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Motivation

A common procedure to find the solutions of the problem

minimize f (x) s.t. gi (x) = bi ∀i ∈ 1,m,

where f , gi : E ⊂ X → R, is to consider the Lagrangian
L : E × Rm → R defined by

L(x , λ) := f (x) +
∑m

i=1
λi (gi (x)− bi ),

and to find its critical points (x , λ) ∈ E × Rm, that is

∇xL(x , λ) = 0, ∇λL(x , λ) = 0. (CPL)

So, in order to envisage LMM one must have the possibility to
speak about ∇xL(x , λ); hence X must be a n.v.s. (or, more
generally, a t.v.s.), x must be in the (algebraic) interior of E , and
the functions f and gi must be at least Gâteaux differentiable at x .
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Moreover, the existence of λ ∈ Rm verifying the conditions in
(CPL) is a necessary condition for the optimality of x under
supplementary conditions on the data; for a precise statement see
for example [L69, Th. 9.3.1]1.

Problems appear when the set E has empty (algebraic) interior,
situation in which the differentiability of f and gi can not be
considered (see [L69, pp. 171, 172]); this is often the case when X
is a function-space, as in entropy minimization (or maximization)
problems.

However, in many books and articles on entropy optimization
LMM is used in a formal way.

1[L69] D. Luenberger: Optimization by Vector Space Methods, JohnWiley
& Sons, Inc. (1969).
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Borwein & Limber in [BL96]2 describe the main steps of the usual
procedure for solving the entropy minimization problem; they
mention

“We shall see that this is usually the solution but each step in the
above derivation is suspect and many are wrong without certain
assumptions.”

Pavon & Ferrante in [PV13, Cor. 9.3]3 establish a sufficient
condition for the optimality of the element obtained using LMM.
However, examining their application of this result for establishing
that “the Gaussian density pc(x) = (2π)−1/2 exp

(
− 1

2
x2

σ2

)
has

maximum entropy among densities with given mean and variance”
we observed that [PV13, Cor. 9.3] is not adequate for solving this
problem.

2[BL96] J.M. Borwein, M. Limber: On entropy maximization via convex
programming, Preprint, Simon Fraser University (1996).

3[PF13] M. Pavon, A. Ferrante: On the geometry of maximum entropy
problems, SIAM Review 55 (2013), 415–439.
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Aim

The entropy minimization problem we have in view is

minimize
∫
T ϕ(x(t))dµ(t)

s.t.
∫
T ψk(t)x(t)dµ(t) = bk (k = 1, . . . ,m), (EM)

where (T ,A, µ) is a measure space with µ a positive σ-finite
measure, ψk is measurable for each k , and ϕ : R→ R is a proper
lsc convex function with int(domϕ) 6= ∅.

Our aim is to show that the solutions found using formally LMM
are indeed optimal solutions for the entropy minimization problem.

In fact, we provide a characterization of a solution x of (EM) from
which we deduce that x obtained using LMM is a solution of the
problem.

Note that J.M. Borwein and some of his collaborators treated
rigorously problem (EM) when µ(T ) <∞ and the functions ψi are
from L∞(T ,A, µ) in a series of papers.
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Framework

Let (T ,A, µ) be a measure space. Set

M :=M(T ,A, µ):=
{
x : T → R | x is measurable

}
,

M0:= {x ∈M | x(t) ∈ R for a.e. t ∈ T},
M+

0 := {x ∈M0 | x ≥ 0 a.e.},

where R := R ∪ {−∞,∞} (with ∞ := +∞).

As usual we consider as being equal two elements of M which
coincide almost everywhere (a.e. for short).

Recall that for every function x ∈M with values in R+ := [0,∞]
there exists its integral

∫
T xdµ ∈ R+; moreover, if

∫
T xdµ <∞,

then x ∈M+
0 .

In the sequel we use the conventions

∞−∞ := +∞+ (−∞) := −∞+∞ :=∞,
0 · (±∞) := (±∞) · 0 := 0.
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With these conventions
∫
T xdµ :=

∫
T x+dµ−

∫
T x−dµ makes

sense for every x ∈M, where α+ := max{α, 0} and α− := (−α)+

for α ∈ R; moreover,
∫
T xdµ <∞ if and only if

∫
T x+dµ <∞ (in

particular x+ ∈M0), and
∫
T xdµ ∈ R if and only if

∫
T x+dµ <∞

and
∫
T x−dµ <∞ (in particular x ∈M0).

The class of those x ∈M with
∫
T xdµ ∈ R is denoted, as usual,

by L1(T ,A, µ), or simply L1(T ), or even L1.

Lemma 1

Let x , y ∈M. Then the following assertions hold:

(a) If x ≤ y then
∫
T xdµ ≤

∫
T ydµ.

(b) If x , y ≥ 0 and either
∫
T xdµ <∞, or

∫
T ydµ <∞, then∫

T (x − y)dµ =
∫
T xdµ−

∫
T ydµ.

(c) If
∫
T xdµ <∞ and

∫
T ydµ <∞ then∫

T (x + y)dµ =
∫
T xdµ+

∫
T ydµ.
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Consider ϕ ∈ Λ(R) (that is a proper convex function on R) with
int(domϕ) 6= ∅. Because [ϕ ≤ α] := {u ∈ R | ϕ(u) ≤ α} is an
interval, it follows immediately that ϕ ◦ x ∈M for every x ∈M,
where ϕ(±∞) :=∞.

Let us also consider a linear space X ⊂M0, and define

Φ : X → R, Φ(x) :=

∫
T
ϕ ◦ x dµ =

∫
T
ϕ(x(t)) dµ(t).
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Proposition 3

Let ϕ ∈ Λ(R) and Φ as above. Then

dom Φ =
{
x ∈ X | (ϕ ◦ x)+ ∈ L1

}
⊂ {x ∈ X | x(t) ∈ domϕ a.e.}

and Φ is convex; in particular, dom Φ is convex. Moreover, if ϕ is
strictly convex (on its domain) and Φ is finite on the convex set
K ⊂ dom Φ, then Φ + ιK is strictly convex, where ιK (x) := 0 for
x ∈ K , ιK (x) :=∞ for x ∈ X \ K .

As well known, if Φ takes the value −∞, then it takes the value
−∞ on icr(dom Φ); however, icr(dom Φ) is empty in many cases of
interest when X is an Lp space with p ∈ [1,∞[.
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Having in view the applications to entropy minimization problems,
in the sequel we consider ϕ ∈ Γ(R) (that is ϕ ∈ Λ(R) and ϕ is lsc)
such that ϕ is strictly convex on I := domϕ, int I 6= ∅, and ϕ is
derivable on int I ; this implies that the conjugate ϕ∗ of ϕ [defined
by ϕ∗(v) = supv∈R (uv − ϕ(u))] is derivable on int(domϕ∗) which
is nonempty.

Moreover, if a := inf I ∈ R, then either ϕ(a) = +∞ and
limu→a+ ϕ

′(u) = −∞, or ϕ(a) ∈ R and
ϕ′(a) :=ϕ′+(a) = limu→a+ ϕ

′(u) (∈ [−∞,∞[). Similarly, if
b := sup I ∈ R, then either ϕ(b) = +∞ and limu→b− ϕ

′(u) = +∞,
or ϕ(b) ∈ R and ϕ′(b) := ϕ′−(b) = limu→b− ϕ

′(u) (∈ ]−∞,∞]).

Assuming that Φ is proper, then (as seen above) Φ is strictly
convex on dom Φ.
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Proposition 4

Consider x , x ∈ dom Φ with Φ(x) ∈ R. Then

Φ′(x , x − x) := lim
s→0+

Φ(x + s(x − x))− Φ(x)

s

=

∫
T
ϕ′(x(t)) ·

(
x(t)− x(t)

)
dµ(t). (R4)

Proof. Since x , x ∈ dom Φ we have that x(t), x(t) ∈ domϕ a.e.
Assume first that Φ(x) ∈ R. Take (sn)n≥1 ⊂ ]0, 1[ a decreasing
sequence with sn → 0. Set

θn := ϕ ◦ x − ϕ ◦ x − ϕ ◦ (x + sn(x − x))− ϕ ◦ x
sn

;

then 0 ≤ θn ≤ θn+1 a.e. on T . Moreover, for a.e. t ∈ T ,
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θ(t) := lim
n→∞

θn(t) = ϕ(x(t))− ϕ(x(t))− ϕ′(x(t)) · (x(t)− x(t)) ≥ 0

By Lebesgue’s monotone convergence theorem (see [R87,
Th. 1.26]4), θ = (ϕ′ ◦ x) · (x − x) ∈M, and

Φ(x)−Φ(x)− Φ′(x , x − x)

= lim
n→∞

[
Φ(x)− Φ(x)− Φ(x + sn(x − x))− Φ(x)

sn

]
= lim

n→∞

∫
T θndµ =

∫
T θdµ

=
∫
T [ϕ(x(t))− ϕ(x(t))− ϕ′(x(t)) · (x(t)− x(t))] dµ(t) ∈ R+.

Since ϕ ◦ x , ϕ ◦ x ∈ L1, we get the existence of∫
T ϕ
′(x(t)) · (x(t)− x(t))dµ(t) ∈ [−∞,+∞[, and so (R4) holds.

The case ϕ(x) = −∞ is simpler (using Lemma 1).
4[R87] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill,

Inc., 1987.
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EMP and Lagrange multipliers

Let us consider ψ1, . . . , ψm ∈M0 and the linear mappings

Ψk : Xk → R, Ψk(x) :=

∫
T
xψkdµ (k ∈ 1,m),

where the linear space Xk is defined by

Xk := {x ∈M0 | xψk ∈ L1}.

Take also X 0
k := ker Ψk := {x ∈ Xk | Ψk(x) = 0} and set

X̃ :=
⋂m

k=1Xk , X̃ 0 :=
⋂m

k=1X
0
k ;

note that X̃ = {x ∈M0 | xψ̃ ∈ L1}, where ψ̃ = |ψ1|+ . . .+ |ψm| .
The entropy minimization problem in this context is

(P) minimize Φ(x) s.t. x ∈ X ∩ X̃ and Ψk(x) = bk ∀k ∈ 1,m,

where b := (b1, . . . , bm) ∈ Rm is a given element.
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Set
Fb :=

{
x ∈ X̃ | Ψk(x) = bk ∀k ∈ 1,m

}
. (R6)

Of course, if x ∈ Fb then Fb = x + X̃ 0; in particular, Fb is a
convex set.

Because ϕ is strictly convex, if Φ + ιFb
is proper then Φ + ιFb

is
strictly convex, and so (P) has at most one solution. Said
differently, if x is a solution of (P) with Φ(x) ∈ R, then x is the
unique solution of (P).

It is known (at least for the Boltzmann–Shannon entropy) that
when problem (P) has a feasible solution x̃ ∈ dom Φ such that
x̃(t) ∈ int(domϕ) for a.e. t ∈ T and ϕ′(a) = −∞ (when
a = inf(domϕ) ∈ R), ϕ′(b) = +∞ (when b = sup(domϕ) ∈ R), if
x is the optimal solution of (P) with Φ(x) ∈ R, then
x(t) ∈ int(domϕ) for a.e. t ∈ T .
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Proposition 5

Let x ∈ X ∩ Fb be such that Φ(x) ∈ R.
(a) x is a solution of problem (P) if and only if (one of) the
following two equivalent conditions hold(s):

Φ′(x , x − x) ≥ 0 ∀x ∈ Fb ∩ dom Φ, (R7)∫
T
ϕ′(x(t)) · u(t)dµ(t) ≥ 0 ∀u ∈ Kx , (R8)

where Kx := [R+(dom Φ− x)] ∩ X̃ 0.

(b) If there exists α1, . . . , αm ∈ R such that
ϕ′ ◦ x = α1ψ1 + . . .+ αmψm, then x is optimal solution of (P).
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Proof. (a) The equivalence

[x is a solution of (P)] ⇐⇒ [Φ′(x , x − x) ≥ 0 ∀x ∈ Fb ∩ dom Φ]

follows immediately from a known result.
Indeed, from the inequality Φ′(x , x − x) ≤ Φ(x)− Φ(x) we get the
implication ⇐.

Assume that x is solution of (P) and take x ∈ Fb ∩ dom Φ. Then
(1− s)x + sx ∈ Fb ∩ dom Φ, and so Φ ((1− s)x + sx) ≥ Φ(x) for
s ∈ ]0, 1[. Hence s−1 [Φ ((1− s)x + sx)− Φ(x)] ≥ 0, and so,
taking the limit for s → 0, Φ′(x , x − x) ≥ 0.

Since (Fb ∩ dom Φ)− x = (dom Φ− x) ∩ X̃ 0, and using
Proposition 4, (R7) can be rewritten as∫
T

(ϕ′◦x)·udµ =

∫
T
ϕ′(x(t))·u(t)dµ(t) ≥ 0 ∀u ∈ (dom Φ−x)∩X̃ 0,

which, at its turn, is clearly equivalent to (R8).
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(b) Consider the linear space

Yx := {u ∈M0 | (ϕ′ ◦ x) · u ∈ L1}

and the linear operator

Θx : Yx → R, Θx(u) :=

∫
T

(ϕ′ ◦ x) · udµ.

Since Φ′(x , x − x) <∞ for every x ∈ dom Φ, from assertion (a),

x is solution of (P) ⇐⇒ Kx − Kx ⊂ Yx and Θx(u) ≥ 0 ∀u ∈ Kx .

A sufficient condition for (R8) is

Y := X ∩ X̃ ⊂ Yx and Θx(u) = 0 ∀u ∈ Y 0 := X ∩ X̃ 0. (R9)

For Y ⊂ Yx , condition (R9) is equivalent to the existence of
α1, . . . , αm ∈ R such that Θx |Y = α1Ψ1|Y + . . .+ αmΨm|Y .
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Clearly, Θx |Y = α1Ψ1|Y + . . .+ αmΨm|Y is equivalent to∫
T

[
ϕ′(x(t))− (α1ψ1(t) + . . .+ αmψm(t))

]
· u(t)dµ(t) = 0 ∀u ∈ Y .

(R10)
Observing that an obvious sufficient condition for (R10) is

ϕ′(x(t)) = α1ψ1(t) + . . .+ αmψm(t) a.e. on T , (R11)

the proof is complete. �

It is worth observing that (R10) and (R11) are equivalent when µ
is σ-finite and the condition

(H) ∀A ∈ A with µ(A) ∈ ]0,∞[, ∃u ∈M0 such that u > 0 a.e.
and uχA ∈ Y

holds. (χA is the characteristic function of A, that is χA(t) := 1
for t ∈ A, χA(t) := 0 for t ∈ T \ A.)
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It is worth observing that condition (R11) is exactly the one found
using formally LMM. In fact Proposition 5 and its proof explain
how one arrives rigorously at the sufficient optimality condition of
x ∈ Fb with Φ(x) ∈ R in (R11).

An alternative justification of this fact in the case of countable
sums is done by Vallée & Z. in [VZ16]5 and applied in [Z18]6; of
course this can also be obtained using Proposition 5 (b) for
T := N∗ and µ the counting measure (that is µ(A) =∞ for
A ⊂ N∗ infinite and µ(A) equals the number of elements of A for
A finite).

5[VZ16] C. Vallée, C. Z.: Series of convex functions: subdifferential,
conjugate and applications to entropy minimization, J. Convex Anal. 23(4)
(2016), 1137-1160.

6[Z18] C. Z.: On the entropy minimization problem in Statistical
Mechanics, J. Math. Anal. Appl. 457 (2018), 1713-1729].
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Proposition 5 (b) shows that there is no need to verify separately
that the solutions found using LMM in convex or concave entropy
optimization are effectively solutions of (P); this verification is
done for example in the proof of [CT06, Th. 12.1.1]7 and in the
proofs of [C, Ths. 3.2, 3.3]8.

Note the following remark from [CT06, page 420]:

“The approach using calculus only suggests the form of the density
that maximizes the entropy. To prove that this is indeed the
maximum, we can take the second variation.”

7[CT06] T. M. Cover, J. A. Thomas: Elements of Information Theory, 2nd
ed., John Wiley & Sons, Hoboken, NJ, 2006.

8[C] K. Conrad: Probability distributions and maximum entropy, Expository
paper, www.math.uconn.edu/˜kconrad/blurbs/analysis/entropypost.pdf.
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In [BCM03, Cor. 1]9, in the case µ(T ) <∞ and ψi ∈ L∞(T )
(i ∈ 1,m), at least for Boltzmann–Shannon entropy (ϕ(u) := u ln u
for u ≥ 0 with 0 ln 0 := 0, and ϕ(u) :=∞ for u < 0), for
X = L1(T ) and b ∈ icrD the problem (P) has optimal solution
(provided by LMM), where

D := {b ∈ Rm | Fb ∩ dom Φ 6= ∅} (R12)

=

{
b ∈ Rm | ∃x ∈ dom Φ, ∀i ∈ 1,m :

∫
T
xψidµ = bi

}
,

Fb being defined in (R6).

The situation is different in the general case.

9[BCM03] [J.M. Borwein, R. Choksi, P. Marechal: Probability distributions
of assets inferred from option prices via the principle of maximum entropy,
SIAM J. Optim. 14 (2003), 464–478.
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An example

As an application of the previous approach, we consider

(PG )m minimize

∫
R
x(t) ln x(t)dt s.t.

∫
R
tk−1x(t)dt = bk ∀k ∈ 1,m

with b = (b1, . . . , bm) ∈ Rm,.

With our previous notation, T := R, A is the class of Lebesgue
measurable subsets of R, µ is the Lebesgue measure, ϕ = EBS and
X :=M0; consequently, dom Φ ⊂M+

0 .

It follows that 0 ∈ D ⊂M+
0 , and so b2k−1 ∈ R+ if b ∈ D and

N∗ 3 k ≤ (m + 1)/2, where D is defined in (R12).

The problem (PG )m is studied, for example, by Cover & Thomas
[CT06] for b1 = 1, and by Pavon & Ferrante [PF13] for m = 3 and
b = (1, 0, σ2).
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Proposition 7 (to be continued)

Consider the problem (PG )3. Then

D = {(0, 0, 0)} ∪
{
b ∈ R3 | b1 > 0, b3 > 0, |b2| <

√
b1b3

}
.

(R13)
Moreover, if b = 0, then Fb ∩ dom Φ = {0}, and so x := 0 is the
solution of (PG )3. If b1, b3 > 0 and |b2| <

√
b1b3 then the

solution and the value of (PG )3 are

x(t) =
b2

1√
2π(b1b3 − b2

2)
e
−1

2
b2

1
b1b3−b2

2
(t−b2)2

(t ∈ R), (R14)

Φ(x) = b1 ln
b2

1√
2πe(b1b3 − b2

2)
, (R15)

respectively.
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Proposition 7 (continued)

In particular, if b = (1, 0, σ2) with σ > 0, then

x(t) =
1√

2πσ2
e−

t2

2σ2 (t ∈ R), Φ(x) = − ln
√

2πeσ2. (R16)

Proof. Consider ϕ, X , Φ, ψk , Xk as above. For x ∈M0, one has∫
R
|tx(t)| dt ≤

√∫
R
|x(t)| dt ·

√∫
R
t2 |x(t)| dt

by Hölder’s inequality, with equality if and only if x = 0. Hence
X̃ = X1 ∩ X3; moreover, because D ⊂M+

0 , from the above
inequality we obtain that the inclusion ⊂ holds in (R13).

Take b1, b3 > 0 and |b2| <
√
b1b3. The problem is to find (if

possible) some x ∈ Fb ∩ dom Φ (⊂ X ∩ X̃ ) such that (R11) holds.
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Assuming that such an x exists, then x(t) = ec0+c1t+c2t2
for t ∈ R

and some c0, c1, c2 ∈ R. Since x ∈ X1 = L1, we have necessarily

that c2 < 0, and so x(t) = e−
1
2
α(t−β)2+γ for some α, β, γ ∈ R with

α > 0 and all t ∈ R. Imposing x to belong to Fb, and using the

known fact that
∫
R e−

1
2 t

2

dt =
√

2π, we get

α =
b2

1

b1b3 − b2
2

, β =
b2

b1
, γ = ln

b2
1√

2π(b1b3 − b2
2)
.

Hence x is the function defined in (R14). Consequently,
b := (b1, b2, b3) ∈ D and

Φ(x) =

∫
R
x(t) ln x(t)dt =

∫
R

(
−1

2
α(t − β)2 + γ

)
x(t)dt.

Taking into account the constraints and the expressions of α, β, γ
above, we get the formula for Φ(x) from (R15).
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Moreover, in the general case, for probability densities with mean
m ∈ R and variance σ2 (σ > 0), one has b1 = 1, b2 = m and
b3 = σ2 + 2mb2 −m2b1 = σ2 + m2. From (R14) we get

x(t) =
1√

2πσ2
e−

(t−m)2

2σ2 (t ∈ R), Φ(x) = − ln
√

2πeσ2,

which gives (R16) when m = 0.

Remark

The proof of the previous proposition shows that using LMM
formally could be usefull not only for finding the optimal solutions
of the entropy optimization problem (P), but also for finding the
set S of those b ∈ Rm for which (P) has optimal solution.
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As mentioned above, problem (PG )3 is considered for
b = (1, 0, σ2) by Pavon and Ferrante and solved applying [PF13,
Cor. 9.3]. There X = L1(R), whence X ∗ = L∞(R), and

V :=

{
x ∈ X |

∫
R
x(t)dt =

∫
R
tx(t)dt =

∫
R
t2x(t)dt = 0

}
.

It is not explained which is the annihilator of V in order to take x
of the form t 7→ Ceϑ1t+ϑ2t2

.

Proposition 7 provides an example in which µ(T ) =∞ and the
problem (P) has optimal solutions for all b ∈ D. In [BCM03] it is
presented a situation with X = L1(0,∞) and ϕ the
Boltzmann–Shannon entropy in which (P) has optimal solutions
for all b ∈ icrD, as in the case µ(T ) <∞ and ψi ∈ L∞(T ).
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Problem (P) is considered in [VZ16] and [Z18] for T := N∗, µ the
counting measure, and ϕ(u) = u ln u − u for u ≥ 0, ϕ(u) =∞ for
u < 0.

A complete study of (P) for m = 1 is given in [VZ16, Prop. 3.3];
so, besides providing the value of problem (P) for b ∈ D [D being
defined in (R12)], when D 6= {0} it is shown that either (P) has
optimal solution for each b ∈ D, or
(intD) \ {b ∈ D | (P) has optimal solution} is nonempty.

In [VZ16, Prop. 3.4], for m = 2 one has an example in which
D = {(0, 0)} ∪

(
(0,∞)× R

)
and for every b1 > 0 there exists only

one b2 ∈ R for which (P) has optimal solution which (moreover)
can be found using formally LMM.

A complete solution of problem (P) for m = 2 and ψ1 ≡ 1 is given
in [Z, Th. 4.1]; the conclusions are similar to those in [VZ, Prop.
3.3] mentionted above.
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Thank you for your attention!
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