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The sparse control problem

Optimal control problem = minimization problem

min f (u)

with controls
u : Ω→ R, u ∈ L2(Ω)

on bounded set Ω ∈ Rd .

Sparse controls: Penalize measure of support of controls

‖u‖0 := meas{x ∈ Ω : u(x) 6= 0}

or some p-’norm’ ‖u‖p with p ∈ (0, 1)

‖u‖p :=

∫
Ω
|u(x)|p dx .



Optimization problem

Let p ∈ [0, 1).

Minimize

J(u) := f (u) +
α

2
‖u‖2

L2(Ω) + β‖u‖p

over all u ∈ L2(Ω) satisfying

u ∈ Uad := {v ∈ L2(Ω) : |v | ≤ b a.e. on Ω}.

Reference: [Ito-Kunisch ’14][DW ’19]

Example

f (u) = 1
2‖y(u)− yd‖2

L2(Ω) with y(u) being the solution of a pde to
control u.



Lower semicontinuity

• x 7→ |x |p is lower semicontinuous on R,

• u 7→ ‖u‖p is lower semicontinuous on Lq(Ω),

• u 7→ ‖u‖p is seq. weakly lower semicontinuous on `q,

• u 7→ ‖u‖p is NOT seq. weakly lower semicontinuous on Lq(Ω).

Example

Define Ω = (0, 1) and

fn(x) := 1 + sign sin(2nπx).

Then fn ⇀ 1 =: f in Lq(Ω), 1 ≤ q <∞, but

‖fn‖p = 2p−1 < 1, ‖f ‖p = 1.

Existence of solutions cannot be proven. No regularizing effect.
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Finite-dimensional case

Let f : Rn → R be continuously differentiable. Consider

min f (x) + ‖x‖p

with ‖x‖p :=
∑

i |xi |p.

(1) The point x = 0 is always a local minimum.

(2) If x̄ is locally optimal, then

∇f (x̄)i + p sign(x̄i )|x̄i |p−1 = 0 ∀i : x̄i 6= 0.

No information on ∇f (x̄)i if x̄i = 0.

(3) Analogous results hold for optimization in sequence spaces.



Pontryagin maximum principle

Theorem

Let ū be a local solution of the Lp-problem. Then it holds

ū(x) = arg min|u|≤b∇f (ū)(x) · u +
α

2
|u|2 + β|u|p

for almost all x ∈ Ω.

• Stronger optimality condition than in the finite-dimensional
case.

• No derivative of u 7→ |u|p appears.

Proof uses needle perturbations

dn(x) = χBrn (x0)(x) · (v − ū(x)) : rn → 0, |v | ≤ b

and Lebesgue’s differentiation theorem.
[Casas ’94][Ito, Kunisch ’14]



Optimality conditions - ideas of proof

Convex differentiable optimization:
Fix direction u − ū, compute

lim
t↘0

f (ū + t(u − ū))− f (ū)

t
.

Pontryagin maximum principle:
Fix amplitude v ∈ R, compute

lim
r↘0

f (ū + χBr (x)(v − ū))− f (ū)

|Br (x)|
.



Pontryagin maximum principle

The control ū satisfies PMP if and only if

(−∇f (ū)(x), ū(x)) ∈ P for a.a. x

P : R ⇒ R is monotone with closed graph, but not maximal
monotone.
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Motivation - steepest descent

Consider
min f (x).

Gradient descent step

xk+1 = xk − tk∇f (xk)

is a solution of

min f (xk) +∇f (xk)(x − xk) +
1

2tk
‖x − xk‖2.



Motivation - proximal gradient

Consider
min f (x) + g(x).

Compute xk+1 as one solution of

min f (xk) +∇f (xk)(x − xk) +
1

2tk
‖x − xk‖2 + g(x).

or equivalently as

xk+1 ∈ proxtkg (xk − tk∇f (xk))

Still involves the non-smooth function g .

Example

For g = ‖ · ‖1 the resulting method is soft-thresholding applied to
a gradient step.



Proximal gradient step - pointwise

Set L := 1
t .

Determine uk+1 as a solution of

min f (uk) +∇f (uk)(u − uk) +
L

2
‖u − uk‖2

L2(Ω)

+
α

2
‖u‖2

L2(Ω) + β‖u‖p + IUad
(u).

Pointwise minimization:

uk+1(x) ∈ proxL−1g

(
uk(x)− L−1∇f (uk)(x)

)
for a.a. x ∈ Ω

where
g(u) :=

α

2
|u|2 + β|u|p + I[−b,b](u).
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Proximal operator of g

Important property for u ∈ proxL−1g (v):

Either u = 0 or |u| ≥ u0

with u0 > 0 depending on L.



Iteration methods based on PMP

PMP is equivalent to minimizing some Hamiltonian:

ū(x) = arg min
|u|≤b

H(ȳ(x), u, p̄(x)).

Fixed-point method [Krylov, Černous′ko ’62]

uk+1 := arg min
|u|≤b

H(yk(x), u, pk(x))

.. and with prox-term

uk+1 := arg min
|u|≤b

H(yk(x), u, pk(x)) +
Lk
2

(u − uk(x))2

[Sakawa, Shindo ’80, Bonnans ’86, Breitenbach, Borzi ’19]

If control appears linearly in the state equation, this method is
equivalent to the proximal gradient method.
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Setting

(A1) g(u) := α
2 |u|

2 + β|u|p + I[−b,b](u)

(A2) f : L2(Ω)→ R is weakly lower semicontinuous and bounded
from below,

(A3) f : L2(Ω)→ R is Fréchet differentiable,

(A4) ∇f is Lipschitz continuous from L2(Ω) to L2(Ω) with modulus
Lf :

‖∇f (u1)−∇f (u2)‖L2(Ω) ≤ Lf ‖u1 − u2‖L2(Ω)

for all u1, u2 ∈ L2(Ω).



Convergence analysis

Theorem

Suppose L > Lf .

(1) The sequence (f (uk) + g(uk)) is monotonically decreasing
and converging.

(2)
∑∞

k=1 ‖uk+1 − uk‖2
L2(Ω) → 0.

(3) The sequences (uk) and (∇f (uk)) are bounded in L2(Ω) if
α > 0 or b < +∞.

Define
χk(x) := |uk(x)|0.

(4)
∑∞

k=1 ‖χk − χk+1‖L1(Ω) < +∞.

(5) χk → χ in L1(Ω) for some characteristic function χ.

Characteristic functions (χk) converge: no oscillation.
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Weak limit points for L0-problems

Theorem

Let g be induced by ‖ · ‖0.

Let u∗ ∈ Uad be a weak sequential limit point of the iterates (uk)
in L2(Ω). Then it holds

f (u∗) + g(u∗) ≤ lim inf
k→∞

(f (uk) + g(uk))

and
(1− χ)u∗ = 0

with χ as above.

Lower semicontinuity along the iterates for L0-problems.
[DW ’19]



Strong convergence for integer-valued problems

Theorem

Suppose g = δZ.

Then uk → u∗ in L1(Ω).

Proof: ‖uk+1 − uk‖2
L2(Ω) ≥ ‖uk+1 − uk‖1

L1(Ω)

∞∑
k=0

‖uk+1 − uk‖L1(Ω) ≤
∞∑
k=0

‖uk+1 − uk‖2
L2(Ω) < +∞



Passing to the limit in PMP

Two problems:

(1) L
2 (u − uk)2 is there to stay: uk+1 satisfies

∇f (uk)(uk+1 − uk) +
L

2
(uk+1 − uk)2 + g(uk+1)

≤

∇f (uk)(u − uk) +
L

2
(u − uk)2 + g(u)

for all u ∈ R for a.a. x .

(2) weak convergence of (uk) in L2(Ω), no pointwise convergence.



Stationarity of limit points

Goal: Rewrite the inclusion

uk+1 ∈ proxL−1g

(
uk − L−1∇f (uk)

)

Suppose ∇f : L2(Ω)→ L2(Ω) is completely continuous, e.g.,

vk ⇀ v ⇒ ∇f (vk)→ ∇f (v).

Then ukn ⇀ u∗ in L2(Ω) implies

∇f (ukn) + L(ukn+1 − ukn)→ ∇f (u∗).

Define G (depending on L) by

uk+1 ∈ G
(
−
(
∇f (uk) + L(uk+1 − uk)

))
.

(Fixed points of G ◦ (−∇f ) are L-stationary [Beck, Eldar ’13])
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Stationarity of limit points
Given

uk+1(x) ∈ G
(
−
(
∇f (uk) + L(uk+1 − uk)

)
(x)
)

construct ũk+1 such that χk+1ũk+1 = χk+1uk+1 and

ũk+1(x) ∈ χk+1(x)G̃
(
−
(
∇f (uk) + L(uk+1 − uk)

)
(x)
)
.

G , G̃ : R ⇒ R have closed graphs, are not single-valued, not
monotone, G ⊃ G̃ ⊃ P.
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ũk+1(x) ∈ χk+1(x)G̃
(
−
(
∇f (uk) + L(uk+1 − uk)

)
(x)
)
.

G , G̃ : R ⇒ R have closed graphs, are not single-valued, not
monotone, G ⊃ G̃ ⊃ P.



Stationarity of limit points

Theorem

Suppose ∇f : L2(Ω)→ L2(Ω) is completely continuous.
Let u∗ be a weak limit point of (uk). Then it holds

u∗(x) ∈
[
G ∪ convG̃

] (
−∇f (u∗)(x)

)
and

(1− χ)u∗ = 0.

• Weaker than PMP (even without taking conv). Maps G , G̃
depend monotonically on L. For L = 0, PMP is recovered.

• For convex g , weak sequential limit points would be stationary.

• If (∇f (uk)) converges pointwise a.e., then result holds
without conv.



PMP versus stationarity of limit points

Comparison of P and G ∪ convG̃ :



Strong convergence

Ωk,bad :=
{
x : uk(x) 6= 0 and uk(x) is on bad branch of G (·)

}
Theorem

Suppose ∇f : L2(Ω)→ L2(Ω) is completely continuous. Let g be
induced by ‖ · ‖p, p ∈ (0, 1). Let α > 0.
Assume

meas(Ωk,bad)→ 0.

Suppose ukn ⇀ u∗. Then ukn → u∗ and

χu∗(x) ∈ χG
(
−∇f (u∗)(x)

)
.
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Example

Define f (u) by

f (u) :=
1

2
‖yu − yd‖2

L2(Ω),

where yu denotes the weak solution of the elliptic partial
differential equation

−∆y = u in Ω, y = 0 on ∂Ω.

Here, we chose Ω = (0, 1)2, [Ito, Kunisch ’14]

yd(x1, x2) = 10x1 sin(5x1) cos(7x2), α = 0.01, β = 0.01, b = 4



Solution

Optimal control u for p = 0.8



The bad set

Measure of Ωk,bad for three different discretizations



Outlook

• results extend to sparsity-promoting g

• L0-constraints ‖u‖0 ≤ τ ,

• group sparsity: L0 in space, L2 in time,

• second-order optimality conditions in cooperation with
Eduardo Casas [SICON’20] and with Gerd Wachsmuth,

• H1-regularization (existence of solutions, but no maximum
principle),

• Hs -regularization.
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