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Projection can be computationally inexpensive



Projection vs Rescaling = nonsmooth vs smooth transformations 
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Augmented Lagrangian Method (Hestenes, Powell, 1969)
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Nonlinear Rescaling of constraints (R. Polyak)

parameter scaling  theis  k



Nonlinear rescaling method 
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Nonlinear Rescaling – augmented Lagrangian 
Method
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Proximal-point Nonlinear Rescaling – augmented 
Lagrangian Method
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Can we say when we should project or rescale?



Maximal monotone operator
Definition.

Let H be a real Hilbert space with inner product        .  
A multifunction                     is a monotone operator if 

whenever

The operator is maximal monotone if, in addition, the graph

is not properly contained in the graph of any other monotone 
operator                  .

A fundamental problem is to determine     such that              .
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Augmented Lagrangian Method

Adding a Proximal term



Augmented Lagrangian method is a proximal-point 
algorithm



Augmented Lagrangian Method

𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑎𝑎 𝑥𝑥,𝑎𝑎, 𝜆𝜆 = 0 ⟺ 𝑥𝑥 = 𝑥𝑥∗, 𝜆𝜆 = 𝜆𝜆∗,𝑎𝑎 = 𝑥𝑥∗



iss

Augmented Lagrangian method is a proximal-point 
algorithm



Fast projected gradient method (Beck-Teboulle, 
Nesterov, Polyak) 

(Follows from Polyak, 2015)



Convergence

The proof is based on showing that the method satisfies conditions of Theorem 1
in Rockafellar (1976) for a general proximal-point method 
(details can be found in Pure and Applied Functional Analysis, 3(3), 417-428, 2018) 



Proximal-point nonlinear rescaling (PPNR) method 

:



Proximal-point nonlinear rescaling (PPNR) method 

Rescaling of the primal constraint functions leads to rescaling of dual variables!



Rescaled in the dual space proximal-point method 



Proximal-point nonlinear rescaling (PPNR) method
G., Polyak, 2011) 

Published in Numerical Algebra, Control & Optimization, 1(2), 283-299, 2011 



Projection vs Rescaling = nonsmooth vs smooth transformations 
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To project or to rescale? 

For smaller smooth problems we can use Newton’s method, while for larger 
nonsmooth problems, we can use fast projected gradient methods.

But where is the switching point from smaller to larger problems? 



Numerical experiments: Support Vector Machines (V. Vapnik)

Type equation here.

X
Y=F(X) Y

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)

𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 = exp −𝛾𝛾 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 2
2



Increasing the scaling parameter k, n=1000 variables

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏 𝑥𝑥 + 𝑐𝑐

∇𝑥𝑥𝑥𝑥ℒ𝑘𝑘 � = 𝑄𝑄 + 𝑘𝑘𝑦𝑦𝑇𝑇𝑦𝑦



Increasing the scaling parameter k, n=1000 variables



Increasing the number of variables: 5000,5050,…,10000



Conclusions

• Lagrange multipliers methods based on both nonlinear rescaling and projection lead to 
proximal-point methods that can be analyzed with the theory of maximal monotone 
operators

• Projection to the feasible set leads to a nonsmooth treatment of the optimization 
problem with rescaling not required 

• Nonlinear rescaling method rescales the distance in the dual space for the implied 
proximal-point method, and, in turn, rescales the dual component of the image of the 
maximal monotone operator, but leads to a smooth treatment of the optimization 
problem

• While rescaling allows using Newton’s method the projection, projection makes 
Newton’s method useless

• If the first-order methods to be used, then projection could be a better choice than 
rescaling

• Numerical experiments suggest that the size of the problem may need to be very large 
for the quadratic programming problems, so Newton based nonlinear rescaling methods 
become less efficient than projection based first order methods.

• The investigation to be continued…



Thank you!

Questions?
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