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Outline/Background/Motivation I

NP-Hard problems and SDP

Solving hard combinatorial/discrete optimization problems
requires: efficient upper/lower bounding techniques.

These problems are often modelled using quadratic
objectives and/or quadratic constraints, i.e., QQPs.

Lagrangian relaxations of QQPs lead to Semidefinite
Programming, SDP, and SDP relaxations, e.g., Handbooks
on SDP and Cone Optimization; [25,1].
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Outline/Background/Motivation II

Solving Large Scale Problems; Reductions

SDPs (relaxations) are expensive to solve using the (early
methods of choice) interior-point approaches. This
becomes doubly expensive when cutting planes are
added, e.g., using Doubly Nonnegative, DNN, relaxations;
i.e., these methods do not scale well and generally do NOT
provide high accuracy solutions.

There are currently few techniques that: exploit structure;
reduce size of data; and handle large scale problems:

chordality reduction
facial reduction and regularization, FR
symmetry reduction, SR
first order methods (splittings, e.g., ADMM)
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Outline/Background/Motivation III

Facial Reduction, FR ; and Symmetry Reduction, SR

Strict feasibility (regularity) fails for many of the
SDP relaxations of many hard combinatorial problems.
(Compare Rademacher Theorem: Loc. Lip. functions are
differentiable a.e.)
FR , e.g., [2,3,4,9,19] provides a means of regularizing the
SDP relaxations, while simultaneously reducing the size.
SR e.g., Schrijver [20]; [19,23,6,10,11], is used to obtain
a (simplified) block diagonal form, for problems that are
invariant under the action of a symmetry group.
Essentially, the problem can be restricted to a matrix
*-algebra that contains the data matrices. Then a rotation
results in the block diagonal simplified, smaller, reduced,
structure that is guaranteed to contain an optimal solution.
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Outline/Background/Motivation IV

Main Contribution: FR and SR Together into ADMM
FR, SR appear to provide a regularization and natural splitting
of variables for the application of e.g., Alternating Direction
Method of Multipliers, ADMM , type methods.

Classes of Problems
Min-Cut; Maxcut; Graph Partitioning; Vertex Separator;
and here: Quadratic Assignment Problem, QAP

Huge Problems

We tested on problem sizes of more than n = 500. This
translates to a semidefinite constraint of order 250,000 and
625× 108 nonnegative constrained variables.
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Outline/Background/Motivation V

Additional Contributions
(i) theoretical results on the singularity degree of both SDP and
DNN relaxations;
(ii) a view of FR and DNN from the ground set of the original
hard combinatorial problem.
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What is the QAP?

A, B ∈ Sn real symmetric n × n matrices, C real n × n,
〈· , ·〉 denotes trace inner product, 〈Y , X〉 = trace YX>,
and Πn set of n × n permutation matrices (permutations φ)

assign n facilities to n locations; minimize total cost
flow is Aij between facilities i, j and it multiplies
distance Bφ(i)φ(j) to get the total cost of assigning facilities i, j
to locations φ(i), φ(j), respectively;

then add location costs in− 1
2

(
Ciφ(i) + Cjφ(j)

)

Discrete Optimization Model; X ∈ Π Permutation Matrices
The quadratic assignment problem, QAP, in the
trace formulation

(QAP) p∗ := min
X∈Πn

〈AXB−2C,X 〉
(

= trace(AXB − 2C)X T
)
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Applications Include:

Koopmans-Beckmann ’57 [14]; Nyberg et al ’12 [17]

facility location planning: Universities, hospital layout,
airport gate assignment, wiring problems/circuit
boards/VLSI, typewriter keyboards (though max?)
Bandwith minimization of a graph
Image processing
Scheduling
Supply Chains
Economics
Molecular conformations in chemistry
Manufacturing lines
Includes as special case: Traveling salesman problem and
Maximum cut problem
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QQP : Quadratic-Quadratic Model for X ∈ Π

Xe = e,X T e = e,X ≥ 0, doubly stochastic; (e – ones vector)
turn linear constraints into quadratic

Start with Quadratic-Quadratic Model for X ∈ Π, a QQP

minX 〈AXB − 2C,X 〉
s.t. ‖Xe − e‖2 + ‖X T e − e‖2 = 0 (r-c sums)

XX T = X T X = In (orthogonality)
XijXik = 0, XjiXki = 0, ∀i , ∀j 6= k , (gangster)
X 2

ij − Xij = 0, ∀i , j , (0− 1)

X ≥ 0 (nonnegativity)

(Lagrangian) Dual of (Lagrangian) Dual is SDP Relaxation

The Lagrangian dual is an SDP.
The (Lagrangian) dual of this SDP is equivalent to the SDP
relaxation of the QQP. BUT, strict feasibility (Slater) fails!
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Derivation of FR , SDP Relax. in ZKRW [26], ’98;

Start new derivation; QQP with fewer constraints; OWX [18] ’18

minX 〈AXB − 2C,X 〉
s.t. XijXik = 0, XjiXki = 0, ∀i , ∀j 6= k , (gangster)

X 2
ij − Xij = 0, ∀i , j , (0− 1)∑n
i=1 X 2

ij − 1 = 0, ∀j ,
∑n

j=1 X 2
ij − 1 = 0, ∀i . (r-c sums)

linearization/lifting to Y ∈ Sn2+1: Y(ij)(st)
∼= XijXst

Gangster constraints

• The first set of constraints, the elementwise orthogonality of
the row and columns of X , are the gangster constraints. They
are particularly strong constraints and enable many of the other
constraints (such as orthogonality XX T = I,X T X = I, row and
columns sums are 1) to be redundant.
• In fact, after the facial reduction, FR, many of these
constraints also become redundant.

11



Facial reduction, FR

Lifting; blocked appropriately; x = vec (X ) columnwise

Y =

(
x0
x

)(
x0
x

)T

=:

[
Y00 Y0 1:n2

Y1:n2 0 Y

]
∈ Sn2+1,

Y1:n2 0 :=


Y(10)

Y(20)
...

Y(n2,0)

 ; Y :=


Y

(11)
Y

(12)
· · · Y

(1n)

Y
(21)

Y
(22)

· · · Y
(2n)

...
. . . . . .

...

Y
(n1)

. . . . . . Y
(nn)


Objective

trace AXBX T = trace LAY , where LA :=

[
0 0
0 B ⊗ A

]
.

where ⊗ is Kronecker product
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SDP Constraints (after the lifting/linearization)

E.g., the arrow constraint (linearization from the 0,1 constraint)

arrow(Y ) := diag (Y )−
[

0
Y1:n2 0

]
= e0,

e0 first (0-th) unit vector
(redundant in the final SDP relaxation)

DNN, doubly nonnegative

Y ∈ DNN = {Y ∈ Sn2+1
+ : 0 ≤ Y (≤ 1)}

DNN is doubly nonnegative cone, i.e., intersection of positive
semidefinite cone and nonnegative orthant.
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SDP constraints, Y � 0, and FR cont. . .

Trace constraints (from linear equality constraints)

trace D1Y = 0, D1 :=

[
n −eT

n ⊗ eT
n

−en ⊗ en (eneT
n )⊗ In

]
� 0,

trace D2Y = 0, D2 :=

[
eT e −eT ⊗ eT

n
−e ⊗ en In ⊗ (eneT

n )

]
� 0,

ej vector of ones of dimension j ; Di � 0, i = 1,2; nullspaces of
these matrices yield the facial reduction Y = VRV T .

Block: trace, diagonal and off-diagonal

Dt (Y ) :=
(

trace Y
(ij)

)
= I ∈ Sn;

Dd (Y ) :=
∑n

i=1 diag Y
(ii) = en ∈ Rn;

Do(Y ) :=
(∑

s 6=t

(
Y

(ij)

)
st

)
= Î ∈ Sn,

where Î := eeT − I. 14



SDP constraints cont. . .

trace Y = n + 1; and Gangster constraints on Y
The Hadamard product and orthogonal type constraints lead to

gangster constraints
i.e., simple constraints that restrict elements to be zero (shoot
holes in the matrix) and/or restrict entire blocks.
gangster and restricted gangster constraint on Y :

GH(Y ) = 0,

for specific index sets H, e.g., Hadamard orthogonal rows of
X ∈ Π yields

i 6= j : =⇒ XikXjk = 0, ∀k =⇒ Y(ik),(jk) = 0,∀k .
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SDP relaxation

SDP Relaxation with Many (some redundant) Constraints

qap(n,A,B) ≥ p∗SDP := min trace LAY
s.t. arrow(Y ) = e0

trace D1Y = 0, trace D2Y = 0
GJ0(Y ) = 0, Y00 = 1
Dt (Y ) = I,Dd (Y ) = e,Do(Y ) = Î
Y ∈ Sn2+1

+

Equivalent FR greatly simplified SDP; with Y = ṼRṼ T

qap(n,A,B) ≥ p∗SDP = min trace
(

Ṽ T LAṼ
)

R

s.t. GĴI
(ṼRṼ T ) = GĴI

(e0eT
0 )

R ∈ S(n−1)2+1
+
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Splitting methods and facial reduction, FR

Natural Splitting? Y ∈ P, R ∈ Sr
+

Y = ṼRṼ T

Y ∈ P ⊂ SN+1
+ , R ∈ Sr

+, r < N + 1

Facial reduction provides a guarantee that strict feasibility holds
for the primal and that the dual of the dual is the primal. (In our
instance of QAP, strict feasibility holds for primal and dual.)
AND: it provides a reduction in dimension AND so rank.

Natural separation/splitting

There is a natural separation of constraints where

Y ∈ P polyhedral R ∈ Sr
+ sdp cone
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Group invariance and symmetry reduction, SR

General primal-dual SDP

p∗SDP = min{〈C,X 〉 | A(X ) = b ∈ Rm, X ∈ Sn
+},

where Ai ∈ Sn, A(X ) = (trace AiX )

d∗SDP = max{〈b, y〉 | A∗(y) � C, y ∈ Rm}

where A∗ is the adjoint of A; A∗(y) =
∑

i yiAi .

SR: substitute using B̃∗; obtain SR block diagonal form

use procedure for simplifying an SDP that is invariant under
the action of a symmetry group, Schrijver [20];
the appropriate algebra isomorphism follows from the
Artin-Wedderburn theory [24].
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SR continued

Framework
G - nontrivial group of permutation matrices of size n.
commutant, AG (or centralizer ring) of G:

AG = {X ∈ Rn×n | PX = XP, ∀P ∈ G}
= {X ∈ Rn×n | RG(X ) = X},

where RG(X ) := 1
|G|
∑

P∈G PXPT , is the Reynolds operator,
or group average, and is orthogonal projection onto the
commutant;
the commutant AG is a matrix ∗-algebra, i.e., closed under
addition, scalar multiplication, matrix multiplication, and
taking transposition.
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–Group invariance and symmetry reduction, SR

Basis for AG : {B1, . . . ,Bd}, Bi ∈ {0,1}n×n

basis for AG from the orbits of the action of G on ordered
pairs of vertices, where the orbit of
(ui ,uj) ∈ {0,1}n × {0,1}n under the action of G is the set
{(Pui ,Puj) | P ∈ G}, and ui ∈ Rn is the i-th unit vector.

Definition (coherent configuration (J ones matrix))

A set of zero-one n × n matrices {B1, . . . ,Bd} is called a
coherent configuration of rank d if

1
∑

i∈I Bi = I for some I ⊂ {1, . . . ,d}, and
∑d

i=1 Bi = J;
2 BT

i ∈ {B1, . . . ,Bd} for i = 1, . . . ,d ;
3 BiBj ∈ span{B1, . . . ,Bd}, ∀i , j ∈ {1, . . . ,d}.

20



Restrict SDP to feasible points in a matrix ∗-Algebra

Theorem (de Klerk et al, [7])
Let AG denote a matrix ∗-algebra that contains the data
matrices of an SDP problem as well as the identity matrix. If the
SDP problem has an optimal solution, then it has an optimal
solution in AG , the centralizer ring.

Corollary (can reduce size of feasible set to consider)
We can restrict the feasible set of the optimization problem to
its intersection with AG . In particular, we can use the basis
matrices and assume that

-
(KEY RESULT 1 for SR/change of basis)

X ∈ FX∩AG ⇔

[
X =

d∑
i=1

xiBi =: B∗(x) ∈ FX , for some x ∈ Rd

]
.
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–First SR using substitution X = B∗(x)

We assume that the group of permutation matrices G is such
(small enough) that the centralizer/commutant AG contains our
data matrices, (Ai ,C).

p∗SDP = min{〈C,X 〉 | A(X ) = b, X � 0}

Feasible set reduced; optimal value unchanged

p∗SDP = min{〈B(C), x〉 | (A ◦ B∗)(x) = b, B∗(x) � 0}

Here, B = B∗∗ is the adjoint of B∗.
In the case of a doubly nonnegative relaxation, the structure of
our basis allows us to set/constrain x ≥ 0.
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–Second SR, block diagonal form

Basic ∗-algebra

M is called basic ifM = {⊕t
i=1M | M ∈ Cm×m}, where ⊕

denotes the direct sum of matrices.

Theorem (Wedderburn [24])
LetM be a matrix ∗-algebra containing the identity matrix.
Then there exists a unitary matrix Q such that Q∗MQ is a
direct sum of basic matrix ∗-algebras.
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–Second SR

Mutual block diagonalization with orthogonal Q, t blocks

B̃j := QT BjQ =: Blkdiag((B̃k
j )t

k=1),∀j = 1, . . . ,d .

Linear transformation for QT XQ =
∑d

j=1 xj B̃j =: B̃∗(x)

∑d
j=1 xj B̃j =

B̃
∗
1(x)

. . .
B̃∗t (x)

 =: Blkdiag((B̃∗k (x))t
k=1)

where B̃∗k (x) =:
∑d

j=1 xj B̃k
j ∈ S

ni
+ is k -th diagonal block of B̃∗(x),

and sum of t block sizes n1 + . . .+ nt = n.

For any feasible X

X = B∗(x) = QB̃∗(x)QT ∈ FX
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Second SR block diagonal form using X = QB̃∗(x)QT

Block diagonal problem

p∗SDP = min{〈B̃(C̃), x〉 | (Ã ◦ B̃∗)(x) = b, B̃∗(x) � 0},

After appropriate simplifications; KEY 2: Block diagonal

p∗SDP = min{cT x | Ax = b, B̃∗k (x) � 0, k = 1, . . . , t}.

feasible set and feasible slacks are

Fx := {x | B̃∗(x) � 0, Ax = b, x ∈ Rd}

Sx := {B̃∗(x) � 0 | Ax = b, x ∈ Rd}.

B̃∗(x) is a block-diagonal matrix

get smaller problem typically: x ∈ Rd , d �
∑d

i=1 t(ni)� t(n),
where t(k) = k(k + 1)/2 is the triangular number.
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–FR for symmetric reduced program; exposing vectors

Maximum rank preserving properties of SR

max{rank (X ) : X ∈ FX} = rank (X ), ∀X ∈ ri(FX )
= rank (X ), ∀X ∈ ri(face(FX )),

face(FX ) is minimal face of Sn
+ containing feasible set.

Theorem
Let r = max{rank (X ) : X ∈ FX}. Then

r = max
{

rank
(

1
|G|
∑

P∈G PT XP
)

: X ∈ FX

}
= max{rank (X ) : X ∈ FX ∩ AG} centralizer
= max{rank (B̃∗(x)) : B̃∗(x) ∈ Sx} slacks
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FR; exposing vectors; symmetry reduced programs

For many combinatorial problems, the semidefinite relaxation is
not strictly feasible. Therefore it is degenerate and ill-posed.
Therefore, the symmetry reduced problem is degenerate as
well.

We want to implement both SR and FR together and do it
efficiently and robustly.

Key is exposing vectors

The exposing vectors of symmetry reduced program can be
obtained from the exposing vectors from original program.
(Therefore, we can exploit structure of original problem.)
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Exposing vectors for FR

Let 0 6= W = UUT be an exposing vector of the minimal face of
Sn

+ containing the feasible region FX :
X ∈ FX =⇒ trace WX = 0;
let U ∈ Rn×(n−r) full column rank;
let V ∈ Rn×r with Range(V ) = Null(UT ).

FR: use substitution X = V∗(R) = VRV T

obtain equivalent, smaller,

min{〈V T CV ,R〉 | 〈V T AiV ,R〉 = bi , i = 1, . . . ,m, R ∈ Sr
+}.

In fact, with appropriate V , R̂ strictly feasible corresponds to
X̂ = V∗(R̂) ∈ ri(FX ). Moreover, at least one constraint
becomes redundant at each FR step.
(So at most min{m,n − 1} FR steps.)
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–Exposing vectors for SR in commutant AG

Lemma
Let W be an exposing vector of rank d of a face of Sn

+

containing FX . Then there exists an exposing vector WG ∈ AG
with rank (WG) ≥ d.

Proof.
Let W be the exposing vector of rank d , i.e.,W � 0 and
X ∈ FX =⇒ 〈W ,X 〉 = 0.
Since the original problem is G-invariant, PXPT ∈ FX for every
P ∈ G, we conclude that

〈W ,PXPT 〉 = 〈PT WP,X 〉 = 0.

Therefore, PT WP � 0 is an exposing vector of rank d . Thus
WG = 1

|G|
∑

P∈G PT WP is an exposing vector of FX .
That the rank is at least d follows from taking the sum of
nonsingular congruences of W � 0.
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–Exposing vectors for SR in block diagonal form

Lemma

Let W be an exposing vector of face of Sn
+ containing FX , and

assume that W ∈ AG . Let Q be the orthogonal matrix given
above in the block diagonalization. Then W̃ = QT WQ exposes
a face of Sn

+ containing Sx .

Theorem

Let W ∈ AG be an exposing vector of face(FX ), the minimal
face of Sn

+ containing FX . Then the block-diagonal matrix
W̃ = QT WQ exposes face(Sx ), the minimal face of Sn

+

containing Sx .
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Facial and symmetry reduced program

W̃ = QT WQ exposes the minimal face of Sn
+ containing Sx ;

W̃ = Blkdiag(W̃1, . . . , W̃t ), W̃i = ŨiŨT
i , Ũi full rank, i = 1, . . . , t

KEY 3: Natural splitting

Let Ṽi be a full rank matrix Range(Vi) = Null(UT
i )

Ṽ = Blkdiag(Ṽ1, . . . , Ṽt ).
FR:
p∗FR = min{cT x | Ax = b, B̃∗(x) = Ṽ R̃Ṽ T , R̃ � 0}

= min{cT x |Ax = b, B̃∗k (x) = Ṽk R̃k Ṽ T
k , R̃k � 0, k = 1 : t}

where Ṽk R̃k Ṽ T
k is the corresponding k -th block of B̃∗(x), and

R̃ = Blkdiag(R̃1, . . . , R̃t ).
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–Singularity degree for FR and SR

Definition
The singularity degree of a feasible region F , denoted by
sd(F), is the smallest number of steps required for the
FR algorithm to terminate.

Holder error bound, Sturm ’00 [21]
For a feasible set FX = L ∩ Sn

+, for a linear manifold L, Sturm
showed that a Holder error bound always holds, i.e., the
distance of any X to FX can be bounded by a multiple of a
certain power of the distance to L and to Sn

+ separately. Sturm
showed that the Holder exponent can be set to 2−sd(FX ). (It
does NOT depend on the size or rank of the matrices, only the
singularity degree.)

Theorem
sd(Fx ) ≤ sd(FX ).
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Motivation for first order methods and bounding

Difficulties for primal-dual interior-point methods for SDP

solving large problems
obtaining high accuracy solutions
exploiting sparsity
adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

FR/SR: regularization/dim. size reduction/natural splitting,
Y = VRV T

Flexibility in dealing with additional constraints
separable/split optimization steps are inexpensive
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Alternating direction method of multipliers, ADMM

It is extremely successful for splittings with two cones. The
ADMM is well suited for large-scaled DNN problems, where one
can split between simple polyhedral and convex cone
projections, e.g., survey Boyd et al ’11 [5]; applications to QAP,
Mincut e.g., [18,15,12].
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Augmented Lagrangian for: B̃∗(x) = Ṽ R̃Ṽ T

Let Ṽ = Blkdiag(Ṽ1, . . . , Ṽt ) and R̃ = Blkdiag(R̃1, . . . , R̃t ).

The augmented Lagrangian
L(x , R̃, Z̃ ) = 〈C̃, B̃∗(x)〉+ 〈Z̃ , B̃∗(x)− Ṽ R̃Ṽ T 〉

+β
2 ||B̃

∗(x)− Ṽ R̃Ṽ T ||2

where, C̃ = QT CQ is block-diagonal matrix as C ∈ AG ;
Lagrange multiplier Z̃ is also in block-diagonal form;
β > 0 is the penalty parameter.

max
Z̃

min
x∈P,R̃�0

L(x , R̃, Z̃ ),

P is a simple polyhedral set: Ax = b, x ≥ 0
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Simple subproblems

Splitting yields three subproblems

find following updates (x+, R̃+, Z̃+):

x+ = arg min
x∈P
L(x , R̃, Z̃ ),

R̃+ = arg min
R̃�0
L(x+, R̃, Z̃ ),

Z̃+ = Z̃ + γβ(B̃∗(x+)− Ṽ R̃+Ṽ T ).

γ ∈ (0, 1+
√

5
2 ) - step size for updating dual variable Z̃ .
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On solving R̃-subproblem explicitly

Complete square

R̃+ = min
R̃�0
||B̃∗(x)− Ṽ R̃Ṽ T + 1

β Z̃ ||2

= min
R̃�0
||R̃ − Ṽ T (B̃∗(x) + 1

β Z̃ )Ṽ ||2

=
∑t

k=1 min
R̃k�0

||R̃k −
(
Ṽ T (B̃∗(x) + 1

β Z̃ )Ṽ
)

k ||
2.

Solve k small problems/psd projections

R̃k = PS+

(
Ṽ T (B̃∗(x) +

1
β

Z̃ )Ṽ
)

k
, k = 1, . . . , t ,
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On solving the x-subproblem

x+ = arg min
x∈P

∥∥∥∥∥B̃∗(x)− Ṽ R̃Ṽ T +
C̃ + Z̃
β

∥∥∥∥∥
2

.

• For many combinatorial optimization problems, some of the
constraints such as in Ax = b become redundant after FR of
their semidefinite programming relaxations.
• Thus, the set P often collapses to a simple set. This often
leads to an analytic solution for the x-subproblem.
• This happens for the quadratic assignment, graph
partitioning, vertex separator, and shortest path problems.
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Numerical results for the QAP

Tests using:
• computer: DellPowerEdge; two Intel Xeon E5-2637v3 4-core
3.5 GHz (Haswell) processors; 64GB of memory
• Mosek as the interior point solver
•We include huge problems of sizes up to n = 512, i.e. the
SDP relaxation is of size n2 + 1 = 1 + 5122 and this therefore
includes order n4 = 625 ∗ 108 nonnegativity constraints.

Stopping
We terminate when the primal and dual residuals are small or
we are not making progress in decreasing the duality gap.
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Results

Significant improvements for huge problems

• The following table shows that we significantly improve
bounds for all eng1_n and eng9_n instances.
• Moreover, we are able to compute bounds for huge QAP
instances with n = 256 and n = 512 in a reasonable amount of
time.
• Note that for each instance from of size n = 2d , the
DNN relaxation boils down to d + 1 positive semidefinite blocks
of order n. There are currently no interior point algorithms that
are able to solve such huge problems.
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Mittlemann and Peng problems ’10 [16]

Table: Lower and upper bounds for different QAP instances.

MandP ’10 [16] ADMM
problem UB LB time OBJ LB time res.

Harper_16 2752 2742 1 2743 2742 1.92 4.50e-05
Harper_32 27360 27328 3 27331 27327 9.70 1.67e-04
Harper_64 262260 262160 56 262196 261168 36.12 1.12e-05

Harper_128 2479944 2446944 1491 2446800 2437880 186.12 3.86e-05
Harper_256 22370940 - - 22369996 22205236 432.10 9.58e-06
Harper_512 201329908 - - 201327683 200198783 1903.66 9.49e-06

eng1_16 1.58049 1.5452 1 1.5741 1.5740 2.28 3.87e-05
eng1_32 1.58528 1.24196 4 1.5669 1.5637 14.63 5.32e-06
eng1_64 1.58297 0.926658 56 1.5444 1.5401 38.35 4.69e-06

eng1_128 1.56962 0.881738 1688 1.4983 1.4870 389.04 2.37e-06
eng1_256 1.57995 - - 1.4820 1.3222 971.48 9.95e-06
eng1_512 1.53431 - - 1.4553 1.3343 9220.13 9.66e-06
eng9_16 1.02017 0.930857 1 1.0014 1.0013 3.58 2.11e-06
eng9_32 1.40941 1.03724 3 1.3507 1.3490 12.67 3.80e-05
eng9_64 1.43201 0.887776 68 1.3534 1.3489 74.89 6.60e-05

eng9_128 1.43198 0.846574 2084 1.3331 1.3254 700.27 8.46e-06
eng9_256 1.45132 - - 1.3152 1.2610 1752.72 9.74e-06
eng9_512 1.45914 - - 1.3074 1.1168 23191.96 9.96e-06

VQ_32 297.29 294.49 3 296.3241 296.1351 11.82 1.27e-05
VQ_64 353.5 352.4 45 352.7621 351.4358 43.17 4.22e-04
VQ_128 399.09 393.29 2719 398.4269 396.2794 282.28 6.19e-04
rand_256 126630.6273 - - 124589.4215 124469.2129 2054.61 3.78e-05
rand_512 577604.8759 - - 570935.1468 569915.3034 9694.71 1.32e-04
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Solving some to optimality using only DNN relaxation

SDPNAL+: STYZ’20 [22] ADMM: OWX’15 [18] SDP: KS’10 [8] ADMM
inst. opt LB time LB time LB time OBJ LB time res

esc16a 68 63.2750 16 64 20.14 63.2756 0.75 63.2856 63.2856 2.48 1.17e-11
esc16b 292 289.9730 24 290 3.10 289.8817 1.04 290.0000 290.0000 0.78 9.95e-13
esc16c 160 153.9619 65 154 8.44 153.8242 1.78 154.0000 153.9999 2.11 2.56e-09
esc16d 16 13.0000 2 13 17.39 13.0000 0.89 13.0000 13.0000 1.04 9.94e-13
esc16e 28 26.3367 2 27 24.04 26.3368 0.51 26.3368 26.3368 1.21 9.89e-13
esc16f 0 - - 0 3.22e+02 0 0.14 0 0 0.01 2.53e-14
esc16g 26 24.7388 4 25 33.54 24.7403 0.51 24.7403 24.7403 1.40 9.95e-13
esc16h 996 976.1857 10 977 4.01 976.2244 0.79 976.2293 976.2293 2.51 7.73e-13
esc16i 14 11.3749 6 12 100.79 11.3749 0.73 11.3749 11.3660 6.15 2.53e-06
esc16j 8 7.7938 4 8 56.90 7.7942 0.42 7.7942 7.7942 0.21 9.73e-13
esc32a 130 103.3206 333 104 2.89e+03 103.3194 114.88 103.3211 103.0465 12.36 3.62e-06
esc32b 168 131.8532 464 132 2.52e+03 131.8718 5.58 131.8843 131.8843 4.64 9.59e-13
esc32c 642 615.1600 331 616 4.48e+02 615.1400 3.70 615.1813 615.1813 8.04 2.05e-10
esc32d 200 190.2273 67 191 8.68e+02 190.2266 2.09 190.2271 190.2263 5.86 7.45e-08
esc32e 2 1.9001 149 2 1.81e+03 - - 1.9000 1.9000 0.70 4.49e-13
esc32f 2 - - 2 1.80e+03 - - 1.9000 1.9000 0.76 4.49e-13
esc32g 6 5.8336 65 6 6.04e+02 5.8330 1.80 5.8333 5.8333 3.50 9.97e-13
esc32h 438 424.3256 1076 425 3.02e+03 424.3382 7.16 424.4027 424.3184 5.89 1.03e-06
esc64a 116 - - 98 1.64e+04 97.7499 12.99 97.7500 97.7500 5.33 8.95e-13
esc128 64 - - - - 53.0844 140.36 51.7518 51.7518 137.71 1.18e-12

Table: Esc instances
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Conclusion

We discussed strategies for finding new, strengthened
lower and upper bounds, for large discrete optimization
problems from the resulting HUGE DNN relaxations.
In particular, we combined FR with SR efficiently to obtain a
regularized problem reduced in dimension and in size. We
exploited the resulting natural splitting with a ADMM
approach.
Interesting theoretical results about singularity degree and
rank preservation arose for the SR.
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