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My lecture " Applied Functional Analysis” in Tokyo Tech starts with POCS
because it is clear evidence of the power of convergence in Hilbert space !

POCS dates back to
[Lev Bregman 1965]
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It Po, and Pc, are easy to compute,

C1 N Cy can be expressed as the fixed point set of
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a computable nonexpansive operator Fp, o F¢,.
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The operator Pp, o Po, is nonexpansive, i.e.,
(x,y S H) HPC2 OP01($) - PC2 OPC1<y>H < HPCH(x) - P01<y>H < H$ - y”
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Many tasks in sparsity-rank-aware signal processing
and machine learning have been formulated as

sparsity-rank-aware regularized least squares models

1
miniergize Jyog(x) := §Hy — Aa:H%, +uPoL(x), pn>0, (1)

where X, ), Z: finite dimensional real Hilbert spaces, y € J, A € B(X,))
(i.e. A is a bounded linear operator from X to ), £ € B(X, Z) and

U : Z — Ry is a certain approximation of || - || (# of nonzero entries)
or rank(-

Sparsity-aware convexly Nonconvex regularization
regularized least squares via Moreau enhancement

This study
cLiGME model
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TV [ROF'92], LIGME [AYY "20] ...
[Daubechies et al "04] ...

Set theoretic estimation
with convex projections

[J.von Neumann "30], [Bregman "65], [Youla-Webb 82], [Combettes 93],
[Censor-Elfving "94], [Bauschke-Borwein'96], [Deutsch "00], [Byrne "04]...
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LiIGME model

In sparsity-rank-aware least squares estimation models:
1

minimize Jyoe(z) 1= =||y — Azl|3 Vo £(z),

mize Jy ¢(z) 2Hy Iy +u ()

Best convex approx. of || - || / rank(-)

| - |l1 and || - ||nuc have been used as the standards of W.

proper+lower
semicontinuous
+convex functions

mm) For nonconvex enhancement of ¥ € I'y(Z2)

while achieving the overall convexity of Jyeg,

. B

LIGME model [J.Abe, M.Yamagishi, Y, Inverse Problems 2020]

. 1
minimize Ju oo (x) 1= §Hy — Az||3, + u¥p o £(x)

(B is a tuning parameter for Linearly involved Generalized Moreau Enhancement of ¥)

NOTE: LiGME extends MC [Zhang ‘10| and GMC [Selesnick ‘17] (U = | - ||1, £ =1d).



Good News 1
Generalized Moreau enhancement W of ¥ € I'y(Z) bridges the gap

between naive discrete measures and their convex envelopes

Generalized Moreau enhancement of convex regularizers
Let Z and Z be Hilbert spaces.

Then for given ¥ € T(2) [prox-friendly, cocrcive, dom ¥ = Z] and B € B(Z, 2),

, 1
V()= qf(')—/{)nglgq/(?}) + — || B(- — v)H% Nonconvex

'Moreau-Yosida like regulanzatlon of U(-)

Example 1 Let Z =2 :=R" U := H |y and B := \/_Id for veERL,.
f

‘ For (z1,...,2,) € R", we have < <H i) VR (@103 2n) = [l (21,20 o
\ (H H Jo (5517 ) = !\(931,-..,xn)Hl

Example 2 Let 2= 2 :=R™" 0 := |- || and B := %Id for v € Ry

( 2

lim — (|| - ||pue) 174 (X) = rank(X),
i = (1 ) 10 (X) = rank(X)

(- [Taue)o (X) = || X || nue

‘ For X € R™*"™ we have

/"




Minimax-Concave (MC) penalty [C.-H. Zhang 2010]
is a simplest 1D example of LIGME function (¥ =|- | and £ =1d)

Moreau envelope of | - | P.J.Huber, Ann. Math. Statist.'64
| 1 s if |z] <~
fylﬂ}‘ ‘= min ‘U’+—x—v‘2 ! 2y ’1 ‘ |—.77
vek | 2y \ |$! — 357, otherwise.

converges pointwise to - |

x| = {1

/’Y|x|

Vel = Ja] < o]

\ /
1 ) —2 -1 0 1 2 3

as v J 0.

C.-H.Zhang, Ann. Statist."10
Minimax-Concave penalty

elve =l =Tz
f 1.2 .
[l i<y
\ %% otherwise.

has been proposed as a nearly unbiased
nonconvex enhancement of the best

. convex sparsity promoting regularizer

l[1-norm || - ||1



LIGME is_ a Unified + Linearly involved extension
N[Abe-Yamagishi-IY (Inverse Problems ‘20)]

For X, Z, Z: Hilbert spaces and U € I'y(Z) |prox-friendly, coercive, dom ¥ = Z],
(B cB(2,2), £ ¢ B(X,Z)) Upof:X >R (LIGME)

1
where Up()=U(-) — mig U(v) + 5 |B(- — v)H2] .
(US
Moreau-Yosida like regularization of W(-)

Generalized Minimax-Concave (GMC) Penalty
[I. Selesnick [EEE T-SP, 2017

1
M+ 1Bz-v)I|  (GMC)

(BER™) (|- l1)5(z) := 2] - min

vEeR

—Minimax-Concave (MC) Penalty [C.-H. Zhang, Ann. Statist.’10]

, 1
rERe) huosR s 2ol - o+ - of| (M)




Good News 2 -
Thanks to the great freedom in the choice of B € B(Z, Z),

U o £ can achieve flexibly the desired overall convexity !

Linearly involved Generalized Moreau Enhanced model

1
miniergize Jupoe(x) := 5“3/ — Az||* + p¥po L(x), u>0, (2)

where X. ). Z. Z: Hilbert spaces, y € Y, A€ B(X,)), £€B(X,Z) and

1
Up():=9() - %1%1 U(v) + 5 |B(- —v)|?|, Nonconvex

with ¥ € Ty(Z) [prox-friendly, coercive, dom ¥ = 2] and B € B(Z, Z).

Overall Convexity Condition for (2)
AA — p*B*BL » 0 = Jv 00 € FQ(X)
In particular, if ¥ € T'y(Z) satisfies the condition as a norm of vector space Z,

A"A— pu*B*BL = 0 & Jy o0 € To(X) [Abe, Yamagishi, IY (Inverse Problems 2020)




How can we apply LIGME model ?

mlmerglze Jypoo(x) = —Hy Ax!]z—l—u\IJBOE( ), >0, (2)

where VUp(-):= V(:) —min |V(v) +

VEZ

IB( o)l

Q: Can we choose ?

@ Suppose £ € R"*" satisfies rank(£) = .

~

Choose a nonsingular ¢ c R™*™, s.t., [ Oix(n— L } £ =4

where UAUT := AJ] A, — A A, (AUL) AT A, € RIX!

is the EVD with A (E) — [ A, A, } |
J. Abe, M. Yamagishi, I. Yamada,

“Linearly involved generalized Moreau enhanced models and their proximal splitting
algorithm under overall convexity condition,” Inverse Problems, (36pp), 2020.




Good News 3
Through a product space reformulation,
the LIGME model (2) covers
the following seemingly much more general model:

M
. 1 i
minimize Ju poe(x) := §Hy — Az||* + ;_1 piVs~ o Li(z)  (3)

where X, Y, Z:, Z; (i=1,2,..., M),

~ ~ ~

. Hilbert spaces,
Z: =21 X XZp, L =21 XX ZM

| | . 7; 1
V5 () = U< () min |05 () + 3 I8~ 0|, Nonconvex

~S

with U< € Ty(Z;) [prox-friendly, coercive, dom U<"> = Z;| and B; € B(Z;, Z).




Set theoretic estimation with multiple convex projections
- A powerful mathematical idea pioneered by Lev Bregman

Split convex feasibility problem (e.g., [Censor-Elfving 1994])
Find z* € X s.t. Q:j$* = Cj (1 < ] < N),

where X', 3;: real Hilbert spaces, €; € B(&X, 3;), and

C; C 3 ; are simple closed convex sets meaning that

metric projections Pg, are assumed computable.

Simplest case, where 3; = 39 and &; = €5 = Id dates back to 1965 [Bregman ‘65].

Q. Why do not we integrate
these two powerful ideas ?

But how ?




cLiGME model (proposed model)

To integrate the LIGME and the Set Theoretic Estimation,
we newly propose

cLIGME model

1
mi@jningze Ju oo(x) 1= §Hy — Az||5 + p¥poL(z), u>0, (%)
e LiGME regularizer

where X, ). Z. Z. 3: real Hilbert spaces, y € Y, A € B(X,)), £€B(X,2),
¢ e B(X,3), CC 3: simple closed convex, 03 € ri(C — ran €), and
1
Up() = () —min [¥(v) + o [|B(- - v)|%| Nonconvex
vE
with U € T'y(Z)[proximable, coercive, even symmetry, dom(¥) = Z] and B € B(Z, 2)
[o(Z): set of all proper lower semicontinuous convex functions over Z, 03 : zero vector in 3

The cLiGME (%) with € = Id and C = X reproduces the LIGME model [AYY ‘20).

At a glance, the model (x) seems to cover only a single constraint case.



cLiGME covers multiple regularizers and constraints

Through a product space reformulation, the cLiGME model (x)
can deal with multiple linearly involved convex constraints

M
L 1 ) i
o Junimize - Jwnoe(w) = Slly - Aﬂf:Hw;m%m o £i(w)

where X,y,zi,z,?,j: real Hilbert spaces, y € J, A € B(X,)), £; € B(X, Z;),

¢; € B(X,3;), C; C 3; : simple closed convex, 03, € 1i(C; —ran¢;), and

2

~

Z;

. . 1 |
(Y — i | ) _H Gy (. _
P () min U (1})—|—2 BY (- —v)

with U9 € I'y(Z;)[proximable, coercive, even symmetry, dom(¥{?)
and B € B(Z;, Z;).




Good News 4
1

mi@niéncize Ju o () = §Hy — Az||5 + p¥p o L(x), p>0, (%)

where Up():=V() — 2%12 {\I!(v) + % |B(- —v)|]?| .

Although V3 is nonsmooth and nonconvex, under mild conditions,

we can express the set of all globally optimal solutions

in terms of the fixed-point set of computable nonexpansive

operator in a certain Hilbert space and therefore can solve ().

W. Yata, M. Yamagishi, Y,
“A constrained Liniearly-involved-Generalized-Moreau-Enhanced model and
its proximal splitting algorithm,” IEEE MLSP, Oct., 2021.

(by extending a theorem in [J. Abe, M. Yamagishi, 1Y, 2020])




Theorem 1 Assume Vo (—=Id) = U, 1/2|ly — A(")||* + p¥p o £(-) € To(X).
Let Z.:=Zx3, H=XAxZxZ, and £.: X = Z.:z— (L£(),C(x)).

Define Tirigme : H — H : (z,v,w) — (£,(,n) by

£ = [Id _Lliara— MQ*B*BS)} z — ES*B*BU _ Haey 4 Lary
O O

2
¢ :=Proxuy [ “Pppec - HB BLx + (Id— ~ p* B) ]

n:= (Id — Proxye,) (22c€ — Lex +w), Provug(u,wy) = (Proxy(w), Po(uy))

where for any k > 1, (o,7) € Ry, x Ry is chosen to satisfy
old = 5A*A — pLlL. = Ox

{ T > (54 2) ull B2,

Under the Overall Convexity Condition,

argmin |Jy o¢ + tc 0 €] = Z(Fix(Terigmr)) ,

where Z: X x Zx Z. = X : (z,v,w) — x
and Fix(Terigume) == {(2,v,w) | TeLiome(®, v,w0) = (z,0,0)}




old —uL*B*B —uL’
‘ P:=| —uB*BE  7Id  Opz.z | > O and
— e Op(z,z.) pld

TcLiGME3%<3:XXZXZc> — H is P _1
the Hilbert space (H, (-, )y, || - ||s), i-e.,
(Vx,y € H)

-averaged nonexpansive in

k-1

Ticam() - Teuicam(y)ly < [x- YHs,p——H(Id Tione) (x) = (1d = Tegione) (3)

For any initial point (zg, vy, wy) € X X Z X Z,,

=

the sequence (x,,,v,, W, )ney C X X Z X Z, generated by

[Krasnoselskii-Mann]
($n+1, Un+1, wn+1) = TcLiGME(CUm Un s wn)

converges to a point (z*,v*,w*) € Fix (T . icme) and

lim z, = z* € argmin [Jy,oe + tc 0 €]
n— 0O



Algorithm 1 for cLIGME model
Choose (xO,vO,Wo)Eff. IXEXZE, = HwhereZ,:=Z X3 {

old—SA'A-pgL. > 0y

(3.5)
e (5+ ) [1Bloy-

Let (0,7,x) € Ry, xR, x (1,0) satisfying (3.5).
Define P as (3.6). I

k — 0. B.= [_pB'Bﬁ tld Oﬁ(_!‘})] =0y (3.6)
do “He&  Ogory uld

Yot  [1d=1 (A*A - ' B'BE)| xp — EL*B' By, - E&'wi + LAYy
() o g ¢ o

Vst ¢ Proxay | BB — LBy + (14-£B'B)

Wi+ ¢ Prox .P*(ZE(.le - Ecxk + Wk)

kk+1

while || (xe, v, wi) = (Xk-1, k-1, Wk-1) pr is not sufficiently small
return x;

For any (xq,vg,wp), the sequence (zx)ren generated by Algorithm 1
converges to a globally optimal solution of the cLiIGME model.

The derivation of Theorem 1 and Algorithm 1 is inspired by Condat’s primal-dual algorithm
[Condat 2013] and is essentially based on the so-called forward-backward splitting method.

Since Condat’s primal-dual algorithm was proposed for minimization of sum of linearly involved
convex terms, it is not directly applicable to the cLiIGME model involving nonconvex functions.



Numerical experiments (Piecewise constant image restoration)

M
L 1 2 (i)
B, Trees(@) 1= gl = Al 3 ¥l 0

We applied the proposed model to
(2% : vectorization of piecewise constant matrix
y = Ax* +¢e¢ ( A: blur matrix

| ¢ : AWG to achieve SNR (20 dB)

To promote piecewise constantness, we used two regularizers

Type 1 : anisotropic TV (convex): |- |1 0D (D is a 2dim difference operator)

Type 2 : LiIGME - nonconvex enhancement of the anisotropic TV

(i) each entry in x* belongs to [0.25,0.75]
(ii) every entry in the background is common (but unknown) valued

we compared Type 1 and Type 2 with constraints

& : 1o constraint, ¢ : constraint (i),

(' constraint (i), : constraints (i) and ()

Original image z* Blurred noisy image y



Numerical experiments (Piecewise constant image restoration)

1. With same constraints, the cLiIGME model achieves
better estimation than the anisotropic TV model.

2. With multiple constraints, LIGME model is improved by cLiGME model.

10° 10%
e T TV (*) ........ cLchE (*)
—=TV() — = cLiGME (¢)
Squared Error == V() -+~ cLiGME (?)
14 —TV(#) 1 —— cLiGME ()
| - 17 ¥4
i
I
G 100} % 10°
t
L ettt
-1 i eeeeeeee————————————
adl (E e
10_2 1 1 1 | I 1
0 1000 2000 3000 4000 5000 2000 3000 4000 5000
Iterations

Iterations



Conclusion

1. Mainly for sparsity-rank aware signal processing, the LIGME model
presents a mathematically sound nonconvex enhancement of
the convexly regularized least squares models.

2. For broader applications, the cLiIGME model has been designed by
integrating main ideas in set-theoretic estimation and in LIGME model.
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