Proximal gradient methods applied to optimization problems with L^{p}-cost,
 $$
p \in[0,1)
$$

Daniel Wachsmuth joint work with Carolin Natemeyer

University of Würzburg
A workshop on Optimization and Operator Theory
Technion - 2021

Outline

1. Introduction
2. Optimality conditions
3. Proximal gradient method
4. Convergence analysis
5. Numerical results

The sparse control problem

Optimal control problem $=$ minimization problem

$$
\min f(u)
$$

with controls

$$
u: \Omega \rightarrow \mathbb{R}, \quad u \in L^{2}(\Omega)
$$

on bounded set $\Omega \in \mathbb{R}^{d}$.
Sparse controls: Penalize measure of support of controls

$$
\|u\|_{0}:=\operatorname{meas}\{x \in \Omega: u(x) \neq 0\}
$$

or some p-'norm' $\|u\|_{p}$ with $p \in(0,1)$

$$
\|u\|_{p}:=\int_{\Omega}|u(x)|^{p} \mathrm{~d} x .
$$

Optimization problem

$$
\text { Let } p \in[0,1) \text {. }
$$

Minimize

$$
J(u):=f(u)+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}+\beta\|u\|_{p}
$$

over all $u \in L^{2}(\Omega)$ satisfying

$$
u \in \mathcal{U}_{\mathrm{ad}}:=\left\{v \in L^{2}(\Omega):|v| \leq b \text { a.e. on } \Omega\right\} .
$$

Reference: [Ito-Kunisch '14][DW '19]

Example

$f(u)=\frac{1}{2}\left\|y(u)-y_{d}\right\|_{L^{2}(\Omega)}^{2}$ with $y(u)$ being the solution of a pde to control u.

Lower semicontinuity

- $x \mapsto|x|_{p}$ is lower semicontinuous on \mathbb{R},
- $u \mapsto\|u\|_{p}$ is lower semicontinuous on $L^{q}(\Omega)$,
- $u \mapsto\|u\|_{p}$ is seq. weakly lower semicontinuous on ℓ^{q},
- $u \mapsto\|u\|_{p}$ is NOT seq. weakly lower semicontinuous on $L^{q}(\Omega)$.

Example

Define $\Omega=(0,1)$ and

$$
f_{n}(x):=1+\operatorname{sign} \sin (2 n \pi x) .
$$

Then $f_{n} \rightharpoonup 1=: f$ in $L^{q}(\Omega), 1 \leq q<\infty$, but

$$
\left\|f_{n}\right\|_{p}=2^{p-1}<1, \quad\|f\|_{p}=1
$$

Existence of solutions cannot be proven. No regularizing effect.

Outline

1. Introduction

2. Optimality conditions
3. Proximal gradient method
4. Convergence analysis
5. Numerical results

Finite-dimensional case

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Consider

$$
\min f(x)+\|x\|_{p}
$$

with $\|x\|_{p}:=\sum_{i}\left|x_{i}\right|_{p}$.
(1) The point $x=0$ is always a local minimum.
(2) If \bar{x} is locally optimal, then

$$
\nabla f(\bar{x})_{i}+p \operatorname{sign}\left(\bar{x}_{i}\right)\left|\bar{x}_{i}\right|^{p-1}=0 \quad \forall i: \bar{x}_{i} \neq 0
$$

No information on $\nabla f(\bar{x})_{i}$ if $\bar{x}_{i}=0$.
(3) Analogous results hold for optimization in sequence spaces.

Pontryagin maximum principle

Theorem

Let \bar{u} be a local solution of the $L^{p^{\prime}}$-problem. Then it holds

$$
\bar{u}(x)=\arg \min _{|u| \leq b} \nabla f(\bar{u})(x) \cdot u+\frac{\alpha}{2}|u|^{2}+\beta|u|_{p}
$$

for almost all $x \in \Omega$.

- Stronger optimality condition than in the finite-dimensional case.
- No derivative of $u \mapsto|u|_{p}$ appears.

Proof uses needle perturbations

$$
d_{n}(x)=\chi_{B_{r_{n}}\left(x_{0}\right)}(x) \cdot(v-\bar{u}(x)): \quad r_{n} \rightarrow 0,|v| \leq b
$$

and Lebesgue's differentiation theorem.
[Casas '94][Ito, Kunisch '14]

Optimality conditions - ideas of proof

Convex differentiable optimization:
Fix direction $u-\bar{u}$, compute

$$
\lim _{t \searrow 0} \frac{f(\bar{u}+t(u-\bar{u}))-f(\bar{u})}{t} .
$$

Pontryagin maximum principle:
Fix amplitude $v \in \mathbb{R}$, compute

$$
\lim _{r \searrow 0} \frac{f\left(\bar{u}+\chi_{B_{r}(x)}(v-\bar{u})\right)-f(\bar{u})}{\left|B_{r}(x)\right|} .
$$

Pontryagin maximum principle

The control \bar{u} satisfies PMP if and only if

$$
(-\nabla f(\bar{u})(x), \bar{u}(x)) \in P \quad \text { for a.a. } x
$$

$P: \mathbb{R} \rightrightarrows \mathbb{R}$ is monotone with closed graph, but not maximal monotone.

Outline

1. Introduction

2. Optimality conditions
3. Proximal gradient method
4. Convergence analysis
5. Numerical results

Motivation - steepest descent

Consider

$$
\min f(x)
$$

Gradient descent step

$$
x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right)
$$

is a solution of

$$
\min f\left(x_{k}\right)+\nabla f\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2 t_{k}}\left\|x-x_{k}\right\|^{2}
$$

Motivation - proximal gradient

Consider

$$
\min f(x)+g(x)
$$

Compute x_{k+1} as one solution of

$$
\min f\left(x_{k}\right)+\nabla f\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2 t_{k}}\left\|x-x_{k}\right\|^{2}+g(x)
$$

or equivalently as

$$
x_{k+1} \in \operatorname{prox}_{t_{k} g}\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right)
$$

Still involves the non-smooth function g.

Example

For $g=\|\cdot\|_{1}$ the resulting method is soft-thresholding applied to a gradient step.

Proximal gradient step - pointwise

Set $L:=\frac{1}{t}$.
Determine u_{k+1} as a solution of

$$
\begin{aligned}
\min f\left(u_{k}\right)+\nabla f\left(u_{k}\right)\left(u-u_{k}\right) & +\frac{L}{2}\left\|u-u_{k}\right\|_{L^{2}(\Omega)}^{2} \\
& +\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}+\beta\|u\|_{p}+\mathcal{U}_{\mathrm{ad}}(u)
\end{aligned}
$$

Proximal gradient step - pointwise

Set $L:=\frac{1}{t}$.
Determine u_{k+1} as a solution of

$$
\begin{aligned}
\min f\left(u_{k}\right)+\nabla f\left(u_{k}\right)\left(u-u_{k}\right) & +\frac{L}{2}\left\|u-u_{k}\right\|_{L^{2}(\Omega)}^{2} \\
& +\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}+\beta\|u\|_{p}+\zeta_{\mathcal{U d d}^{2}}(u) .
\end{aligned}
$$

Pointwise minimization:

$$
u_{k+1}(x) \in \operatorname{prox}_{L^{-1} g}\left(u_{k}(x)-L^{-1} \nabla f\left(u_{k}\right)(x)\right) \quad \text { for a.a. } x \in \Omega
$$

where

$$
g(u):=\frac{\alpha}{2}|u|^{2}+\beta|u|_{p}+I_{[-b, b]}(u) .
$$

Proximal operator of g

Important property for $u \in \operatorname{prox}_{L^{-1} g}(v)$:
Either $u=0$ or $|u| \geq u_{0}$
with $u_{0}>0$ depending on L.

Iteration methods based on PMP

PMP is equivalent to minimizing some Hamiltonian:

$$
\bar{u}(x)=\arg \min _{|u| \leq b} H(\bar{y}(x), u, \bar{p}(x)) .
$$

Fixed-point method
[Krylov, Černous'ko '62]

$$
u_{k+1}:=\arg \min _{|u| \leq b} H\left(y_{k}(x), u, p_{k}(x)\right)
$$

.. and with prox-term

$$
u_{k+1}:=\arg \min _{|u| \leq b} H\left(y_{k}(x), u, p_{k}(x)\right)+\frac{L_{k}}{2}\left(u-u_{k}(x)\right)^{2}
$$

[Sakawa, Shindo '80, Bonnans '86, Breitenbach, Borzi '19]
If control appears linearly in the state equation, this method is equivalent to the proximal gradient method.

Outline

> 1. Introduction
> 2. Optimality conditions
> 3. Proximal gradient method
4. Convergence analysis
5. Numerical results

Setting

(A1) $g(u):=\frac{\alpha}{2}|u|^{2}+\beta|u|_{p}+I_{[-b, b]}(u)$
(A2) $f: L^{2}(\Omega) \rightarrow \mathbb{R}$ is weakly lower semicontinuous and bounded from below,
(A3) $f: L^{2}(\Omega) \rightarrow \mathbb{R}$ is Fréchet differentiable,
(A4) ∇f is Lipschitz continuous from $L^{2}(\Omega)$ to $L^{2}(\Omega)$ with modulus L_{f} :

$$
\left\|\nabla f\left(u_{1}\right)-\nabla f\left(u_{2}\right)\right\|_{L^{2}(\Omega)} \leq L_{f}\left\|u_{1}-u_{2}\right\|_{L^{2}(\Omega)}
$$

for all $u_{1}, u_{2} \in L^{2}(\Omega)$.

Convergence analysis

Theorem

Suppose $L>L_{f}$.
(1) The sequence $\left(f\left(u_{k}\right)+g\left(u_{k}\right)\right)$ is monotonically decreasing and converging.
(2) $\sum_{k=1}^{\infty}\left\|u_{k+1}-u_{k}\right\|_{L^{2}(\Omega)}^{2} \rightarrow 0$.
(3) The sequences $\left(u_{k}\right)$ and $\left(\nabla f\left(u_{k}\right)\right)$ are bounded in $L^{2}(\Omega)$ if $\alpha>0$ or $b<+\infty$.

Characteristic functions $\left(\chi_{k}\right)$ converge: no oscillation.

Convergence analysis

Theorem

Suppose $L>L_{f}$.
(1) The sequence $\left(f\left(u_{k}\right)+g\left(u_{k}\right)\right)$ is monotonically decreasing and converging.
(2) $\sum_{k=1}^{\infty}\left\|u_{k+1}-u_{k}\right\|_{L^{2}(\Omega)}^{2} \rightarrow 0$.
(3) The sequences $\left(u_{k}\right)$ and $\left(\nabla f\left(u_{k}\right)\right)$ are bounded in $L^{2}(\Omega)$ if $\alpha>0$ or $b<+\infty$.
Define

$$
\chi_{k}(x):=\left|u_{k}(x)\right|_{0} .
$$

(4) $\sum_{k=1}^{\infty}\left\|\chi_{k}-\chi_{k+1}\right\|_{L^{1}(\Omega)}<+\infty$.
(5) $\chi_{k} \rightarrow \chi$ in $L^{1}(\Omega)$ for some characteristic function χ.

Characteristic functions $\left(\chi_{k}\right)$ converge: no oscillation.

Weak limit points for L^{0}-problems

Theorem

Let g be induced by $\|\cdot\|_{0}$.
Let $u^{*} \in U_{a d}$ be a weak sequential limit point of the iterates $\left(u_{k}\right)$ in $L^{2}(\Omega)$. Then it holds

$$
f\left(u^{*}\right)+g\left(u^{*}\right) \leq \liminf _{k \rightarrow \infty}\left(f\left(u_{k}\right)+g\left(u_{k}\right)\right)
$$

and

$$
(1-\chi) u^{*}=0
$$

with χ as above.
Lower semicontinuity along the iterates for L^{0}-problems.
[DW '19]

Strong convergence for integer-valued problems

Theorem

Suppose $g=\delta_{\mathbb{Z}}$.
Then $u_{k} \rightarrow u^{*}$ in $L^{1}(\Omega)$.
Proof: $\left\|u_{k+1}-u_{k}\right\|_{L^{2}(\Omega)}^{2} \geq\left\|u_{k+1}-u_{k}\right\|_{L^{1}(\Omega)}^{1}$

$$
\sum_{k=0}^{\infty}\left\|u_{k+1}-u_{k}\right\|_{L^{1}(\Omega)} \leq \sum_{k=0}^{\infty}\left\|u_{k+1}-u_{k}\right\|_{L^{2}(\Omega)}^{2}<+\infty
$$

Passing to the limit in PMP

Two problems:

(1) $\frac{L}{2}\left(u-u_{k}\right)^{2}$ is there to stay: u_{k+1} satisfies

$$
\begin{gathered}
\nabla f\left(u_{k}\right)\left(u_{k+1}-u_{k}\right)+\frac{L}{2}\left(u_{k+1}-u_{k}\right)^{2}+g\left(u_{k+1}\right) \\
\leq \\
\quad \nabla f\left(u_{k}\right)\left(u-u_{k}\right)+\frac{L}{2}\left(u-u_{k}\right)^{2}+g(u)
\end{gathered}
$$

for all $u \in \mathbb{R}$ for a.a. x.
(2) weak convergence of $\left(u_{k}\right)$ in $L^{2}(\Omega)$, no pointwise convergence.

Stationarity of limit points

Goal: Rewrite the inclusion

$$
u_{k+1} \in \operatorname{prox}_{L^{-1}} g\left(u_{k}-L^{-1} \nabla f\left(u_{k}\right)\right)
$$

Stationarity of limit points

Goal: Rewrite the inclusion

$$
u_{k+1} \in \operatorname{prox}_{L^{-1}} g\left(u_{k}-L^{-1} \nabla f\left(u_{k}\right)\right)
$$

Suppose $\nabla f: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is completely continuous, e.g.,

$$
v_{k} \rightharpoonup v \Rightarrow \nabla f\left(v_{k}\right) \rightarrow \nabla f(v)
$$

Then $u_{k_{n}} \rightharpoonup u^{*}$ in $L^{2}(\Omega)$ implies

$$
\nabla f\left(u_{k_{n}}\right)+L\left(u_{k_{n}+1}-u_{k_{n}}\right) \rightarrow \nabla f\left(u^{*}\right)
$$

Stationarity of limit points

Goal: Rewrite the inclusion

$$
u_{k+1} \in \operatorname{prox}_{L^{-1}} g\left(u_{k}-L^{-1} \nabla f\left(u_{k}\right)\right)
$$

Suppose $\nabla f: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is completely continuous, e.g.,

$$
v_{k} \rightharpoonup v \Rightarrow \nabla f\left(v_{k}\right) \rightarrow \nabla f(v)
$$

Then $u_{k_{n}} \rightharpoonup u^{*}$ in $L^{2}(\Omega)$ implies

$$
\nabla f\left(u_{k_{n}}\right)+L\left(u_{k_{n}+1}-u_{k_{n}}\right) \rightarrow \nabla f\left(u^{*}\right) .
$$

Define G (depending on L) by

$$
u_{k+1} \in G\left(-\left(\nabla f\left(u_{k}\right)+L\left(u_{k+1}-u_{k}\right)\right)\right)
$$

(Fixed points of $G \circ(-\nabla f)$ are L-stationary [Beck, Eldar '13])

Stationarity of limit points

Given

$$
u_{k+1}(x) \in G\left(-\left(\nabla f\left(u_{k}\right)+L\left(u_{k+1}-u_{k}\right)\right)(x)\right)
$$

$G, \tilde{G}: \mathbb{R} \rightrightarrows \mathbb{R}$ have closed graphs, are not single-valued, not monotone, $G \supset \tilde{G} \supset P$.

Stationarity of limit points

Given

$$
u_{k+1}(x) \in G\left(-\left(\nabla f\left(u_{k}\right)+L\left(u_{k+1}-u_{k}\right)\right)(x)\right)
$$

construct \tilde{u}_{k+1} such that $\chi_{k+1} \tilde{u}_{k+1}=\chi_{k+1} u_{k+1}$ and

$$
\tilde{u}_{k+1}(x) \in \chi_{k+1}(x) \tilde{G}\left(-\left(\nabla f\left(u_{k}\right)+L\left(u_{k+1}-u_{k}\right)\right)(x)\right) .
$$

$G, \tilde{G}: \mathbb{R} \rightrightarrows \mathbb{R}$ have closed graphs, are not single-valued, not monotone, $G \supset \tilde{G} \supset P$.

Stationarity of limit points

Theorem

Suppose $\nabla f: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is completely continuous. Let u^{*} be a weak limit point of $\left(u_{k}\right)$. Then it holds

$$
u^{*}(x) \in[G \cup \overline{\operatorname{conv}} \tilde{G}]\left(-\nabla f\left(u^{*}\right)(x)\right)
$$

and

$$
(1-\chi) u^{*}=0
$$

- Weaker than PMP (even without taking $\overline{\text { convv }}$). Maps G, \tilde{G} depend monotonically on L. For $L=0$, PMP is recovered.
- For convex g, weak sequential limit points would be stationary.
- If $\left(\nabla f\left(u_{k}\right)\right)$ converges pointwise a.e., then result holds without conv.

PMP versus stationarity of limit points

Comparison of P and $G \cup \overline{\operatorname{conv}} \tilde{G}$:

Strong convergence

$$
\Omega_{k, \text { bad }}:=\left\{x: u_{k}(x) \neq 0 \text { and } u_{k}(x) \text { is on bad branch of } G(\cdot)\right\}
$$

Theorem

Suppose $\nabla f: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is completely continuous. Let g be induced by $\|\cdot\|_{p}, p \in(0,1)$. Let $\alpha>0$.
Assume

$$
\operatorname{meas}\left(\Omega_{k, \text { bad }}\right) \rightarrow 0 .
$$

Suppose $u_{k_{n}} \rightharpoonup u^{*}$. Then $u_{k_{n}} \rightarrow u^{*}$ and

$$
\chi u^{*}(x) \in \chi G\left(-\nabla f\left(u^{*}\right)(x)\right) .
$$

Outline

1. Introduction

2. Optimality conditions
3. Proximal gradient method
4. Convergence analysis
5. Numerical results

Example

Define $f(u)$ by

$$
f(u):=\frac{1}{2}\left\|y_{u}-y_{d}\right\|_{L^{2}(\Omega)}^{2},
$$

where y_{u} denotes the weak solution of the elliptic partial differential equation

$$
-\Delta y=u \quad \text { in } \Omega, \quad y=0 \quad \text { on } \partial \Omega
$$

Here, we chose $\Omega=(0,1)^{2}$,
[Ito, Kunisch '14]
$y_{d}\left(x_{1}, x_{2}\right)=10 x_{1} \sin \left(5 x_{1}\right) \cos \left(7 x_{2}\right), \quad \alpha=0.01, \quad \beta=0.01, \quad b=4$

Solution

Optimal control u for $p=0.8$

The bad set

Measure of $\Omega_{k, \text { bad }}$ for three different discretizations

Outlook

- results extend to sparsity-promoting g
- L^{0}-constraints $\|u\|_{0} \leq \tau$,
- group sparsity: L^{0} in space, L^{2} in time,
- second-order optimality conditions in cooperation with Eduardo Casas [SICON'20] and with Gerd Wachsmuth,
- H^{1}-regularization (existence of solutions, but no maximum principle),
- H^{s}-regularization.

