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A motivation of studying generalized interiors

It is known that in vector optimization in infinite dimensional linear
spaces difficulties may arise because of the possible non-solidness of
ordering cones (for instance in the fields of optimal control, approximation
theory, duality theory). Thus, it is of increasing interest to derive
optimality conditions and duality results for such vector optimization
problems using generalized interiority conditions. Such conditions can
be formulated using the well-established generalized interiority notions
given by quasi-interior, quasi-relative interior, algebraic interior (also
known as core), relative algebraic interior (also known as intrinsic core,
pseudo relative interior or intrinsic relative interior). Moreover, it is
known that for defining Pareto-type solution concepts of vector
optimization problems, generalized interiority notions are also useful.
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A motivation of studying generalized algebraic interiors

Having two real linear spaces X and E , a vector-valued objective function
f : X → E , a certain set of constraints Ω ⊆ X , a convex (ordering) cone
K ⊆ E (with possibly empty algebraic interior), a vector optimization
problem is defined by {

f (x)→ min w.r.t. K
x ∈ Ω.

For this problem, a useful solution concept is to say that a point x̄ ∈ Ω is
optimal if

{x ∈ Ω | f (x) ∈ f (x̄)− icorK} = ∅, (1)

where icorK denotes the intrinsic core of K .
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A motivation of studying generalized algebraic interiors

By involving an appropriate set S ⊆ E \ {0} with icorK ⊆ S one can
define a stronger solution concept by replacing (1) by

{x ∈ Ω | f (x) ∈ f (x̄)− S} = ∅. (2)

Notice that (2) implies (1). This leads to other solutions concepts such
as the well-known concepts of Pareto efficiency (i.e., x̄ satisfies (2) for
S := K \ (−K )) or proper Pareto efficiency (i.e., x̄ satisfies (2) with
S := corC for some generalized dilating cone C).
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Convex core topology

Let
E ′ := {x ′ : E → R | x ′ is a linear functional}

be the algebraic dual space of E .

Consider the strongest locally convex topology τc on E , that is
generated by the family of all the semi-norms defined on E ; τc is
known as the convex core topology.

The topological dual space of E , namely (E , τc)∗, is exactly the
algebraic dual space E ′.

References: Holmes (1975), Khan, Tammer and Zălinescu
(2015), and Zălinescu and Novo (2021)
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Some algebraic definitions

Algebraic notions
corΩ := {x ∈ Ω | ∀ v ∈ E ∃ δ > 0 : x + [0, δ] · v ⊆ Ω}.
icorΩ := {x ∈ Ω | ∀ v ∈ aff(Ω− Ω) ∃ δ > 0 : x + [0, δ] · v ⊆
Ω}.
aclΩ := {x ∈ E | ∃ x ∈ Ω [x , x) ⊆ Ω}.

As usual, the set Ω ⊆ E is said to be
(algebraically) solid if corΩ 6= ∅.
relatively (algebraically) solid if icorΩ 6= ∅.
algebraically closed if aclΩ = Ω.
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Special properties of convex sets

For any linear topology τ on E , we have aclΩ ⊆ clτ Ω.
Hence, if clτ Ω = Ω then Ω = aclΩ.
For any relatively solid, convex set Ω, we have

aclΩ = clτC Ω.
For any convex set Ω, we have

corΩ = intτc Ω and icorΩ = rintτc Ω.
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Algebraic properties of convex cones

Definition 1
Let E be a real linear space. A set K ⊆ E is called a convex cone
if 0 ∈ K = R+ · K = K + K.

Assume that K ⊆ E is a convex cone. Define `(K ) := K ∩ (−K ).

Lemma 1

1◦ Q := K \ `(K ) is a convex set and Q0 := Q ∪ {0} is a
pointed, convex cone.

2◦ For all x ∈ Q and all x ∈ K we have [x , x) ⊆ Q.
3◦ If Q 6= ∅, then Q ⊆ K ⊆ aclQ.
4◦ Q 6= ∅ ⇐⇒ icorK ⊆ Q ⇐⇒ 0 /∈ icorK.
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The dual cone of the convex cone K

Consider the following subsets of E ′

• K+ := {x ′ ∈ E ′ | ∀ k ∈ K : x ′(k) ≥ 0},
• K# := {x ′ ∈ E ′ | ∀ k ∈ K \ {0} : x ′(k) > 0},
• K& := {x ′ ∈ E ′ | ∀ k ∈ K \ `(K ) : x ′(k) > 0}.
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New algebraic properties of dual cones of convex cones

Theorem 2

Assume that K is a τc -closed, convex cone. Then, the following
hold:
1◦ corK+ ⊆ K#.

2◦ icorK+ ⊆ K&.

Now, assume that E has finite dimension. Then, we have:
3◦ If K+ is solid, then corK+ = K#.

4◦ icorK+ = K+ ∩ K&.

5◦ If either K 6= `(K ) or K = {0}, then icorK+ = K&.
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Separation theorems in linear spaces using algebraic notions

Proposition 3 (Holmes’ support theorem)

Assume that Ω ⊆ E is a relatively solid, convex set, and x ∈ E.
Then, the following assertions are equivalent:
1◦ x /∈ icorΩ.
2◦ ∃ x ′ ∈ E ′, α ∈ R,∀ω ∈ icorΩ : x ′(x) ≤ α < x ′(ω).

Corollary 4
Assume that Ω1,Ω2 ⊆ E are relatively solid, convex sets. Then,
the following assertions are equivalent:
1◦ (icorΩ1) ∩ (icorΩ2) = ∅.
2◦ ∃ x ′ ∈ E ′, α ∈ R,∀ω1 ∈ icorΩ1, ω2 ∈ icorΩ2 :

0 ≤ α < x ′(ω1)− x ′(ω2).

Christian Günther Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces



Motivation Preliminaries Solution concepts Scalarization References The End

Content

1 Motivation

2 Preliminaries

3 Solution concepts in vector optimization based on the intrinsic
core notion

4 Some new linear scalarization results in vector optimization

Christian Günther Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces



Motivation Preliminaries Solution concepts Scalarization References The End

Vector optimization problems

Assume that X and E are real linear spaces, and E is pre-ordered
by a convex cone K . In vector optimization, one aims to
minimize a vector-valued function

f : X → E

over a nonempty set Ω of X , i.e.,{
f (x)→ min w.r.t. K
x ∈ Ω.

(PΩ)

Typically one is looking for so-called Pareto efficient solutions of
the vector optimization problem (PΩ). Notice, the ideas for such
solution concepts for vector optimization problems date back to
Edgeworth (1881) and Pareto (1906).
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Binary relations defined on E

We assume now that

K ⊆ E is a convex cone with K 6= `(K ). (3)

It is well-known that K induces on E a preorder relation 5K
defined, for any two points y , y ∈ E , by

y 5K y :⇐⇒ y ∈ y − K .

Moreover, consider the following binary relations:

y ≤K y :⇐⇒ y ∈ y − K \ `(K ),
y <K y :⇐⇒ y ∈ y − icorK .
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Pareto efficiency in vector optimization

Definition 2 (Pareto efficiency)
A point x ∈ Ω is said to be a Pareto efficient solution if for any
x ∈ Ω the condition f (x) 5K f (x) implies f (x) 5K f (x).
The set of all Pareto efficient solutions of (PΩ) is denoted by

Eff(Ω | f ,K ) := {x ∈ Ω | ∀x ∈ Ω : f (x) 5K f (x) ⇒ f (x) 5K f (x)}.
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Example: Pareto efficiency in vector optimization

f [Ω]

f1

f2

f [Ω] ∩ (f (x̂)− R2
+ \ {0}) 6= ∅

f [Ω] ∩ (f (x̄)− R2
+ \ {0}) = ∅

f [Ω] ∩ (f (x̃)− R2
+ \ {0}) 6= ∅

K = R2
+

0

f (x̄)

f (x̂)

f (x̃)
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Weak Pareto efficiency in vector optimization

Definition 3 (Weak Pareto efficiency)
A point x ∈ Ω is said to be a weakly Pareto efficient solution if
there is no x ∈ Ω such that f (x) <K f (x).
The set of all weakly Pareto efficient solutions of (PΩ) is denoted
by

WEff(Ω | f ,K ) := {x ∈ Ω | @x ∈ Ω : f (x) <K f (x)}.
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Example: Weak Pareto efficiency in vector optimization

f (x̄) ∈ MIN(f [S],R2
+) = f [Eff(S | f ,R+

2 )]

f [Ω] ∩ (f (x̂)− intR2
+) = ∅

f [Ω]

f (x̄)

f (x̃)

f (x̂)

f [Ω] ∩ (f (x̄)− intR2
+) = ∅

f1

f2

f [Ω] ∩ (f (x̃)− intR2
+) 6= ∅K = R2

+

0
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Generalized dilating cones

As usual for Henig-type proper efficiency concepts, (generalized)
dilating cones for the cone K (which satisfies (3)) will play an important
role. Our considered proper efficiency concepts will mainly be based on
two specific families of convex cones, namely C(K ) and D(K ), that we
introduce below:

C(K ) := {C ⊆ E | C is a convex cone with K\`(K ) ⊆ icorC and C 6= `(C)}

and

D(K ) := {D ⊆ E | D is a nontrivial, convex cone with K\`(K ) ⊆ corD}.
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Henig proper efficiency

Definition 4 (Proper efficiency in the sense of Henig)
.
A point x ∈ Ω is said to be a classical Henig properly efficient
solution if there is a nontrivial, convex cone D ⊆ E with
K \ `(K ) ⊆ corD (i.e., D ∈ D(K )) such that x ∈ Eff(Ω | f ,D).

The set of all classical Henig properly efficient solutions of (PΩ) is
denoted by

PEffc(Ω | f ,K ).
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Example: Henig proper efficiency in vector optimization

f [Ω]

f (x̄)

f (x̂)

f1

f2

K = R2
+

C
0
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Henig-type proper efficiency

Definition 5 (Extended proper efficiency in the sense of Henig)
.
A point x ∈ Ω is said to be a Henig properly efficient solution if
there is a convex cone C ⊆ E with K \ `(K ) ⊆ icorC and
C 6= `(C) (i.e., C ∈ C(K )) such that x ∈ Eff(Ω | f ,C).

The set of all Henig properly efficient solutions of (PΩ) is denoted
by

PEff(Ω | f ,K ).
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Relationships between the solution concepts

Lemma 5

Suppose that K satisfies (3). Then, the following assertions hold:

1◦ PEffc(Ω | f ,K ) ⊆ PEff(Ω | f ,K ) ⊆ Eff(Ω | f ,K ) ⊆WEff(Ω |
f ,K ).

2◦ If C(K ) = D(K ) (e.g., if K is solid), then
PEffc(Ω | f ,K ) = PEff(Ω | f ,K ).

3◦ If C(K ) = ∅ (⇐⇒ D(K ) = ∅ ⇐⇒ K& = ∅), then
PEffc(Ω | f ,K ) = PEff(Ω | f ,K ) = ∅.

4◦ PEffc(Ω | f ,K ) =
⋃

D∈D(K) Eff(Ω | f ,D) =
⋃

D∈D(K) WEff(Ω |
f ,D).

5◦ PEff(Ω | f ,K ) =
⋃

C∈C(K) Eff(Ω | f ,C) =
⋃

C∈C(K) WEff(Ω | f ,C).

It is possible that
PEffc(Ω | f ,K ) ( PEff(Ω | f ,K ) ( Eff(Ω | f ,K ).
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Monotonicity concepts for real-valued functions

Definition 6
Given a binary relation ∼E∈ {5K ,≤K , <K}, a function ϕ : E → R
is said to be ∼E -increasing if

∀ y , y ∈ E : y ∼E y ⇒ ϕ(y) < ϕ(y).

Recall that

y 5K y :⇐⇒ y ∈ y − K ,
y ≤K y :⇐⇒ y ∈ y − K \ `(K ),
y <K y :⇐⇒ y ∈ y − icorK .
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Scalarization results

Lemma 6

Consider a real-valued function ϕ : E → R. Then, the following
assertions hold:
1◦ If ϕ is <K -increasing, then

argminx∈Ω (ϕ ◦ f )(x) ⊆WEff(Ω | f ,K ).
2◦ If ϕ is ≤K -increasing, then

argminx∈Ω (ϕ ◦ f )(x) ⊆ Eff(Ω | f ,K ).
3◦ If ϕ is <D-increasing for some D ∈ D(K ), then

argminx∈Ω (ϕ ◦ f )(x) ⊆ PEffc(Ω | f ,K ).
4◦ If ϕ is <C -increasing for some C ∈ C(K ), then

argminx∈Ω (ϕ ◦ f )(x) ⊆ PEff(Ω | f ,K ).
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Linear scalarization results

Lemma 7

Suppose that K satisfies (3). Then:
1◦ For any x ′ ∈ K+ \ `(K+), we have

argminx∈Ω (x ′ ◦ f )(x) ⊆WEff(Ω | f ,K ).
2◦ For any x ′ ∈ K&, we have

argminx∈Ω (x ′ ◦ f )(x) ⊆ PEffc(Ω | f ,K ) ⊆ PEff(Ω | f ,K ).
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K -convexlike functions

As usual, the vector function f : X → E is called
• K -convex on the convex set Ω ⊆ X if, for any x , x̄ ∈ Ω and
λ ∈ (0, 1), we have
f (λx + (1− λ)x̄) ∈ λf (x) + (1− λ)f (x̄)− K .
• K -convexlike on Ω ⊆ X if f [Ω] + K is a convex set.

Remark 8
Any K-convex function f is K-convexlike as well.
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Scalarization results (weak Pareto efficiency)

Theorem 9

Suppose that K is relatively solid and satisfies (3). In addition,
assume that the function f is K-convexlike on Ω, and f [Ω] + K is
relatively solid. Then, the following assertions hold:
1◦

WEff(Ω | f ,K ) ⊆
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x).

2◦ If K+ is pointed, then

WEff(Ω | f ,K ) =
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x).
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Scalarization results (weak Pareto efficiency)

Theorem 9 (part 2)
3◦ If x̄ ∈WEff(Ω | f ,K ) and f (x̄) + icorK ⊆ icor(f [Ω] + K ),

then
x̄ ∈

⋃
x ′∈K+\`(K+)

argminx∈Ω (x ′ ◦ f )(x).

4◦ If f [WEff(Ω | f ,K )] + icorK ⊆ icor(f [Ω] + K ), then

WEff(Ω | f ,K ) =
⋃

x ′∈K+\`(K+)
argminx∈Ω (x ′ ◦ f )(x).

Christian Günther Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces



Motivation Preliminaries Solution concepts Scalarization References The End

Scalarization result (Henig proper efficiency)

Theorem 10

Suppose that K satisfies (3). Assume that the function f is
K-convexlike on Ω. Then:
1◦

PEffc(Ω | f ,K ) =
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x).

2◦ If K is τc -closed, and E has finite dimension, then

PEffc(Ω | f ,K ) =
⋃

x ′∈icor K+

argminx∈Ω (x ′ ◦ f )(x).
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Scalarization result (Henig-type proper efficiency)

Theorem 11

Suppose that K is relatively solid and satisfies (3). In addition,
assume that the function f is K-convexlike on Ω. Then:
1◦ If x̄ ∈ PEff(Ω | f ,K ) and f (x̄) + icorK ⊆ icor(f [Ω] + K ),

then
x̄ ∈

⋃
x ′∈K&

argminx∈Ω (x ′ ◦ f )(x).

2◦ If f [PEff(Ω | f ,K )] + icorK ⊆ icor(f [Ω] + K ), then

PEff(Ω | f ,K ) =
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x).
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Scalarization results (Henig-type proper efficiency)

Theorem 11 (part 2)
3◦ If K is τc -closed, E has finite dimension, and

f [PEff(Ω | f ,K )] + icorK ⊆ icor(f [Ω] + K ), then

PEff(Ω | f ,K ) =
⋃

x ′∈icor K+

argminx∈Ω (x ′ ◦ f )(x).
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Thank you for your attention!
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