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1. Introduction



The sparse control problem
Optimal control problem = minimization problem
min f(u)

with controls
Q=R uvel?Q)

on bounded set Q € RY.

Sparse controls: Penalize measure of support of controls
|ullo := meas{x € Q: u(x) # 0}

or some p-"'norm’ ||u||, with p € (0,1)

lullp := /Q u(x)|P dx.



Optimization problem

Let p€[0,1).
Minimize

J(u) 1= F(u) + S lullfzq) + Bllullo
over all u € L?(Q) satisfying

UEUyqg:={vel?Q):|v|<bae onQ}.

Reference: [lto-Kunisch '14][DW '19]

Example

f(u) = %Hy(u) = yd||%2(m with y(u) being the solution of a pde to
control wu.



Lower semicontinuity

® x — |x|p is lower semicontinuous on R,
® u s ||ullp is lower semicontinuous on L9(£2),
® u s ||ullp is seq. weakly lower semicontinuous on ¢9,

® u s ||ullp is NOT seq. weakly lower semicontinuous on L9(€2).

Example

Define Q2 = (0,1) and
fo(x) := 1+ signsin(2n7x).
Then f, = 1=:fin L9(Q), 1 < g < o0, but

[fallp = 2Pt <1, £, = 1.

Existence of solutions cannot be proven. No regularizing effect.
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2. Optimality conditions



Finite-dimensional case

Let f : R” — R be continuously differentiable. Consider

min £(x) + [Ix[l,
with [[x]|p = >=; [xilp-
(1) The point x = 0 is always a local minimum.
(2) If x is locally optimal, then
VF(x); + psign(x)|x[Pt =0 Vi: x #0.
No information on V£ (x); if x; = 0.

(3) Analogous results hold for optimization in sequence spaces



Pontryagin maximum principle

Theorem

Let & be a local solution of the LP-problem. Then it holds
_ : _ e}
i(x) = arg m|n|u|§be(u)(x) cu+ §|u|2 + Blulp
for almost all x € €.

e Stronger optimality condition than in the finite-dimensional
case.

® No derivative of u — |ul, appears.

Proof uses needle perturbations
dn(X) = XB,,(x0)(X) - (v —0(x)) - 1 =0, [v|<b

and Lebesgue's differentiation theorem.
[Casas '94][lto, Kunisch '14]



Optimality conditions - ideas of proof

Convex differentiable optimization:

Fix direction u — i, compute
im f(a+t(u—a))—f(a)
t\0 t '

Pontryagin maximum principle:
Fix amplitude v € R, compute

A g — B) - @)
™0 |Br(x)]




Pontryagin maximum principle

The control i satisfies PMP if and only if

(=Vf(a)(x), a(x)) e P fora.a. x

P : R = R is monotone with closed graph, but not maximal
monotone.
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3. Proximal gradient method



Motivation - steepest descent

Consider
min f(x).

Gradient descent step
Xk+1 = Xk — thf(Xk)
is a solution of

. 1
min f(xx) + VI (xx)(x — xx) + T lIx — xk||2.
k



Motivation - proximal gradient

Consider
min f(x) + g(x).

Compute xx11 as one solution of
. 1 2
min f(xx) + VF(xx)(x — xx) + EHX — xk||* + g(x).
or equivalently as
Xk+1 € prOthg(Xk — thf(Xk))

Still involves the non-smooth function g.

Example

For g = || - |1 the resulting method is soft-thresholding applied to
a gradient step.



Proximal gradient step - pointwise

Set L := %
Determine w41 as a solution of

_ L
min f(uk) + VF(uk) (v — ug) + 5”“ - UkH%?(Q)

(6
+ S M1l + Bllulle + he(u).



Proximal gradient step - pointwise

Set L := %

Determine w41 as a solution of

) L
min f(uk) + VF(uk) (v — ug) + §Hu - ukH%Q(Q)
«
+ EHUHfz(Q) + Bllullp + g (v).
Pointwise minimization:

uk+1(x) € prox; -1, (uk(x) — L_IVf(uk)(x)> fora.a. x € Q

where o
g(u) = 5’“’2 + Blulp + f—p,p)(u).



Proximal operator of g
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Important property for u € prox;-1,(v):

T
-2

Either u =0 or |u| > up

with ug > 0 depending on L.




Iteration methods based on PMP

PMP is equivalent to minimizing some Hamiltonian:

3(x) = arg min H(7(x). u. ().

Fixed-point method [Krylov, Cernous'ko '62]

Ukt1 1= arg |mi<nb H(yx(x), u, px(x))

ul<

. and with prox-term

. L
et = arg min H(yi(x), v, pe(x) + Fu— u(x))

ul<

[Sakawa, Shindo '80, Bonnans '86, Breitenbach, Borzi '19]

If control appears linearly in the state equation, this method is
equivalent to the proximal gradient method.
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4. Convergence analysis



Setting

(A1) g(u) = §[ul* + Blulp + f-p,p(u)
(A2) f:L%(Q) — R is weakly lower semicontinuous and bounded
from below,

(A3) f:L%(Q) — R is Fréchet differentiable,

(A4) Vf is Lipschitz continuous from L2(Q) to L2(Q) with modulus
Ly
IVf(u1) = VE(u2)llz) < Lellur — w2l 2(q)

for all uy, uy € L2(Q).



Convergence analysis

Theorem
Suppose L > L.

(1) The sequence (f(uk) + g(uk)) is monotonically decreasing
and converging.

(2) %21 Nluksr — unllfzq) — 0.

(3) The sequences (ux) and (V£ (uy)) are bounded in L?(Q) if
a>0or b < +o0.

Characteristic functions (xx) converge: no oscillation.



Convergence analysis

Theorem
Suppose L > L.

(1) The sequence (f(uk) + g(uk)) is monotonically decreasing
and converging.

(2) %21 Nluksr — unllfzq) — 0.

(3) The sequences (ux) and (V£ (uy)) are bounded in L?(Q) if
a>0or b < +o0.

Define
Xk (x) == [uk(x)]o-

(4) % Ixk = xkr1llrg) < +oo.
(5) xx — x in LY(Q) for some characteristic function x.

Characteristic functions (xx) converge: no oscillation.



Weak limit points for L°-problems

Theorem

Let g be induced by || - [|o.

Let u* € U,g be a weak sequential limit point of the iterates (uy)
in L2(Q). Then it holds

F(u) + g(u") < liminf(F(u) + g(ue))

and
(I=x)u"=0

with x as above.

Lower semicontinuity along the iterates for L%-problems.
[DW '19]



Strong convergence for integer-valued problems

Theorem

Suppose g = d7.
Then ux — u* in L1(Q).

Proof: |luk4+1 — Uk||%2(Q) 2 |luks1 = “k”il(n)

(o.9] oo
Z Ukt — UkHLl(Q) < Z | ukt1 — Uk”é(ﬂ) < +0o0
k=0 k=0



Passing to the limit in PMP

Two problems:

(1) £(u— u)? is there to stay: w1 satisfies

L
Vi (u)(uks1 — k) + E(Uk+1 — ) + g(uks1)

<
L 2
VE(ue)(u = u) + 5 (v — ux)” + g(u)
for all u € R for a.a. x.

(2) weak convergence of (ux) in L?(2), no pointwise convergence.



Stationarity of limit points
Goal: Rewrite the inclusion

Ukt1 € Prox; -1, <uk — L*1Vf(uk))



Stationarity of limit points
Goal: Rewrite the inclusion
Ukt1 € Prox; -1, <uk — L*1Vf(uk))
Suppose Vf : [2(Q) — L?() is completely continuous, e.g.,
vk = v = Vif(w)— Vi(v).
Then uy, — u* in L?(Q) implies

Vi(uk,)+ L(ug,+1 — uk,) — VF(u®).



Stationarity of limit points
Goal: Rewrite the inclusion
Ukt1 € Prox; -1, <uk — L*1Vf(uk))
Suppose Vf : [2(Q) — L?() is completely continuous, e.g.,
vk = v = Vf(v)— Vf(v).
Then uy, — u* in L?(Q) implies
Vi(uk,)+ L(ug,+1 — uk,) — VF(u®).
Define G (depending on L) by
Ukt1 € G( — (VF(uk) + L(ugs1 — uk))>.

(Fixed points of G o (—Vf) are L-stationary [Beck, Eldar '13])



Stationarity of limit points
Given

ui1(x) € G( — (VF(u) + Ly — uk))(x)>

-3 2 1 0 1 2 3

G,G:R=R have closed graphs, are not single-valued, not
monotone, G D G D P.



Stationarity of limit points
Given

ui1(x) € G( — (VF(u) + Ly — uk))(x)>

construct dg41 such that xk410k+1 = Xk+1Uk+1 and

fi1(x) € Xk+1(x)c”( — (VF(u) + L(tgys — uk))(x)).

-3 2 1 0 1 2 3 3 2 1 0 1 2

G,G:R=R have closed graphs, are not single-valued, not
monotone, G D G D P.



Stationarity of limit points

Theorem

Suppose V£ : 12(Q) — L?(R) is completely continuous.
Let u* be a weak limit point of (ux). Then it holds

u(x) € [Gumé] (—Vf(u*)(x))

and
(1—x)u"=0.

e Weaker than PMP (even without taking conv). Maps G, G
depend monotonically on L. For L =0, PMP is recovered.

® For convex g, weak sequential limit points would be stationary.

e If (Vf(uk)) converges pointwise a.e., then result holds
without conv.



PMP versus stationarity of limit points

Comparison of P and G U convG:
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Strong convergence

Qe pad = {x : uk(x) # 0 and ug(x) is on bad branch of G()}

Theorem

Suppose V£ : [2(Q) — L?(Q) is completely continuous. Let g be
induced by || - ||, p € (0,1). Let a > 0.
Assume

meas(k pad) — 0.

Suppose vy, — u*. Then uy, — u* and

xu*(x) € XG( — Vf(u*)(x)).
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5. Numerical results



Example

Define f(u) by
1
f(u) == §||Yu - )/d||i2(§z),

where y, denotes the weak solution of the elliptic partial
differential equation

—Ay=u inQ, y=0 ondQ.
Here, we chose Q = (0,1)?, [Ito, Kunisch '14]

yd(x1,x2) = 10xg sin(5x1) cos(7x2), a =0.01, S =0.01, b=4



Solution

Optimal control u for p = 0.8

o

SRR I I




The bad set

Measure of €y 1,.q for three different discretizations
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Outlook

® results extend to sparsity-promoting g

e [O-constraints |ullo < T,

e group sparsity: L0 in space, L? in time,

® second-order optimality conditions in cooperation with
Eduardo Casas [SICON'20] and with Gerd Wachsmuth,

® H'-regularization (existence of solutions, but no maximum
principle),

® H°-regularization.



	Introduction
	Optimality conditions
	Proximal gradient method
	Convergence analysis
	Numerical results

