) is a proper, closed, convex and
pointed cone.

The boundedness condition (E1) of the scalarized function ψ is
equivalent to the existence of a real number m such that colorred

ψ(x) = φ(f(x)) > m for all x ∈ dom f ⇐⇒ f(x) 6∈ mk−D(yε).
28



On Boundedness Condition

The boundedness from below condition of φqD on X is equivalent to

∃τ ∈ R, ∀x ∈ X, f(x) 6∈ τk− D.

Consider f : R→ R2 with

f(x) :=
{
(0,−x) if x ≥ 0;
(x, 0) if x < 0.

Let D = R2+ and k = (1, 1). We have φkD(f(x)) ≡ 0 and thus bounded
from below.

f is not quasibounded from below in the sense that there is a
bounded set M such that

∀x ∈ X, f(x) ∈ M+ K.
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Nondomination EVP, BMST (2020)

Let (X,q) be a quasimetric space, let Y be a linear space, let D : Y⇒ Y
be a domination structure on Y with the nondomination relation ≤N,
let k ∈ Y \ {0}, and let Θ := D(f(x0)). Given x0 ∈ X and ε ≥ 0, define
the set-valued mapping W = Wf,q,ε : X⇒ X by

W(x) :=
{
u ∈ X

∣∣ f(x)−√
εq(x,u)k− f(u) ∈ D(f(u))

}
.

Consider also the extended-real-valued function ψ : X→ R∪ {±∞}
given by

ψ(x) := φΘ,k(f(x)− f(x0)).
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Nondomination EVP, BMST (2021)

Impose the following assumptions:

(F1) (boundedness condition) ψ is bounded from below on W(x0); i.e.,
there exists τ ∈ Rsuch that ψ(x) ≥ τ for all x ∈ W(x0).

(F2) (limiting monotonicity condition) for every generalized Picard
sequence {xn} of the set-valued mapping W, the convergence of
the series

∑∞
n=0 q(xn, xn+1) yields the existence of x∗ satisfying

x∗ ∈ W(xn) for all n ∈ IN.
(F3) (scalarization conditions)

(F3-a) Θ is k-vectorially closed, Θ+Θ ⊆ Θ, Θ+ cone (k) ⊆ Θ, and
Θ ∩ − cone (k) = {0}.

(F3-b) ∀x ∈ W(x0), D(f(x)) + cone (k) ⊆ D(f(x)).
(F3-c) ∀f(u)− f(w) ∈ D(f(w)), D(f(w)) +D(f(u)) ⊆ D(f(w)).
(F3-d) Θu ⊆ Θ, where Θu := ∪{D(f(x)) : x ∈ W(x0)}.
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Nondomination EVP, BMST (2021)

Then, there exists x∗ ∈ W(x0) such that W(x∗) ⊆ {x∗}, where

{x∗} :=
{
u ∈ X

∣∣ q(x∗,u) = 0
}
.

Assuming furthermore that

(F4) (uniqueness condition) the forward-limit of a forward
convergent sequence in the quasimetric space (X,q) is unique.

Then, the conclusions of the theorem can be written as

(i) f(x0)−
√
εq(x0, x∗)− f(x∗) ∈ D(f(x∗)),

(ii) ∀x 6= x∗, f(x∗)−
√
εq(x∗, x)k− f(x) 6∈ D(f(x)).

If the starting point x0 is an εk–nondominated solution of f w.r.t. D,
then we have in addition to (i) and (ii) that x∗ satisfies

(iii) q(x0, x∗) ≤
√
ε.
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Remarks

Theorem 3.12 in [BEST, JCA 2017] provides a nondominated version of
EVP. Under appropriate assumptions, there exists an element
x ∈ dom f such that the following conditions hold:

(i) s(f(x)) +√
εd(x, xε) ≤ s(f(xε)).

(ii) d(x, xε) ≤
√
ε.

(iii) x is an exact solution of the scalarized function defined by
fx := s ◦ f+

√
εd(x, ·),

where s is an extended version of the Gerstewitz scalarization
function s : Y→ R ∪ {±∞} defined by the formula

s(y) := inf
{
t ∈ R

∣∣ y ∈ a+ tk−D(y)
}
.
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