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NEWTONIAN METHODS FOR SMOOTH FUNCTIONS

First consider the unconstrained optimization problem

minimize φ(x) subject to x ∈ IRn

with C2-smooth objective function φ. The classical Newton method

exhibits the local convergence with a quadratic rate provided that

∇2φ(x̄) is positive-definite. To achieve the global convergence, var-

ious line search procedures are used

xk+1 := xk + τkd
k with −∇φ(xk) = Hkd

k

where Hk is an appropriate approximation of the Hessian ∇2φ(x̄) for

quasi-Newton methods. The Levenberg-Marquardt method

Hk := ∇2φ(xk) + µkI with µk := c∥∇φ(xk)∥

works when ∇2φ(xk) is merely positive-semidefinite.
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MAJOR GOALS

Replacing the Hessian ∇2φ by its coderivative-based generalized

Hessian (second-order subdifferential) ∂2φ, pursue the following:

• Design and justify the globally convergent generalized damped

Newton method with the backtracking line search for unconstrained

problems of C1,1 optimization.

• Design and justify the globally convergent Levenberg-Marquardt

method with the backtracking line search for unconstrained prob-

lems of C1,1 optimization.

• Using forward-backward envelopes, extend both coderivative-based

generalized Newton methods to problems of convex composite op-

timization encompassing problems with constraints.

• Solving Lasso problems by the developed generalized Newton al-

gorithms with numerical experiments and comparison with other

first-order and second-order algorithms of optimization.
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NORMALS, CODERIVATIVES, SUBGRADIENTS

See [M06,M18,RW98] for more details and references.
The (limiting) normal cone to Ω ⊂ IRn at x̄ ∈ Ω from

NΩ(x̄) :=
{
v
∣∣∣ ∃xk → x̄, αk ≥ 0, wk ∈ ΠΩ(xk), α(xk − wk) → v

}
where ΠΩ stands for the Euclidean projection. The coderivative

of F : IRn ⇒ IRm at (x̄, ȳ) ∈ gphF

D∗F (x̄, ȳ)(v) :=
{
u ∈ IRn

∣∣∣ (u,−v) ∈ NgphF (x̄, ȳ)
}
, v ∈ IRm.

When F : IRn → IRn is C1-smooth, then

D∗F (x̄)(v) =
{
∇F (x̄)∗v

}
, v ∈ IRm,

via the adjoint/transpose Jacobian matrix. The (first-order) subd-

ifferential of φ : IRn := (−∞,∞] at x̄ ∈ domφ [M76]

∂φ(x̄) :=
{
v ∈ IRn

∣∣∣ (v,−1) ∈ Nepiφ

(
x̄, φ(x̄)

)}
.

Despite their nonconvexity these constructions enjoy full calculus
based on the variational/extremal principles of variational analysis.
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GENERALIZED HESSIANS

The second-order subdifferential, or generalized Hessian of φ : IRn →
IR at x̄ ∈ domφ for v̄ ∈ ∂φ(x̄) is defined as [M92]

∂2φ(x̄, v̄)(u) :=
(
D∗∂φ

)
(x̄, ȳ)(u), u ∈ IRn.

If φ is C2-smooth around x̄, then

∂2φ(x̄)(u) =
{
∇2φ(x̄)u

}
, u ∈ IRn.

If φ of class C1,1(C1 with Lipschitz gradient) around x̄, then

∂2φ(x̄)(u) = ∂
〈
u,∇φ(x̄)

〉
, u ∈ IRn.

It is realized that the generalized Hessian ∂2φ enjoys well-developed

second-order calculus and can be viewed as an appropriate replace-

ment of the Hessian ∇2φ for nonsmooth problems. ∂2φ is fully

computed in terms of the given data for broad classes of problems

in optimization and variational analysis.
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DAMPED NEWTON METHOD IN C1,1 OPTIMIZATION

Algorithm 1 Coderivative-based damped Newton algorithm for C1,1

Input: x0 ∈ IRn, σ ∈
(
0, 12

)
, β ∈ (0,1)

1: for k = 0,1, . . . do

2: If ∇φ(xk) = 0, stop; otherwise go to the next step

3: Choose dk ∈ IRn such that −∇φ(xk) ∈ ∂2φ(xk)(dk)

4: Set τk = 1.

5: while φ(xk + τkd
k) > φ(xk) + στk⟨dk,∇φ(xk)⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for

The main assumption for the well-posedness and global convergence

(PD) generalized Hessian ∂2φ is positive-definite on IRn.
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TILT STABILITY IN OPTIMIZATION

DEFINITION (Pol-Roc98) For φ : IRn → IR, a point x̄ ∈ domφ is a

tilt-stable local minimizer with modulus ℓ if there is γ such that

Mγ : v 7→ argmin
{
φ(x)− ⟨v, x⟩

∣∣∣ x ∈ IBγ(x̄)
}

is single-valued and Lipschitz continuous around the origin in IRn

with constant ℓ and such that Mγ(0) = {x̄}.
Theorem (Pol-Roc98) Let φ : IRn → IR is prox-regular and subd-

ifferentially continuous [RW98] at x̄ for v̄ ∈ ∂φ(x̄) (this holds, in

particular, for C1,1 and for convex functions). Then x̄ is tilt stable

local minimizer of φ for v̄ if and only if

∂2φ(x̄, v̄) is positive-definite.

By now we have complete characterizations of tilt stability with

precise formulas for computing the best modulus bounds for major

classes problems in constrained optimization and optimal control.
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WELL-POSEDNESS AND CONVERGENCE OF ALGORITHM 1

Theorem[KMPT21] Let φ : IRn → IR be of class C1,1 under the

fulfillment of (PD). Then whenever ∂φ(x) ̸= 0 there is d ̸= 0 with

−∇φ(x) ∈ ∂2φ(x)(d) and ⟨φ(x), d⟩ < 0.

Thus for each σ ∈ (0,1) there exists δ > 0 such that

φ(x+ τd) ≤ φ(x) + στ⟨∇φ(x), d⟩ whenever τ ∈ (0, δ).

Furthermore, for any starting point x0, each limiting point x̄ of

the sequence of iterates {xk} is a tilt-stable local minimizer of φ

satisfying the following conditions:

• The convergence rate of the sequence {φ(xk)} is at least Q-linear.

• The convergence rates of both sequences {xk} and {∥∇φ(xk)∥}
are at least R-linear.
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SUPERLINEAR GLOBAL CONVERGENCE OF ALGORITHM 1

Definition [Gfrerer-Outrata21] A mapping F : IRn ⇒ IRm is semismooth∗

at (x̄, ȳ) ∈ gphF if

⟨u∗, u⟩ = ⟨v∗, v⟩ for all (v∗, u∗) ∈ gphD∗F
(
(x̄, ȳ); (u, v)

)
.

For single-valued and locally Lipschitzian mappings, this reduces to

the semismooth property if F is directionally differentiable.

Theorem [KMPT21] In the setting of the previous theorem, sup-

pose that ∇φ(x̄) is semismooth∗ at x̄. Then {xk} Q-superlinearly

converges to x̄ provided that either ∇φ is directionally differentiable

at x̄, or σ ∈ (0,1/(2ℓκ)), where κ is a modulus of tilt stability of

x̄ and ℓ is a Lipschitz constant of ∇φ around x̄. Moreover, in this

case the sequence {φ(xk)} converges Q-superlinearly to φ(x̄), and

the sequence {∇φ(xk)} convergesQ-superlinearly to 0 as k → ∞.
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LEVENBERG-MARQUARDT METHOD IN C1,1 OPTIMIZATION

The (PD) assumption is now replaced by

(PSD) generalized Hessian ∂2φ is positive-semidefinite on IRn.

Algorithm 2 Levenberg-Marquardt algorithm for C1,1 functions

Input: x0 ∈ IRn, c > 0, σ ∈
(
0, 12

)
, β ∈ (0,1)

1: for k = 0,1, . . . do

2: If ∇φ(xk) = 0, stop; else let µk := c∥∇φ(xk)∥ and go to Step 3

3: Choose dk ∈ IRn such that −∇φ(xk) ∈ ∂2φ(xk)(dk) + µkd
k

4: Set τk = 1

5: while φ(xk + τkd
k) > φ(xk) + στk⟨∇φ(xk), dk⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for
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WELL-POSEDNESS AND CONVERGENCE OF ALGORITHM 2

Theorem[KMPT21] Let φ be of class C1,1 under the fulfillment of

(PSD). If ∂φ(x) ̸= 0 and ε > 0, then there is d ̸= 0 with

−∇φ(x) ∈ ∂2φ(x)(d) + εd and ⟨φ(x), d⟩ < 0.

Thus for each σ ∈ (0,1) there exists δ > 0 such that

φ(x+ τd) ≤ φ(x) + στ⟨∇φ(x), d⟩ whenever τ ∈ (0, δ).

Furthermore, any starting point x0 produces iterates {xk} such that

the sequence of values {φ(xk)} is monotonically decreasing and all

the limiting points of {xk} satisfy the stationary condition.
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METRIC REGULARITY

DEFINITION [M93,RW98] A mapping F : IRn ⇒ IRm is metrically

regular around (x̄, ȳ) ∈ gphF if there exist µ > 0 and neighborhoods

U of x̄ and V of ȳ such that

dist
(
x;F−1(y)

)
≤ µdist

(
y;F (x)

)
for all (x, y) ∈ U × V,

where F−1(y) := {x ∈ IRn | y ∈ F (x)}.
Coderivative/Mordukhovich criterion: If a set-valued mapping

F : IRn ⇒ IRm is of closed-graph around (x̄, ȳ), then its metric regu-

larity around this point is equivalent to

D∗F (x̄, ȳ)(0) = {0}.
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RATES OF CONVERGENCE FOR ALGORITHM 2

THEOREM [KMPT21] Let x̄ be a limiting point of the sequence

of iterates in Algorithm 2. In addition to (PSD), suppose that

∇φ is metrically regular around this point. Then x̄ is a tilt-stable

local minimizer of φ, and Algorithm 2 converges to x̄ with the

convergence rates as follows:

• The sequence {φ(xk)} converges to φ(x̄) at least Q-linearly.

• The sequences {xk} and {∇φ(xk)} converge at least R-linearly to

x̄ and 0, respectively.

• The convergence rates of {xk}, {φ(xk)}, {∇φ(xk)} are at least Q-

superlinear if ∇φ is semismooth∗ at x̄ and either one of the following

two conditions holds:

(a) ∇φ is directionally differentiable at x̄,

(b) σ ∈ (0,1/(2ℓκ)), where κ > 0 and ℓ > 0 are moduli of metric

regularity and Lipschitz continuity of ∇φ around x̄, respectively.
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PROBLEMS OF CONVEX COMPOSITE OPTIMIZATION

Consider the class of optimization problems

minimize φ(x) := f(x) + g(x), x ∈ IRn,

where f : IRn → IR is convex and smooth, while the regularizer

g : IRn → IR is convex and extended-real-valued. This class en-

compasses problems of constrained optimization. For each γ > 0

consider the proximal mapping of the regularizer g by

Proxγg(x) := argmin
y∈IRn

{
g(y) +

1

2γ
∥y − x∥2

}
and define [PB13] the forward-backward envelope (FBE) of φ

φγ(x) := inf
y∈IRn

{
f(x) + ⟨∇f(x), y − x⟩+ g(y) +

1

2γ
∥y − x∥2

}
.

If f is C2-smooth with the Lipschitz continuous ∇f , then

∇φγ(x) = γ−1
(
I − γ∇2f(x)

)(
x− Proxγg(x− γ∇f(x))

)
.
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DAMPED NEWTON FOR CONVEX COMPOSITE OPTIMIZATION

Algorithm 3 Coderivative-based damped Newton algorithm for con-

vex composite optimization with f(x) := 1
2⟨Ax, x⟩+ ⟨b, x⟩+ α

Input: x0 ∈ IRn, γ > 0 such that B := I − γA ≻ 0, σ ∈
(
0, 12

)
,

β ∈ (0,1), and φγ is FBE

1: for k = 0,1, . . . do

2: If ∇φγ(xk) ̸= 0, set uk := xk − γ(Axk + b), vk := Proxγg(uk)

3: Find dk as −1
γ(x

k − vk)−Adk ∈ ∂2g
(
vk, 1γ(u

k − vk)
)
(xk − vk + dk)

4: Set τk = 1

5: while φγ(xk + τkd
k) > φγ(xk) + στk⟨∇φγ(xk), dk⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for
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TWICE EPI-DIFFERENTIABILITY

The second subderivative [RW98] of φ : IRn → IR at x̄ for v, w is

d2φ(x̄, v)(w) := lim inf
τ↓0, u→w

∆2
τφ(x̄, v)(u) where

∆2
τφ(x̄, v)(u) := φ(x̄+τu)−φ(x̄)−τ⟨v,u⟩

1
2τ

2 .

The function φ is twice epi-differentiable at x̄ for v if for every w

and τk ↓ 0 there exists a sequence wk → w such that

φ(x̄+ τkw
k)− φ(x̄)− τk⟨v, wk⟩

1
2τ

2
k

→ d2φ(x̄, v)(w).

A general and verifiable condition for twice epi-differentiability is

provided by parabolic regularity, which covers a large territory in

second-order variational analysis and optimization [MMS21].
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SUPERLINEAR CONVERGENCE OF ALGORITHM 3

THEOREM [KMPT21] If A is positive-definite, then Algorithm 3

generates a sequence {xk} such that it globally R-linearly converges

to x̄, which a tilt-stable local minimizer of φ with modulus κ :=

1/λmin(A). Furthermore, the convergence rate of {xk} is at least

Q-superlinear if ∂g is semismooth∗ at (x̄, v̄), where v̄ := −Ax̄ − b,

and if either one of two following conditions is satisfied:

• σ ∈ (0,1/(2LK)), where L := 2
(
1− γλmin(A)

)
/γ and

K := κ+ γ∥B−1∥.
• g is twice epi-differentiable at x̄ for v̄.
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LEVENBERG-MARQUARDT FOR CONVEX OPTIMIZATION

Algorithm 4 Coderivative-based Levenberg-Marquardt algorithm

for convex composite optimization

Input: x0 ∈ IRn, γ > 0 such that B := I − γA ≻ 0, λ > 0, σ ∈
(
0, 12

)
,

β ∈ (0,1), and φγ is FBE

1: for k = 0,1, . . . do

2: Set uk := xk − γ(Axk + b), vk := Proxγg(uk), µk := λ∥∇φγ(xk)∥
3: Set dk = Bzk, where zk is from −1

γ(x
k−vk)−(µkI+AB)zk ∈

∂2g
(
vk, 1γ(u

k − vk)
) (

xk − vk + (B + γµkI)z
k
)

4: Set τk = 1

5: while φγ(xk + τkd
k) > φγ(xk) + στk⟨∇φγ(xk), dk⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for
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GLOBAL CONVERGENCE OF ALGORITHM 4

THEOREM [KMPT21] Let A be positive-semidefinite. Then:

• Any limiting point x̄ of iterates {xk} of Algorithm 4 is an optimal

solutions to φ.

• If ∂φ is metrically regular ar (x̄,0) with modulus κ > 0, then the

sequence {xk} globally R-linearly converges to x̄, and x̄ is a tilt-

stable local minimizer of φ with modulus κ.

• The rate of convergence of {xk} is at least Q-superlinear if ∂g

is semismooth∗ at (x̄, v̄), where v̄ := −Ax̄ − b, and if either one of

following two conditions holds:

(a) σ ∈ (0,1/(2LK)), where L := 2
(
1− γλmin(A)

)
/γ and K :=

κ+ γ∥B−1∥.
(b) g is twice epi-differentiable at x̄ for v̄.

18

Boris
Highlight

Boris
Highlight

Boris
Highlight

Boris
Highlight

Boris
Highlight

Boris
Highlight

Boris
Highlight

Boris
Highlight

Boris
Highlight



SOLVING LASSO PROBLEMS

The basic Lasso problem appeared in statistic [T86] as

minimize φ(x) :=
1

2
∥Ax− b∥22 + µ∥x∥1, x ∈ IRn,

where A is an m× n matrix and µ > 0. All the parameters of Algo-

rithms 3 (GDNM) and Algorithm 4 (GLMM) are computed entirely

in terms of given data of the Lasso problem.

Numerical experiments are conducted for GDNM and GLMM by us-

ing random data with µ := 10−3 and compare with the performance

of ADMM [BPCPE10], FISTA [BT09] and SSNAL [LST18].

The conducted experiments show that both GDNM and GLMM

behave better (exhibiting the Q-superlinear convergence) than the

other algorithms for m ≥ n. It may not be the case for m < n when

GLMM behaves better than GDNM and often better than FISTA

and ADMM but usually worse than SSNAL.
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SOLVING LASSO ON RANDOM INSTANCES
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