Proximal gradient methods applied to optimization problems with L^p -cost, $p \in [0,1)$

Daniel Wachsmuth joint work with Carolin Natemeyer

University of Würzburg

A workshop on Optimization and Operator Theory Technion - 2021

Outline

1. Introduction

- 2. Optimality conditions
- 3. Proximal gradient method
- 4. Convergence analysis
- 5. Numerical results

The sparse control problem

Optimal control problem = minimization problem

 $\min f(u)$

with controls

$$u:\Omega o \mathbb{R}, \quad u \in L^2(\Omega)$$

on bounded set $\Omega \in \mathbb{R}^d$.

Sparse controls: Penalize measure of support of controls

$$\|u\|_0 := ext{meas}\{x \in \Omega: \ u(x)
eq 0\}$$

or some p-'norm' $\|u\|_p$ with $p \in (0,1)$

$$||u||_p := \int_{\Omega} |u(x)|^p \,\mathrm{d}x.$$

Optimization problem

Let $p \in [0, 1)$.

Minimize

$$J(u) := f(u) + \frac{\alpha}{2} \|u\|_{L^{2}(\Omega)}^{2} + \beta \|u\|_{p}$$

over all $u \in L^2(\Omega)$ satisfying

$$u \in \mathcal{U}_{\mathsf{ad}} := \{ v \in L^2(\Omega) : |v| \le b \text{ a.e. on } \Omega \}.$$

Reference: [Ito-Kunisch '14][DW '19]

Example

 $f(u) = \frac{1}{2} ||y(u) - y_d||^2_{L^2(\Omega)}$ with y(u) being the solution of a pde to control u.

Lower semicontinuity

- $x \mapsto |x|_p$ is lower semicontinuous on \mathbb{R} ,
- $u \mapsto ||u||_p$ is lower semicontinuous on $L^q(\Omega)$,
- $u \mapsto ||u||_p$ is seq. weakly lower semicontinuous on ℓ^q ,
- $u \mapsto ||u||_p$ is *NOT* seq. weakly lower semicontinuous on $L^q(\Omega)$.

Example

Define $\Omega = (0, 1)$ and $f_n(x) := 1 + \operatorname{sign} \sin(2n\pi x).$ Then $f_n \rightarrow 1 =: f$ in $L^q(\Omega), 1 \le q < \infty$, but $\|f_n\|_p = 2^{p-1} < 1, \quad \|f\|_p = 1.$

Existence of solutions cannot be proven. No regularizing effect.

Outline

1. Introduction

2. Optimality conditions

- 3. Proximal gradient method
- 4. Convergence analysis
- 5. Numerical results

Finite-dimensional case

Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Consider

```
\min f(x) + \|x\|_p
```

with $||x||_p := \sum_i |x_i|_p$. (1) The point x = 0 is always a local minimum. (2) If \bar{x} is locally optimal, then

$$abla f(ar{x})_i + p \operatorname{sign}(ar{x}_i) |ar{x}_i|^{p-1} = 0 \quad \forall i: \ ar{x}_i \neq 0.$$

No information on $\nabla f(\bar{x})_i$ if $\bar{x}_i = 0$.

(3) Analogous results hold for optimization in sequence spaces.

Pontryagin maximum principle

Theorem

Let \bar{u} be a local solution of the L^p -problem. Then it holds

$$ar{u}(x) = {
m arg\,min}_{|u| \leq b}
abla f(ar{u})(x) \cdot u + rac{lpha}{2} |u|^2 + eta |u|_p$$

for almost all $x \in \Omega$.

- Stronger optimality condition than in the finite-dimensional case.
- No derivative of $u \mapsto |u|_p$ appears.

Proof uses needle perturbations

$$d_n(x) = \chi_{B_{r_n}(x_0)}(x) \cdot (v - \overline{u}(x)) : \quad r_n \to 0, \ |v| \le b$$

and Lebesgue's differentiation theorem.

[Casas '94][Ito, Kunisch '14]

Optimality conditions - ideas of proof

Convex differentiable optimization:

Fix direction $u - \bar{u}$, compute

$$\lim_{t\searrow 0}\frac{f(\bar{u}+t(u-\bar{u}))-f(\bar{u})}{t}.$$

Pontryagin maximum principle:

Fix amplitude $v \in \mathbb{R}$, compute

$$\lim_{r\searrow 0}\frac{f(\bar{u}+\chi_{B_r(x)}(v-\bar{u}))-f(\bar{u})}{|B_r(x)|}.$$

Pontryagin maximum principle

The control \bar{u} satisfies PMP if and only if

$$(-
abla f(ar u)(x), \ ar u(x)) \in P$$
 for a.a. x

 $P : \mathbb{R} \rightrightarrows \mathbb{R}$ is monotone with closed graph, but not maximal monotone.

Outline

- 1. Introduction
- 2. Optimality conditions
- 3. Proximal gradient method
- 4. Convergence analysis
- 5. Numerical results

Motivation - steepest descent

Consider

 $\min f(x)$.

Gradient descent step

$$x_{k+1} = x_k - t_k \nabla f(x_k)$$

is a solution of

$$\min f(x_k) + \nabla f(x_k)(x - x_k) + \frac{1}{2t_k} \|x - x_k\|^2.$$

Motivation - proximal gradient

Consider

$$\min f(x) + g(x).$$

Compute x_{k+1} as one solution of

$$\min f(x_k) + \nabla f(x_k)(x - x_k) + \frac{1}{2t_k} ||x - x_k||^2 + g(x).$$

or equivalently as

$$x_{k+1} \in \operatorname{prox}_{t_kg}(x_k - t_k \nabla f(x_k))$$

Still involves the non-smooth function g.

Example

For $g = \| \cdot \|_1$ the resulting method is soft-thresholding applied to a gradient step.

Proximal gradient step - pointwise

Set $L := \frac{1}{t}$.

Determine u_{k+1} as a solution of

$$\min f(u_k) + \nabla f(u_k)(u - u_k) + \frac{L}{2} \|u - u_k\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 + \beta \|u\|_p + h_{\mathcal{U}_{ad}}(u).$$

Proximal gradient step - pointwise

Set $L := \frac{1}{t}$.

Determine u_{k+1} as a solution of

$$\min f(u_k) + \nabla f(u_k)(u - u_k) + \frac{L}{2} ||u - u_k||^2_{L^2(\Omega)} + \frac{\alpha}{2} ||u||^2_{L^2(\Omega)} + \beta ||u||_p + h_{\mathcal{U}_{ad}}(u).$$

Pointwise minimization:

$$u_{k+1}(x)\in \operatorname{prox}_{L^{-1}g}\left(u_k(x)-L^{-1}
abla f(u_k)(x)
ight) ext{ for a.a. } x\in \Omega$$

where

$$g(u):=\frac{\alpha}{2}|u|^2+\beta|u|_p+I_{[-b,b]}(u).$$

Proximal operator of g

Important property for $u \in \operatorname{prox}_{L^{-1}g}(v)$:

Either
$$u = 0$$
 or $|u| \ge u_0$

with $u_0 > 0$ depending on *L*.

Iteration methods based on PMP

PMP is equivalent to minimizing some Hamiltonian:

$$\bar{u}(x) = \arg\min_{|u| \le b} H(\bar{y}(x), u, \bar{p}(x)).$$

Fixed-point method

[Krylov, Černous'ko '62]

$$u_{k+1} := \arg\min_{|u| \le b} H(y_k(x), u, p_k(x))$$

.. and with prox-term

$$u_{k+1} := \arg\min_{|u| \le b} H(y_k(x), u, p_k(x)) + \frac{L_k}{2}(u - u_k(x))^2$$

[Sakawa, Shindo '80, Bonnans '86, Breitenbach, Borzi '19]

If control appears linearly in the state equation, this method is equivalent to the proximal gradient method.

Outline

- 1. Introduction
- 2. Optimality conditions
- 3. Proximal gradient method
- 4. Convergence analysis
- 5. Numerical results

Setting

- (A1) $g(u) := \frac{\alpha}{2} |u|^2 + \beta |u|_p + I_{[-b,b]}(u)$
- (A2) $f: L^2(\Omega) \to \mathbb{R}$ is weakly lower semicontinuous and bounded from below,
- (A3) $f: L^2(\Omega) \to \mathbb{R}$ is Fréchet differentiable,
- (A4) ∇f is Lipschitz continuous from $L^2(\Omega)$ to $L^2(\Omega)$ with modulus L_f :

$$\|\nabla f(u_1) - \nabla f(u_2)\|_{L^2(\Omega)} \le L_f \|u_1 - u_2\|_{L^2(\Omega)}$$

for all $u_1, u_2 \in L^2(\Omega)$.

Convergence analysis

Theorem

Suppose $L > L_f$.

(1) The sequence $(f(u_k) + g(u_k))$ is monotonically decreasing and converging.

(2)
$$\sum_{k=1}^{\infty} \|u_{k+1} - u_k\|_{L^2(\Omega)}^2 \to 0.$$

 (3) The sequences (u_k) and (∇f(u_k)) are bounded in L²(Ω) if α > 0 or b < +∞.

Characteristic functions (χ_k) converge: no oscillation.

Convergence analysis

Theorem

Suppose $L > L_f$.

(1) The sequence $(f(u_k) + g(u_k))$ is monotonically decreasing and converging.

(2)
$$\sum_{k=1}^{\infty} \|u_{k+1} - u_k\|_{L^2(\Omega)}^2 \to 0$$

 (3) The sequences (u_k) and (∇f(u_k)) are bounded in L²(Ω) if α > 0 or b < +∞.

Define

$$\chi_k(x) := |u_k(x)|_0.$$

(4)
$$\sum_{k=1}^{\infty} \|\chi_k - \chi_{k+1}\|_{L^1(\Omega)} < +\infty.$$

(5) $\chi_k \to \chi$ in $L^1(\Omega)$ for some characteristic function χ .

Characteristic functions (χ_k) converge: no oscillation.

Weak limit points for L⁰-problems

Theorem

Let g be induced by $\|\cdot\|_0$.

Let $u^* \in U_{ad}$ be a weak sequential limit point of the iterates (u_k) in $L^2(\Omega)$. Then it holds

$$f(u^*) + g(u^*) \leq \liminf_{k \to \infty} (f(u_k) + g(u_k))$$

and

$$(1-\chi)u^*=0$$

with χ as above.

Lower semicontinuity along the iterates for L^0 -problems.

[DW '19]

Strong convergence for integer-valued problems

Theorem

Suppose $g = \delta_{\mathbb{Z}}$.

Then $u_k \to u^*$ in $L^1(\Omega)$.

Proof:
$$||u_{k+1} - u_k||^2_{L^2(\Omega)} \ge ||u_{k+1} - u_k||^1_{L^1(\Omega)}$$

$$\sum_{k=0}^{\infty} \|u_{k+1} - u_k\|_{L^1(\Omega)} \le \sum_{k=0}^{\infty} \|u_{k+1} - u_k\|_{L^2(\Omega)}^2 < +\infty$$

Passing to the limit in PMP

Two problems:

(1)
$$\frac{L}{2}(u - u_k)^2$$
 is there to stay: u_{k+1} satisfies
 $\nabla f(u_k)(u_{k+1} - u_k) + \frac{L}{2}(u_{k+1} - u_k)^2 + g(u_{k+1})$
 \leq
 $\nabla f(u_k)(u - u_k) + \frac{L}{2}(u - u_k)^2 + g(u)$

for all $u \in \mathbb{R}$ for a.a. x.

(2) weak convergence of (u_k) in $L^2(\Omega)$, no pointwise convergence.

Goal: Rewrite the inclusion

$$u_{k+1} \in \operatorname{prox}_{L^{-1}g}\left(u_k - L^{-1}\nabla f(u_k)\right)$$

Goal: Rewrite the inclusion

$$u_{k+1} \in \operatorname{prox}_{L^{-1}g}\left(u_k - L^{-1}\nabla f(u_k)\right)$$

Suppose $abla f: L^2(\Omega) o L^2(\Omega)$ is completely continuous, e.g.,

$$v_k
ightarrow v \ \Rightarrow \ \nabla f(v_k)
ightarrow \nabla f(v).$$

Then $u_{k_n} \rightharpoonup u^*$ in $L^2(\Omega)$ implies

$$abla f(u_{k_n}) + L(u_{k_n+1} - u_{k_n}) \rightarrow
abla f(u^*).$$

Goal: Rewrite the inclusion

$$u_{k+1} \in \operatorname{prox}_{L^{-1}g}\left(u_k - L^{-1} \nabla f(u_k)\right)$$

Suppose $abla f: L^2(\Omega) o L^2(\Omega)$ is completely continuous, e.g.,

$$v_k
ightarrow v \ \Rightarrow \ \nabla f(v_k)
ightarrow \nabla f(v).$$

Then $u_{k_n} \rightharpoonup u^*$ in $L^2(\Omega)$ implies

$$abla f(u_{k_n}) + L(u_{k_n+1} - u_{k_n}) \rightarrow
abla f(u^*).$$

Define G (depending on L) by

$$u_{k+1} \in G\Big(-(\nabla f(u_k)+L(u_{k+1}-u_k))\Big).$$

(Fixed points of $G \circ (-\nabla f)$ are L-stationary [Beck, Eldar '13])

Given

$$u_{k+1}(x) \in G\Big(-\big(\nabla f(u_k) + L(u_{k+1} - u_k)\big)(x)\Big)$$

 $G, \tilde{G} : \mathbb{R} \Rightarrow \mathbb{R}$ have closed graphs, are not single-valued, not monotone, $G \supset \tilde{G} \supset P$.

Given

$$u_{k+1}(x) \in G\left(-\left(\nabla f(u_k) + L(u_{k+1} - u_k)\right)(x)\right)$$

construct \tilde{u}_{k+1} such that $\chi_{k+1}\tilde{u}_{k+1} = \chi_{k+1}u_{k+1}$ and
 $\tilde{u}_{k+1}(x) \in \chi_{k+1}(x)\tilde{G}\left(-\left(\nabla f(u_k) + L(u_{k+1} - u_k)\right)(x)\right).$

 $G, \tilde{G} : \mathbb{R} \Rightarrow \mathbb{R}$ have closed graphs, are not single-valued, not monotone, $G \supset \tilde{G} \supset P$.

Theorem

Suppose $\nabla f : L^2(\Omega) \to L^2(\Omega)$ is completely continuous. Let u^* be a weak limit point of (u_k) . Then it holds

$$u^*(x) \in \left[G \cup \overline{\operatorname{conv}} \widetilde{G}\right] \left(-\nabla f(u^*)(x)\right)$$

and

$$(1-\chi)u^*=0.$$

- Weaker than PMP (even without taking $\overline{\text{conv}}$). Maps G, \tilde{G} depend monotonically on L. For L = 0, PMP is recovered.
- For convex g, weak sequential limit points would be stationary.
- If (∇f(u_k)) converges pointwise a.e., then result holds without conv.

PMP versus stationarity of limit points

Comparison of *P* and $G \cup \overline{\operatorname{conv}} \tilde{G}$:

Strong convergence

$$\Omega_{k,\mathsf{bad}} := \left\{ x : u_k(x) \neq 0 \text{ and } u_k(x) \text{ is on bad branch of } G(\cdot) \right\}$$

Theorem

Suppose $\nabla f : L^2(\Omega) \to L^2(\Omega)$ is completely continuous. Let g be induced by $\|\cdot\|_p$, $p \in (0, 1)$. Let $\alpha > 0$. Assume

 $meas(\Omega_{k,bad}) \rightarrow 0.$

Suppose $u_{k_n} \rightharpoonup u^*$. Then $u_{k_n} \rightarrow u^*$ and

$$\chi u^*(x) \in \chi G\Big(-\nabla f(u^*)(x)\Big).$$

Outline

- 1. Introduction
- 2. Optimality conditions
- 3. Proximal gradient method
- 4. Convergence analysis
- 5. Numerical results

Example

Define f(u) by

$$f(u) := \frac{1}{2} \|y_u - y_d\|_{L^2(\Omega)}^2,$$

where y_u denotes the weak solution of the elliptic partial differential equation

$$-\Delta y = u$$
 in Ω , $y = 0$ on $\partial \Omega$.

Here, we chose $\Omega = (0, 1)^2$, [Ito, Kunisch '14]

 $y_d(x_1, x_2) = 10x_1\sin(5x_1)\cos(7x_2), \quad \alpha = 0.01, \quad \beta = 0.01, \quad b = 4$

Solution

Optimal control u for p = 0.8

The bad set

Measure of $\Omega_{k, bad}$ for three different discretizations

Outlook

- results extend to sparsity-promoting g
- L^0 -constraints $||u||_0 \leq \tau$,
- group sparsity: L^0 in space, L^2 in time,
- second-order optimality conditions in cooperation with Eduardo Casas [SICON'20] and with Gerd Wachsmuth,
- *H*¹-regularization (existence of solutions, but no maximum principle),
- H^s-regularization.