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Abstract

Algorithmic approaches to minimax problems have recently been paid much
attention, due to their important applications in machine learning, in
particular, in generative adversarial nets (GANs). In this talk we will first
review some recent progresses on the convergence rate of Halpern’s
iteration method, and then discuss several applications of Halpern’s method
in optimization problems, including variational inequalities, monotone
inclusions, Douglas-Rachford splitting method. In particular, we will discuss
how Halpern’s method can be used to prove the strong convergence of
recently introduced extra anchored gradient (EAG) algorithm for smooth
convex-concave minimax problems in an even infinite-dimensional Hilbert
space.
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Minimax Problems

Minimax problems go back to von Neumann in the late 1920’s and 30’s:

J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100
(1928), 295-320.

), Uber ein bkonomisches Gleichungssystem und eine
Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebn. Math.
Kolloqu. Wien 8 (1935-36), 73-83.

von Neumann’s Minimax Theorem: If f (x, y) is quasi-convex in x and
quasi-concave in y, then

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y)

where X and Y are nonempty convex compact subsets of topological linear
spaces, and f : X × Y → R is continuous in each variable.
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Convex-Concave Minimax Problem

In this talk, we will focus on iterative methods for a (constrained)
convex-concave minimax problem in a Hilbert space setting:

min
x∈Q

max
y∈S

f (x, y), (1.1)

where Q and S are nonempty closed convex subsets of Hilbert spaces H1 and
H2, respectively, and f (x, y) is convex in x (for each fixed y ∈ S) and concave in
y (for each fixed x ∈ Q).
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Saddle Point

A solution of the minimax problem is interpreted as a saddle point defined as
follows.

Definition
A pair of points (u∗, v∗) ∈ Q× S is said to be a saddle point of f (or a solution
of the minimax problem (1.1)) if and only if the inequalities below are satisfied:

f (u∗, v) ≤ f (u∗, v∗) ≤ f (u, v∗), u ∈ Q, v ∈ S. (1.2)

Namely, u∗ ∈ Q is a minimizer in Q of the function f (·, v∗), and v∗ ∈ S is a
maximizer in S of the function f (u∗, ·).

Set G = Q× S and H = H1 × H2. Let G∗ := Q∗ × S∗ denote the set of saddle
points of the minimax problem (1.1).
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Existence of Saddle Points
It is known that f has a saddle point if and only if

min
u∈Q

max
v∈S

f (u, v) = max
v∈S

min
u∈Q

f (u, v).

Theorem

Suppose
(i) for each fixed v ∈ S, the function f (·, v) is convex and lower

semicontinuous (l.s.c.),
(ii) for each fixed u ∈ Q, the function f (u, ·) is concave and upper

semicontinuous (u.s.c.).
Assume, in addition, either that Q and S are bounded, or that
(iii) there exists v̄ ∈ S such that the function f (·, v̄) is coercive, i.e., f (u, v̄)→∞

as ‖u‖ → ∞ (u ∈ Q);
(iv) there exists ū ∈ Q such that the function −f (ū, ·) is coercive, i.e.,

f (ū, v)→ −∞ as ‖v‖ → ∞ (v ∈ S).
Then f has at least one saddle point.
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Applications

Minimax problems find applications recently in machine learning, including
Generative adversarial nets (GANs) (I. Goodfellow, J. Pouget-Abadie, M.
Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In NeurIPS, pages 2672õ2680, 2014.)
Statistical learning ( R. Giordano, T. Broderick, and M. I. Jordan,
Covariances, robustness, and variational bayes. ArXiv Preprint:
1709.02536, 2017.)
Certification of robustness in deep learning (A. Sinha, H. Namkoong, and
J. Duchi, Certifiable distributional robustness with principled adversarial
training. In ICLR, 2018)
Distributed computing (G. Mateos, J. A. Bazerque, and G. B. Giannakis,
Distributed sparse linear regression. IEEE Transactions on Signal
Processing, 58(10):5262-5276, 2010)

Tianyi Lin, Chi Jin, and Michael I. Jordan, On Gradient Descent Ascent
for Nonconvex-Concave Minimax Problems. arXiv.org/abs/1906.00331v1
(2019).
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Characterization of Saddle Points via VIs

Theorem

Assume f is convex-concave and differentiable. Let

∂f (u, v) =

[
∇uf (u, v)
−∇vf (u, v)

]
. (1.3)

[Note: ∂f is monotone.] Then z∗ := (u∗, v∗) ∈ Q× S is a saddle point of f if and
only if z∗ solves the variational inequality (VI)

〈∂f (z∗), z− z∗〉 ≥ 0, z = (u, v) ∈ G. (1.4)

Equivalently,

〈∇uf (u∗, v∗), u−u∗〉 ≥ 0 and 〈∇vf (u∗, v∗), v−v∗〉 ≤ 0, (u, v) ∈ Q×S. (1.5)

For the unconstrained case (i.e., Q = H1 and S = H2), VI (1.4) is reduced to
the equation ∂f (z∗) = 0.
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Korpelevich’s Extragradient (EG) Algorithm

Define g : G→ H by

g(z) = ∂f (z) =

[
∇xf (x, y)
−∇yf (x, y)

]
. (2.1)

Korpelevich (1976) introduced the following extragradient (EG) algorithm:{
z̄n = PG(zn − αg(zn)) (2.2a)
zn+1 = PG(zn − αg(z̄n)) (2.2b)

where z0 ∈ G and α > 0. In components, the algorithm (2.2) can be rewritten
as 

x̄n = PQ(xn − α∇xf (xn, yn)) (2.3a)
ȳn = PS(yn + α∇yf (xn, yn)) (2.3b)
xn+1 = PQ(xn − α∇xf (x̄n, ȳn)) (2.3c)
yn+1 = PS(yn + α∇yf (x̄n, ȳn)). (2.3d)
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Convergence of EG (2.2)

Theorem
(Korpelevich, 1976) Suppose dim H1 <∞ and dim H2 <∞. Suppose also that
f is convex-concave and L-smooth. Then for all α, 0 < α < 1

L . Then the
sequence {zn} generated by (2.2) converges to a saddle point of (1.1).

Recall that f is L-smooth if ∂f is L-Lipschitz:

‖∂f (z)− ∂f (z′)‖ ≤ L‖z− z′‖, z, z′ ∈ G.

G. M. Korpelevich, The extragradient method for finding saddle points and
other problems, Ekonomika i matematicheskie metody, 12 (1976), no. 4,
747-756.
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Popov’s Extragradient Algorithm

In 1980, Popov introduced the following extragradient method for solving the
minimax problem (1.1): {

zn+1 = PG(zn − τg(z̄n)) (2.4a)
z̄n+1 = PG(zn+1 − τg(z̄n)) (2.4b)

for n = 0, 1, · · · , where z0, z̄0 ∈ G, and PG is the projection onto G from H.

L. D. Popov, A modification of the Arrow-Hurwicz method for search of
saddle points, Mathematical Notes of the Academy of Sciences of the
USSR, 28 (1980), no. 5, 777-784.
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Convergence of Popov’s Extragradient Method

Theorem
(Popov, 1980) Suppose dim H1 <∞ and dim H2 <∞. Suppose also f is
convex-concave and L-smooth. Then for all τ , 0 < τ < 1

3L , the sequence {zn}
generated by (2.4) converges to a saddle point of (1.1).
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Halpern’s Iteration Method

Recently, Halpern’s iteration method was applied to the minimax problem (1.1)
and also to VIs, in general. This talk is motivated by the articles below:

J. Diakonikolas, Halpern iteration for near-optimal and parameter-free
monotone inclusion and strong solutions to variational inequalities.
arXiv:2002.08872v3. (Apr 2020)

Jelena Diakonikolas, Constantinos Daskalakis, and Michael I. Jordan,
Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization. arXiv:2011.00364v2 [math.OC]

E. K. Ryu, K. Yuan, and W. Yin, ODE analysis of stochastic gradient
methods with optimism and anchoring for minimax problems.
arXiv:1905.10899v3 [cs.LG] 12 Oct 2020.

T. Yoon and E. K. Ryu, Accelerated algorithms for smooth
convex-concave minimax problems with O(1/k2) rate on squared gradient
norm, Proceedings of the 38th International Conference on Machine
Learning, PMLR 139, 2021.
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Nonexpansive Mappings

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. A mapping
T : H → H is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H.

A point x ∈ H is a fixed point of T if Tx = x. Fix(T) := {x ∈ H : Tx = x} denotes
the set of fixed points of T (possibly empty).
Moreover, we say that T is α-averaged (α-AV, for short) if α ∈ (0, 1) and

T = (1− α)I + αV

with V : X → X nonexpansive. Clearly, averaged mappings are nonexpansive.

Notes:
Fix(V) = Fix(T);
T has a fixed point if and only of there exists x such that the trajectory
{Tnx} is bounded.
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Halpern’s Iteration Method for Nonexpansive
Mappings

Let C be a nonempty closed convex subset of a Banach space X and
T : C→ C be a nonexpansive mapping. Assume Fix(T) 6= ∅.
Halpern’s iteration method generates a sequence (xn) by the iteration process

xn+1 = αnu + (1− αn)Txn, n = 0, 1, 2, · · · , (3.1)

where (αn) is a sequence in [0, 1], u ∈ C referred to as anchor, and x0 ∈ C an
initial guess taken arbitrarily.

The algorithm (3.1) was first introduced by B. Halpern1 in a Hilbert space H
and for the special case where C is the closed unit ball of H and the anchor
u = 0.

1B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967),
591-597.
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Necessary Conditions for Convergence of Halpern’s
Method

Halpern noticed two necessary conditions for convergence of Halpern’s
method:

(C1) αn → 0;
(C2)

∑∞
n=1 αn =∞.

These two conditions are not sufficient to guarantee convergence of Halpern’s
method unless T is AV.
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Convergence of Halpern’s Iteration Method

Table: Convergence of Halpern’s Iteration Method under (C1)-(C2)+?

Author Year Journal Add. Condition Setting
B. Halpern 1967 Bull. Amer. Math. Soc. (C3) Hilbert
P.L. Lions 1977 C.R. Acad. Sci. Paris (C4) Hilbert

R. Wittmann 1992 Arch. Math. (C5) Hilbert
S. Reich 1994 Panamerican. Math. J. (C6) Hilbert

X. 2002 J. London Math. Soc. (C7) Banach

(C3) (αn) is acceptable: there exists (n(i)) such that (i) n(i + 1) ≥ n(i),
(ii) limi→∞

αi+n(i)

αi
= 1, (iii) limi→∞ n(i)αi =∞;

(C4) limn→∞
|αn+1−αn|

α2
n

= 0 (e.g., αn = 1
(n+1)α , 0 < α < 1);

(C5)
∑∞

n=1 |αn+1 − αn| <∞ (e.g., αn = 1
(n+1)α , 0 < α ≤ 1);

(C6) (αn) is decreasing;

(C7) limn→∞
|αn+1−αn|

αn
= 0, i.e., αn+1

αn
→ 1. (e.g., αn = 1

(n+1)α , 0 < α ≤ 1)
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A Survey Article on Halpern, up to 2010

G. Lopez, V. Martin-Marquez, and H.K. Xu, Halpern’s iteration for
nonexpansive mappings, Contemporary Mathematics, 513 (2010), 211-231.
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Lieder’s O(1/n) Rate of Convergence

It is remarkable that Lieder proved O(1/n) rate of Halpern’s method.

Theorem
(Felix Lieder [10]) Let H be a Hilbert space, let T : H → H be a nonexpansive
mapping such that Fix(T) 6= ∅, and let (xn) be generated by Halpern’s method:

xn+1 = αnu + (1− αn)Txn, (3.2)

where αn = 1
n+2 and u = x0. Then

‖xn − Txn‖ ≤
2‖x0 − x∗‖

n + 1
, n ≥ 0, x∗ ∈ Fix(T). (3.3)

This bound is tight.

F. Lieder, On the convergence rate of the Halpern-iteration, Optiminzation
Letters 15 (2021), 405-418.
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Variational Inequalities (VIs)

Consider a nonempty closed convex subset C of a Hilbert space H and a
monotone operator F : C→ H. The variational inequality (VI) is to seek a
point u∗ ∈ C with the property

〈F(u∗), u− u∗〉 ≥ 0, u ∈ C. (4.1)

VI (4.1) is denoted as VI(F; C) and its solution set as S(F; C), respectively.

It is known that VI(F; C) is equivalent to the fixed point problem, for all γ > 0,

u∗ = PC(I − γF)u∗ (4.2)

Hence, fixed point methods can be applied to solve VIs.
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Inverse Strongly Monotone Operators (ISM)

A (single-valued) mapping on a Hilbert space H is said to be inverse strongly
monotone (ISM) or cocoercive if, for some constant γ > 0,

〈F(x)− F(y), x− y〉 ≥ γ‖F(x)− F(y)‖2, x, y ∈ H. (4.3)

In this case, F is also said to be γ-ISM.

Projections PC and proximal mappings proxλg are 1-ISM (note: PC and proxλg

are also 1
2 -AV). Also, T : H → H is nonexpansive if and only if I − T is 1

2 -ISM.
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Relations between AV and ISM

Proposition
Let T : H → H be a mapping. Then T is α-AV for some α ∈ (0, 1) if and only if
I − T is 1

2α -ISM (note that 1
2α >

1
2 ).
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Lipschitzian Gradient ∇ϕ is ISM

Proposition
Let ϕ : H → H be a continuously Frechet differential, convex function.
Suppose ∇ϕ is L-Lipschitz:

‖∇ϕ(x)−∇ϕ‖ ≤ L‖x− y‖, x, y ∈ H.

Then ∇ϕ is 1
L -ISM:

〈∇ϕ(x)−∇ϕ(y), x− y〉 ≥ 1
L
‖∇ϕ(x)−∇ϕ(y)‖2, x, y ∈ H.
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Halpern Method for Constrained Optimization
Consider the convex minimization problem

min
x∈C

ϕ(x)

with solution set S 6= ∅. Note: S = Fix(PC(I − λ∇ϕ)) for any λ > 0. Suppose
∇ϕ is L-Lipschitz. Set Tλ = PC(I − λ∇ϕ). Then Tλ is 2+λL

4 -AV for 0 < λ < 2
L . It

turns out that Halpern’s iteration (0 < λ < 2
L ):

xn+1 = αnu + (1− αn)PC(I − λ∇ϕ)xn, n = 0, 1, · · · (4.4)

strongly converges to the solution u∗ := PS(u), where (αn) satisfies (C1) and
(C2). In particular, take αn = 1

n+2 and λ = 2
L , we get that

xn+1 =
x0

n + 2
+

n + 1
n + 2

PC(I − 2
L
∇ϕ)xn

converges in norm to PSu with the rate of convergence (for any x∗ ∈ S):

‖xn − PC(I − 2
L
∇ϕ)xn‖ ≤

2‖x0 − x∗‖
n + 1

.
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Halpern Method for Composite Optimization

Consider the composite convex minimization problem

min
x∈H

f (x) + g(x)

with solution set S 6= ∅. Note: S = Fix(proxλg(I − λ∇f )) for any λ > 0. Suppose
∇f is L-Lipschitz and set Tλ = proxλg(I − λ∇f ). Then Tλ is 2+λL

4 -AV for
0 < λ < 2

L . It turns out that Halpern’s iteration (0 < λ < 2
L ):

xn+1 = αnu + (1− αn)proxλg(I − λ∇f ))xn, n = 0, 1, · · · (4.5)

strongly converges to the solution u∗ := PS(u), where (αn) satisfies the
conditions (C1) and (C2):
(C1) αn → 0;
(C2)

∑∞
n=0 αn =∞.
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Halpern Method for Monotone VIs

Consider IV:
〈F(u∗), u− u∗〉 ≥ 0, u ∈ C, (4.6)

where C is a nonempty closed convex subset C of a Hilbert space H and
F : C→ H is 1

L -ISM. Assume its solution set as S 6= ∅. Note that
S = Fix(PC(I − γF)) for any γ > 0. Now define a mapping Gη by

Gη := η

(
I − PC

(
I − 1

η
F
))

.

Then it is not hard to find that Gη is 2
2η+L -ISM for η > L

2 . Note that
G−10 = F−10. [Nesterov called Gη gradient mapping when F = ∇ϕ.]
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Halpern Method Applied to I − (2/L)GL/2

Let η > L
2 . Since Gη is 2

2η+L -ISM, I − 4
2η+L Gη is nonexpansive. It turns out that

I − 2
L GL/2 is nonexpansive. Applying Halpern to I − 2

L GL/2 yields

xn+1 = αnu + (1− αn)

(
xn −

2
L

GL/2xn

)
, n = 0, 1, · · ·

strongly converges to the solution u∗ := PS(u), where (αn) satisfies the
conditions (C1) and (C2) plus one of (C3)-(C6). In particular, if αn = 1

n+2 and
u = x0,

‖GL/2(xn)‖ ≤ L‖x0 − x∗‖
n + 1

= O
(

1
n

)
and ‖GL/2(xn)‖ ≤ ε after at most ( 2L‖x0−x∗‖

ε + 1) iterations. Our results slightly
refine those of J. Diakonikolas [2].

J. Diakonikolas, Halpern iteration for near-optimal and parameter-free
monotone inclusion and strong solutions to variational inequalities.
arXiv:2002.08872v3 (Apr 2020).
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Zeros of the Sum of Two Maximal Operators

Consider the problem of finding a zero of the sum of two maximal monotone
operators:

0 ∈ (A + B)x, (4.7)

where A and B are two maximal (multivalued) monotone operators in a Hilbert
space H. Assume the solution set of (4.7) is nonempty. Recall the resolvent
JA
λ := (I + λA)−1 for λ > 0.

Lemma

We have that v ∈ Fix((2JA
λ − I)(2JB

λ − I)) or v ∈ Fix(JA
λ(2JB

λ − I) + (I − JB
λ)) if and

only if u := JB
λv is a solution of (4.7).

Remark
(i) (2JA

λ − I)(2JB
λ − I) is nonexpansive (not AV, in general); (ii)

JA
λ(2JB

λ − I) + (I − JB
λ) is 1

2 -AV (or firmly nonexpansive).
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Douglas-Rachford (DR) Mappings

The iterates xn+1 = (2JA
λ − I)(2JB

λ − I)xn fail to converge;
The iterates xn+1 = (JA

λ(2JB
λ − I) + (I − JB

λ))xn converge weakly to some
point v such that u = JB

λv is a solution of (4.7) [12].

The generalized DR mapping:

Vβ := (1− β)I + βRA
λRB

λ, 0 < β ≤ 1; RA
λ = 2JA

λ − I,RB
λ = 2JB

λ − I.

V1 = (2JA
λ − I)(2JB

λ − I) is the Peaceman-Rachford (PR) mapping;
V1/2 = JA

λ(2JB
λ − I) + (I − JB

λ) is the DR mapping.
So Vβ unifies the two mappings.

P. L. Lions and B. Mercier, Splitting algorithms for the sum of two
nonlinear operators, SIAM Journal on Numerical Analysis 16 (1979), no.
6, 964-979.
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Douglas-Rachford-Halpern Method

Douglas-Rachford-Halpern is Halpern applied to the generalized DR mapping,
which yields

xn+1 = αnu + (1− αn)((1− β)xn + βRA
λRB

λxn), n = 0, 1, · · ·

strongly converges to v := PFix(RA
λRB

λ)
u and the solution u∗ := JB

λ(v) is a solution
of (4.7), where (αn) satisfies the conditions (C1) and (C2) plus one of
(C3)-(C7) [if 0 < β < 1, then (C1) and (C2) are sufficient]. The O(1/n) rate of
convergence can be obtained by taking αn = 1

n+2 and u = x0:

‖xn − RA
λRB

λxn‖ ≤
2‖x0 − x∗‖

n + 1
.
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Halpern for Minimax

Proposition

Assume the convex-concave objective function f is L-smooth. Given an initial
point z0 = (x0, y0) ∈ H and anchor w = (u, v) ∈ H. Define a sequence
zn = (xn, yn) in H by the Halpern iteration method:

zn+1 = αnw + (1− αn)(zn −
2
L
∂f (zn)), n = 0, 1, · · · ;

alternatively, in components,

xn+1 = αnu + (1− αn)(xn −
2
L
∇xf (xn, yn)),

yn+1 = αnv + (1− αn)(yn +
2
L
∇yf (xn, yn)).

Suppose (αn) satisfies the conditions (C1)-(C2) and one of (C3)-(C7). Then
(zn) converges in norm to z∗ = PSw. Moreover, if we take αn = 1

n+2 and w = z0,
then, for any ẑ ∈ S,

‖∂f (zn)‖ ≤ L‖z0 − ẑ‖
n + 1

.

Hence, ‖∂f (zn)‖ ≤ ε after at most ( 2L‖z0−z∗‖
ε + 1) iterations.
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Extra Anchored Gradient (EAG)

Consider the (unconstrained) convex-concave minimax problem:

min
x∈H1

max
y∈H2

f (x, y), (4.8)

where H1 = Rn and H2 = Rm.
T. Yoon and E.K. Ryu2 introduced EAG as an accelerated algorithm for solving
(4.8) {

zk+1/2 = zk + βk(z0 − zk)− αkg(zk), (4.9a)
zk+1 = zk + βk(z0 − zk)− αkg(zk+1/2) (4.9b)

for k ≥ 0, where βk ∈ [0, 1), known as anchoring coefficients, and αk ∈ (0, 1),
the step-size, for all k ≥ 0, z0 ∈ H := H1 × H2 is an initial point. [Recall
g(z) = ∂f (z).]

2T. Yoon and E. K. Ryu, Accelerated algorithms for smooth convex-concave minimax
problems with O(1/k2) rate on squared gradient norm, Proceedings of the 38th
International Conference on Machine Learning, PMLR 139, 2021.
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Extra Anchored Gradient (EAG)

Assuming f is L-smooth, Yoon and Ryu studied the convergence rate of
‖∇f (zk)‖2 = O(1/k2) for two variants of EAG (both with βk = 1

k+2 ):
EAG with constant step-size (EAG-C): αk = α for all k;
EAG with varying step-size (EAG-V).

They however have not discussed the convergence of the iterates {zk}.
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EAG-C and EAG-V

EAG-C: 
zk+1/2 = zk +

1
k + 2

(z0 − zk)− αg(zk), (4.10a)

zk+1 = zk +
1

k + 2
(z0 − zk)− αg(zk+1/2). (4.10b)

EAG-V: 
zk+1/2 = zk +

1
k + 2

(z0 − zk)− αkg(zk), (4.11a)

zk+1 = zk +
1

k + 2
(z0 − zk)− αkg(zk+1/2). (4.11b)

Recall again g(z) = ∂f (z).
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Halpern standardization of EAG

We observe that the algorithm EAG (4.9) can be written as a standard
two-step Halpern iteration. In fact, we have EAG (4.9) is equivalent to, using
the notation z̄k := zk+1/2,{

z̄k = βkz0 + (1− βk)(zk − γkg(zk)), (4.12a)
zk+1 = βkz0 + (1− βk)(zk − γkg(z̄k)), (4.12b)

where γk = αk
1−βk

.
We notice that the unconstrained Korpelvich extragradient (EG) algorithm
updates the the iterates via {

z̄k = zk − αg(zk) (4.13a)
zk+1 = zk − αg(z̄k). (4.13b)

We may view the EAG (4.12) as a Halperned (or anchored) EG with varying
stepsizes.
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Anchored EG

For the constrained minimax problem (1.1), the anchored EG turns out to bo
of the form {

z̄k = βkz0 + (1− βk)PG(zk − γkg(zk)), (4.14a)
zk+1 = βkz0 + (1− βk)PG(zk − γkg(z̄k)) (4.14b)

or {
z̄k = PG[βkz0 + (1− βk)(zk − γkg(zk))], (4.15a)
zk+1 = PG[βkz0 + (1− βk)(zk − γkg(z̄k))] (4.15b)

These two algorithms have the same convergence.
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Another EAG

If the zk in the EAG (4.12b) is updated also by the midway point z̄k, we obtain
another EAG as follows:

{
z̄k = βkz0 + (1− βk)(zk − γkg(zk)), (4.16a)
zk+1 = βkz0 + (1− βk)(z̄k − γkg(z̄k)). (4.16b)
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Convergence of EAG

Theorem
(X., 2021) Assume (i) f is L-smooth, (ii) 0 < γ∗ ≤ γk ≤ γ∗ < 2

L , and (iii) (βk)
satisfies the conditions:

(C1) βk → 0
(C2)

∑
k βk =∞.

Then the sequence {zk} generated by EAG (4.16) converges in norm to the
solution z∗ = PG∗z0.

Remark: The anchor w may differ from the initial point z0. In that case, the limit
z∗ = PG∗w.
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Thanks

Thank you for your attention!
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