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Goal/Outline

Main goal. To unify, simplify, and improve the convergence rate analysis
of Lagrangian-based methods for convex optimization.

• A central tool for Lagrangian methods: Nice Primal Algorithmic Map

• A framework of Faster LAGrangian (FLAG) methods

• New non-ergodic rate of convergence results
in terms of function values and feasibility violation
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The Problem



The Linearly Constrained Convex Optimization Model

We focus on the linearly constrained convex optimization problem defined by

(P) min
x∈Rn
{Ψ (x) : Ax = b} ,

where

• Ψ : Rn → (−∞,+∞] is proper, lsc and σ-strongly convex with σ ≥ 0.
• A : Rn → Rm is a linear mapping, and b ∈ Rm.
• The feasible set of problem (P) is denoted by F = {x ∈ Rn : Ax = b} 6= ∅.

Despite its apparent simplicity, this model is very rich and encompasses most convex
optimization models.
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Important Particular Instances of Model (P)

• Linear composite model

min
u∈Rp
{f (u) + g (Au)} = min

u∈Rp ,v∈Rq
{f (u) + g (v) : Au = v} ,

where f : Rp → (−∞,+∞] and g : Rq → (−∞,+∞] are proper, lower
semi-continuous and convex functions, and A : Rp → Rq is a linear mapping. It
fits into model (P), with x =

(
uT , vT)T , Ψ (x) := f (u) + g (v) and

Ax = Au − v .

• Block linear constrained model

min
u∈Rp ,v∈Rq

{f (u) + g (v) : Au + Bv = b} ,

where f : Rp → (−∞,+∞] and g : Rq → (−∞,+∞] are proper, lower
semi-continuous and convex functions, A : Rp → Rm and B : Rq → Rm are linear
mappings. It fits into model (P), with x =

(
uT , vT)T , Ψ (x) := f (u) + g (v)

and Ax = Au + Bv .
• Additive smooth/non-smooth composite objective

min
x∈Rn
{f (x) + h (x) : Ax = b} ,

with Ψ (x) := f (x) + h(x) where h : Rn → R is a continuously differentiable
function with a Lipschitz continuous gradient.
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Lagrangians for the Convex Model (P)

We recall problem (P)
(P) min

x∈Rn
{Ψ (x) : Ax = b} ,

The corresponding Lagrangian and augmented Lagrangian, are respectively given by:

L (x , y) = Ψ (x) + 〈y ,Ax − b〉 , y ∈ Rm,

and, for any ρ > 0,
Lρ (x , y) = L (x , y) + ρ

2 ‖Ax − b‖2 .

Assumption
The Lagrangian L has a saddle point, that is, there exists (x∗, y∗) such that

L (x∗, y) ≤ L (x∗, y∗) ≤ L (x , y∗) , ∀ x ∈ Rn, ∀ y ∈ Rm.

It can be warranted, for instance, under standard CQ on the problem’s data.
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Lagrangian-based Methods for Model (P)

Starting point: all Lagrangian-based methods update a couple (x , y) via

x+ ∈ P (x , y) ,
y+ = y + µρ

(
Ax+ − b

)
,

where P(·, ·) is a primal algorithmic map and µ > 0 is a scaling parameter.

• The main difference between Lagrangian-based methods is encapsulated through
the choice of a primal algorithmic map that updates the primal variable.

• This primal map can be seen as the step of any optimization method that is
applied on the augmented Lagrangian itself or a variation of it.
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Examples – Some Classical Lagrangian Based Schemes

Lρ (x , y) = Ψ (x) + 〈y ,Ax − b〉+ ρ

2 ‖Ax − b‖2

Augmented Lagrangian (Hestenes (69), Powell (69))

Main step: Given (x , y), update the new point
(
x+, y+) via:

x+ ∈ argmin {Lρ (ξ, y) : ξ ∈ Rn} ,

y+ = y + µρ
(
Ax+ − b

)
.

In this case, P is an exact minimization applied on the augmented Lagrangian.

Proximal Linearized Augmented Lagrangian Main step: Given (x , y), update
the new point

(
x+, y+) via:

x+ ∈ argmin
{

Ψ (ξ) +
〈
ξ,AT (y + ρ (Ax − b))

〉
+ 1

2 ‖ξ − x‖2M : ξ ∈ Rn
}
, (M � 0)

y+ = y + µρ
(
Ax+ − b

)
.

In this case, P is a proximal gradient applied on the augmented Lagrangian.
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Examples: Some Classical Schemes for Block Models

As discussed above, Model (P) covers the following block model

min
(u,v)∈Rn

{f (u) + g (v) : Au + Bv = b} .

Lρ (u, v , y) = f (u) + g (v) + 〈y ,Au + Bv − b〉+ ρ

2 ‖Au + Bv − b‖2 .

However, the block structure can be exploited in designing Lagrangian-based methods.

Alternating Direction Method of Multipliers (ADMM)
(Glowinski and Marroco (75), Gabay and Mercier (76))

Main step: Given (u, v , y), update the new point
(
u+, v+, y+) via:

u+ = argmin {Lρ (ξ, v , y) : ξ ∈ Rn} ,

v+ = argmin
{
Lρ
(
u+, η, y

)
: η ∈ Rm} ,

y+ = y + µρ
(
Au+ + Bv+ − b

)
.

In this case, P is an alternating minimization applied on the augmented Lagrangian.
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Examples – Some Classical Schemes for Block Models

Lρ (u, v , y) = f (u) + g (v) + 〈y ,Au + Bv − b〉+ ρ

2 ‖Au + Bv − b‖2 .

Previous steps can be difficult to implement. Instead, we can approximate them:

Proximal Linearized ADMM
Main step: Given (u, v , y), update the new point

(
u+, v+, y+) via:

u+ = argmin
ξ

{
f (ξ) +

〈
AT (y + ρ (Au + Bv − b)) , ξ − u

〉
+ 1

2 ‖ξ − u‖2M1

}
,

v+ = argmin
η

{
g (η) +

〈
BT (y + ρ

(
Au+ + Bv − b

))
, η − v

〉
+ 1

2 ‖η − v‖2M2

}
,

y+ = y + µρ
(
Au+ + Bv+ − b

)
.

(Here M1,M2 � 0).

In this case, P is a alternating proximal gradient applied on the augmented
Lagrangian.
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Unified Framework



Nice Primal Algorithmic Map

It captures the essential ingredients and plays a central role in unifying the analysis of
all Lagrangian-based methods into a single and simple framework.

Definition [Nice primal algorithmic map] Given the parameters ρ, t > 0, let

(ρt , τt) :=
{

(ρ, t−1) ifσ = 0
(ρt, t) ifσ > 0.

A primal algorithmic map St : Rn×Rm → Rn which is applied on the augmented Lagrangian
Lρt (z, λ) that generates z+ ∈ St (z, λ) , is called nice, if there exist δ ∈ (0, 1] and
P,Q � 0, such that for any ξ ∈ F we have

Lρt

(
z+, λ

)
−Lρt (ξ, λ) ≤ τt∆P

(
ξ, z, z+)−τt

2
∥∥z+ − z

∥∥2
Q
−σ2

∥∥ξ − z+∥∥2−δρt

2
∥∥Az+ − b

∥∥2

• For any matrix P � 0 and any three vectors u, v ,w ∈ Rn:

∆P (u, v ,w) :=
1
2
‖u − v‖2P −

1
2
‖u − w‖2P .

• When P ≡ In, the identity matrix, we simply write ∆P (u, v ,w) ≡ ∆ (u, v ,w).
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A Unified Framework – FLAG

FLAG – Faster LAGrangian based method

1. Input: Problem data [Ψ,A, b, σ], and a nice primal algorithmic map St (·).
2. Initialization: Set t0 = 1, µ ∈ (0, δ] and ρ > 0. Start with any

(
x0, z0, y 0).

3. Iterations: Generate
{(

x k , zk , y k)}
k∈N

and {tk}k∈N via
3.1. Compute

λk = yk + ρk (tk − 1)
(
Axk − b

)
, with ρk =

{
ρ, ifσ = 0
ρtk ifσ > 0.

3.2. Update the sequence
{(

xk , zk , yk
)}

k∈N
by

zk+1 ∈ Stk

(
zk , λk

)
,

yk+1 = yk + µρk
(
Azk+1 − b

)
,

xk+1 =
(
1− t−1k

)
xk + t−1k zk+1.

3.3. Update the sequence {tk}k∈N by solving the equation tp
k+1 − tp

k = tp−1
k+1 , i.e.,

tk+1 =


tk + 1, p = 1 (convex case),(

1 +
√

1 + 4t2k
)
/2, p = 2 (strongly convex case).
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FLAG - A Few Comments

• Setting tk ≡ 1 in FLAG, implies ρk ≡ ρ, λk ≡ y k , and x k ≡ zk , thus recovering
the classical basic Lagrangian-based methods.

• Borrows ideas from acceleration of FOM (Nesterov (83), Auslender and T. (06)).
• The choice of tk plays a key role in accelerating the nice primal map St . Both the
augmented parameter ρk and the prox parameter τk are determined and chosen
through the recursion which defines the sequence tk .

• A main new feature of FLAG is the auxiliary variable λk defined by:

λk = y k + ρk (tk − 1)
(
Ax k − b

)
,

which enable us to derive the new faster non-ergodic rate of convergence results!
• St is assumed to be nice primal algorithmic map and this is all we need to
guarantee rate of convergence results (classical and fast)!
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Analysis



The Two Main Pillars of the Analysis

• The analysis of Lagrangian based methods is usually complicated, and relies on
very lengthy and nontrivial proofs.

• Here, it relies on two key lemmas, admitting simple proofs; half-page each!

Lemma 1 Let
{(

xk , zk , yk
)}

k∈N
generated by FLAG. Then, for any ξ ∈ F , η ∈ Rm

and k ≥ 0,

Lρk

(
zk+1, η

)
− Lρk (ξ, η) ≤ τk ∆P

(
ξ, zk , zk+1

)
−
σ

2

∥∥ξ − zk+1
∥∥2 +

1
µρk

∆
(
η, yk , yk+1

)
− ρtp

k−1

〈
Axk − b,Azk+1 − b

〉
.

Lemma 2 Let
{(

xk , zk , yk
)}

k∈N
generated by FLAG. Then, for any ξ ∈ F , η ∈ Rm

and k ≥ 0,

tp
k sk+1 − tp

k−1sk ≤
τkρk
ρ

∆P
(
ξ, zk , zk+1

)
−
ρkσ

2ρ

∥∥ξ − zk+1
∥∥2 +

1
µρ

∆
(
η, yk , yk+1

)
,

where sk = Lρtp
k−1

(
xk , η

)
− Lρtp

k−1
(ξ, η).
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Main results: Rate of Convergence



Types of Rate of Convergence – Many Results

We focus on non-asymptotic rate of convergence (iteration complexity) using the
following two classical measures:

(i) Function values gap in terms of Ψ
(
x k)−Ψ (x∗).

(ii) Feasibility violation of the constraints of problem (P) in terms of
∥∥Ax k − b

∥∥.
Other measures in the literature: Lagrangian,

∥∥x k − x∗
∥∥2, ∥∥x k+1 − x k

∥∥2, etc.
When discussing these measures, we also distinguish between rates expressed in terms
of the original produced sequence or of the ergodic sequence.

• Many rate of convergence results in the literature for variants of Lagrangian-based
methods. Mostly ergodic! (Chambolle and Pock (11),He and Yuan (12), Monteiro-Svaiter

(13),...)

• Non-ergodic O(1/N) result for
∥∥x k+1 − x k

∥∥2 (He and Yuan (15)).
• Non-ergodic O(1/N2) result for

∥∥x k − x∗
∥∥2, in the strongly convex setting

(Chambolle and Pock (11)).
• Non-ergodic O(1/N) rate of convergence result in terms of function values and
feasibility violation for the specific Linearized ADMM (Li and Lin (19)).
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Main Results - Non-Ergodic Rate: O(1/N2) and O(1/N)

The strongly convex case σ > 0.

Theorem 1. (A fast non-ergodic function values and feasibility violation
rates) Let

{(
x k , zk , y k)}

k∈N
be a sequence generated by FLAG. Suppose that

σ > 0 and 0 � P � (σ/2) In. Let c > 0 with c ≥ 2 ‖y∗‖, where y∗ is an
optimal solution of the dual problem. Then, for any optimal solution x∗ of
problem (P) and N ≥ 1,

Ψ
(
xN)−Ψ (x∗) ≤ Bρ,c (x∗)

2N2 and
∥∥AxN − b

∥∥ ≤ Bρ,c (x∗)
cN2 ,

where Bρ,c (x∗) := 4
(∥∥x∗ − z0

∥∥2
P

+ 1
µρ

(∥∥y 0
∥∥+ c

)2).
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Main Results - Non-Ergodic Rate: O(1/N2) and O(1/N)

The convex case σ = 0.

Theorem 2. (A non-ergodic function values and feasibility violation rates)
Let

{(
x k , zk , y k)}

k∈N
be a sequence generated by FLAG and suppose that

σ = 0. Let c > 0 with c ≥ 2 ‖y∗‖, where y∗ is an optimal solution of the dual
problem. Then for any optimal solution x∗ of problem (P) and N ≥ 1,

Ψ
(
xN)−Ψ (x∗) ≤ Bρ,c (x∗)

2N and
∥∥AxN − b

∥∥ ≤ Bρ,c (x∗)
cN ,

where Bρ,c (x∗) := 2
(∥∥x∗ − z0

∥∥2
P

+ 1
µρ

(∥∥y 0
∥∥+ c

)2).
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Ergodic type results

FLAG is versatile

• Deriving weaker results of ergodic type was not our primary goal.
• Nevertheless, our main framework FLAG easily adapt to that task.
(The sequences

{
x k}

k∈N
and

{
λk}

k∈N
are not used for that scenario!)

See details in the paper.

Marc Teboulle Tel Aviv University 17



Nice Primal Algorithmic Maps and their
FLAG



Nice Primal Algorithmic Map for Block Model

The notion of nice algorithmic map is flexible and easily adapt to the block setting:

min
x :=(u,v)∈Rp×Rq=Rn

{Ψ(x) := f (u) + g (v) : Ax := Au + Bv = b} .

In the block model, we only need to assume that either f or g is strongly convex.

Definition [Nice primal algorithmic map - Block version]
Given the parameters ρ, t > 0, we let (ρt , τt ) = (ρ, t−1) (when σ = 0) and (ρt , τt ) = (ρt, t)
(when σ > 0). A primal algorithmic map St : Rn × Rm → Rn, which is applied on the augmented
Lagrangian Lρt (z, λ), that generates z+ =

(
u+, v+

)
via z+ ∈ St (z, λ), is nice, if there exist

δ ∈ (0, 1] and P1,Q1 ∈ Sp
+ and P2,Q2 ∈ Sq

+ with P = (P1,P2) and Q = (Q1,Q2), s.t. for any
(ξ1, ξ2) ∈ F

Lρt

(
z+
, λ
)
− Lρt (ξ, λ) ≤

1
t

∆P1

(
ξ1, u, u+

)
−

1
2t

∥∥u+ − u
∥∥2

Q1
+ τt ∆P2

(
ξ2, v , v+

)
−
τt

2

∥∥v+ − v
∥∥2

Q2
−
σ

2

∥∥ξ2 − v+
∥∥2
−
δρt

2

∥∥Az+ − b
∥∥2
.

• Note: Here we use g strongly convex. Hence, only the block v uses τt (to cover both con-

vex/strongly convex cases). For the other block u (with only convexity. i.e., σ = 0), we fixed

τt = t−1.
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Iconic Lagrangian-based Methods Admit a Nice Primal Algorithmic Map!

• Augmented Lagrangian Methods (classical, proximal, and prox-linearized)
• Alternating Direction Method of Multipliers ADMM
• Proximal ADMM
• Proximal Linearized ADMM
• Chambolle-Pock Method
• Proximal Jacobi Direction Method of Multipliers
• Predictor Corrector Proximal Multipliers

For each method an explicit parameter δ and matrices P,Q can be found!

(See details in paper.)

Meaning, they all admit Nice Primal Algorithmic Map!

Therefore, our nonergodic convergence rate results can be applied.

In addition, nice primal algorithmic maps, can be also be identified for problems with a
composite objective, as we illustrate next.
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Model (P) with the Sum Composite Objective Function

We consider the sum composite model: nonsmooth + smooth objective

min
x∈Rn
{f (x) + h (x) : Ax = b} ,

• f : Rn → (−∞,+∞] is a proper, lsc and σ-strongly convex (σ ≥ 0),
• h : Rn → R is convex C1 with L-Lipschitz continuous gradient.

Lemma (Proximal AL is nice)
Let M � LIn, the primal algorithmic map St (·) defined by

z+ = argmin
ξ

{
f (ξ) + 〈∇h (z) , ξ〉+ 〈λ,Aξ − b〉+ ρt

2 ‖Aξ − b‖2 + τt

2 ‖ξ − z‖2M
}
,

is nice with δ = 1 and P = M and Q = M − LIn.
Lemma (Proximal Linearized AL is nice)
Let M � ρATA+ LIn, the primal algorithmic map St (·) defined by

z+ = argmin
ξ

{
f (ξ) + 〈∇h (z) , ξ〉+ 〈λ,Aξ − b〉+ ρt 〈Az − b,Aξ〉+ τt

2 ‖ξ − z‖2M
}
,

is nice with δ = 1 and P = M − ρATA and Q = M − ρATA− LIn.
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Epilogue

A Simple Recipe for Rate of Convergence of Lagrangian-based Methods

(i) Formulate the problem at hand via model (P), i.e., identify the relevant problem
data [Ψ,A, b, σ]. The value of σ will determine the type of rate that can be
achieved (classical or fast).

(ii) Define the desired iterative step(s) of the primal algorithmic map St (·)
applied on the augmented Lagrangian Lρt (·) of model (P).

(iii) Show that the defined primal algorithmic map is nice, i.e., determine the
parameter δ and the matrices P and Q.

(iv) Apply Theorem 1 (if σ > 0) or Theorem 2 (if σ = 0) for the corresponding FLAG
to obtain a faster non-ergodic rate of convergence for the designed method.

Therefore, there is no need any more to enter into the machinery of the proofs!
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More details and Results

Sabach, S. and Teboulle, M. Faster Lagrangian-Based Methods in Convex
Optimization.
SIAM J. Optimization. To appear.

http://www.math.tau.ac.il/~teboulle/

Thank you for listening!

Happy Birthday Prof. Bregman !
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