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Lev Bregman 1965°s paper

Hoxmxaps Axagemun nave CCCP
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MATEMATHE A
JI. M. BPOIMAH

HAXORJIEHWE OBLIEH TOYKH BBRIINYKIBIX MHOMECTB
METO/[IOM NOCJEJOBATEJIBHOI'O NNPOEKTHPOBAHNA

(11 pedemasaenc axademurom JI. B, Kanmoposuven 7 X1I 1964)

B macroamjeii craThe paccMaTpPHBACTCA HTEPATHRHKIN METON JIIH HAXOHLe-
muA obuieli TOYRHM BEINYEJBIX MHOMECTB. JTOT MeToJ MomeT OHITh mpAMeHeH
AMA BaAAY OMTEMAIBHOTO TPOTPAMMHDOBATAA H NS HEKOTOPLIX JPYIHX.

Ilyers B peiicTeRTeNbHOM rMiILGepToBoM npocTpascrse M ¢ paccTosHmeM p
3a/IAHEl BAMEHYTHe BEIOYKIHe MuomecTna Ay i =1, rge I — nexortopoe Mmo-
weerso mgexcon. Iyers R = iEnl.‘l.; ne mycro. Tpebyerca HaiiTn Kaxym-amdo

rouky x & R. Pacomorpaym cexyiongait nTepaTosaii mpomece: GepeM mofyio
TouRy o & H, satem soibupaeM i(zo) =1 m B MHOmecTBe Ai(xy) HIXOTHM
TOURY Zy, GIMAKARIIYI0 K Zo, 3ATEM TaK ke BuIOmpaeM i(zy) & [ n B MEOKECTBE
Ajix) HAXOTUM TOURY T2, GAMAKANNIYIO K 21, W T. [T
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PART 1:

Background
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-
tone operator M: X — 2%, find x € X such that 0 € Mx.
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-
tone operator M: X — 2%, find x € X such that 0 € Mx.
e Considerable range of applications: optimization,
e Subdifferential: M = of (Fermat’s rule)

® Kuhn-Tucker operator: M = [?2 g:g*]
(Rockafellar 1967)

* efc. (Eckstein 1994, PLC 2018, Bui/PLC 2020).
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-
tone operator M: X — 2%, find x € X such that 0 € Mx.

e Considerable range of applications: optimization, variational in-
equalities, statistics, mechanics, neural networks, finance, partial
differential equations, optimal fransportation, signal and image
processing, control, game theory, machine learning, economics,
mean fields games, etc.
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-
tone operator M: X — 2%, find x € X such that 0 € Mx.

e The proximal point algorithm (Bellman 1966, Martinet 1970, Rock-
afellar 1976):

Xni1 = Jyxn, Where Jy = (Id + M)~ ! is the resolvent of M.
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-

tone operator M: X — 2*", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martfinet 1970, Rockafellar
1976):

Xn+1 = Juxn, Where Jy = (Id +M)*1 is the resolvent of M.

* Acknowledging the fact that J may be hard to implement, split-
ting methods have been developed: the goal is to express M as
a combination of operators, and devise an algorithm that uses
these operators individually.
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Monotone operator splitting

e Basic problem: X a real Banach space. Given a maximally mono-

tone operator M: X — 2", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar
1976):

Xni1 = Juxn, Where Jy = (Id + M)~ ! is the resolvent of M.

e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

¢ The following structures have been considered:
M=A+B

(Mercier 1979, Lions/Mercier 1979, Tseng 2000)
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-

tone operator M: X — 2", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar
1976):

Xni1 = Jyxn, Where Jy = (Id + M)~ ! is the resolvent of M.

e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

e The following structures have been considered:

(Spingarn 1983, Gol’stein 1985, Eckstein/Svaiter 2009, PLC 2009)
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Monotone operator splitting

e Basic problem: X a real Banach space. Given a maximally mono-

tone operator M: X — 2*", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar
1976):

Xni1 = Jyxn, Where Jy = (Id + M)~ ! is the resolvent of M.
e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
¢ The following structures have been considered:

p
M= ZL;’; oBpolL,
k=1

(Briceno-Arias/PLC 2011)
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-

tone operator M: X — 2", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar
1976):

Xni1 = Jyxn, Where Jy = (Id + M)~ ! is the resolvent of M.
e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
e The following structures have been considered:

p
M=A+> L;o(BODy)oL,+C
k=1

(PLC/Pesquet 2012, VU 2013, Condat 2013, Bot/Hendrich 2013)
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-

tone operator M: X — 2", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar
1976):

Xni1 = Juxn, Where Jy = (Id + M)t is the resolvent of M.
e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
e The following structures have been considered:

D
M=A+> By+C
k=1

(Raguet/Fadili/Peyré 2013, Briceno-Arias 2015, Davis/Yin 2017,
Raguet 2019)
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Monotone operator splitting

e Basic problem: X a real Banach space. Given a maximally mono-

tone operator M: X — 2%, find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar
1976):

Xn+1 = Juxn, Where Jy = (Id +M)*1 is the resolvent of M.
e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.
¢ The following structures have been considered:

M: (x1,...,%m) — X <Aixi + Cixi + Qix;+
5

iL,ﬁ;« <((BZ‘ +B; +BL) 0 (D} + D +D2)) (iLkaj»)

(BUi/PLC 2021)
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Monotone operator splitting

e Basic problem: X areal Banach space. Given a maximally mono-

tone operatorM: X — 2%", find x € X such that 0 € Mx. The
proximal point algorithm (Bellman 1966, Martfinet 1970, Rockafellar
1976):

Xn+1 = Juxn, Where Jy = (Id +M)*1 is the resolvent of M.

e Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

e ... which models in particular

m

p
minimize > (fi(x:) + @i(a)) + > (g + vr) Ohs) <ZLkaJ>
k=1

X1 EXT,..., Xm € X,
1 1 m m i1 jel

(Bui/PLC 2021)

e Can we provide a synthetic view of some of these methods in
tferms of a resolvent iteration akin to the proximal point algorithm?
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The warped resolvent

PART 2:

The warped resolvent
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The warped resolvent: Definition

e X is areflexive real Banach space with topological dual x*.
e An operatorM: X — 2% is monotone if

(V(x1,x7) € graM) (V(xz,x3) € graM) (x1 —x2,x7 —x3) >0,

and maximally monotone if, furthermore, no point in X x X* can
be added to gra M without compromising monotonicity.

Definition
let@ #D c X, letK:D — X*,and let M: X — 2% be such that
ranK c ran (K +M) and K + M is injective. ! The warped resolvent of M
with kernel K is Ji = (K + M) ' o K.

TA: x — 2% isinjective if (vx € X)(Vy € X) AxNAy £ 0 = x = .

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations



The warped resolvent: Examples

M: x — 2% is maximally monotone.

e If X is Hiloertian and K = Id, J% is the classical resolvent.
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The warped resolvent: Examples

M: x — 2% is maximally monotone.

e If X is Hiloertian and K = Id, J% is the classical resolvent.

e If K = Vf and M = N¢. JX is the Bregman projection operator
(1967).
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The warped resolvent: Examples

M: x — 2% is maximally monotone.

e If X is Hiloertian and K = Id, J% is the classical resolvent.
e If K = Vf and M = N¢. JX is the Bregman projection operator
(1967).

e If X is strictly convex with normalized duality mapping K. then J&
is the extended resolvent of (Kassay, 1985).
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The warped resolvent: Examples

M: x — 2% is maximally monotone.

If X is Hiloertian and K = Id, J% is the classical resolvent,
If K = Vf and M = N¢. JX is the Bregman projection operator
(1967).

If X is strictly convex with normalized duality mapping K., then JX
is the extended resolvent of (Kassay, 1985).

Letf: X — ]—o0,+o0] be a Legendre function such that domM C
intdomf, and set K = Vf. Then JX is the D-resolvent of
(Bauschke/Borwein/PLC, 2003).
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The warped resolvent: Examples

M: x — 2% is maximally monotone.

If X is Hiloertian and K = Id, J% is the classical resolvent,
If K = Vf and M = N¢. JX is the Bregman projection operator
(1967).

If X is strictly convex with normalized duality mapping K., then JX
is the extended resolvent of (Kassay, 1985).

Letf: X — ]—o0,+o0] be a Legendre function such that domM C
intdomf, and set K = Vf. Then JX is the D-resolvent of
(Bauschke/Borwein/PLC, 2003).

e A: X — 2% and B: X — 2% are maximally monotone, and
f: X = ]—o0,+0o0] is a suitable convex function. Set

M=A+B and K:intdomf— X*:x+~ Vf(x)— Bx.

Then J& = (Vf +A) ! o (Vf — B) is the Bregman forward-backward
operator to be discussed in Part 4.
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The warped resolvent: Examples

e |etK: X — X be strictly monotone, 3* monotone, and surjective.
Then J% is the K-resolvent of (Bauschke/Wang/Yao, 2010).
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The warped resolvent: Examples

e |etK: X — X be strictly monotone, 3* monotone, and surjective.
Then J% is the K-resolvent of (Bauschke/Wang/Yao, 2010).

° let@ # C C X be closed and convex, with normal cone operator
Nc¢. The warped projection operator is proj’c{ e Jﬁc = (K+N¢) 1oK.

Left: Warped projections onto B(0;1). Sefts of
L/ points projecting onto p1, pe, andps forK; = Id
and

3
- Kot (.0) ($+ 3 -06+6)

Nofte that Ky is not a gradient, so this is not a
Bregman projector.
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The warped resolvent: Properties

Sufficient conditions for ranK ¢ ran (K + M) and K + M is injective
are given in (Bui/PLC, 2020).

JX.D —D.
FixJK = DnzerM.
p =JEx < (p,Kx — Kp) € graM.

Suppose that M is monotone. Let x € D, and sety = JXx and
y* = Kx — Ky. Then

zetMCc{zeX | (z—y,y") <0}

Suppose that M is monotone. Set p = JXx and ¢ = JXy. Then

(p —q,Kx —Ky) > (p — q,Kp — Kq).
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Warped proximal iterations in Hilbert spaces

PART 3:

Warped proximal iterations in
Hilbert spaces
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Finding zeros of monotone operators: Geometry

e M maximally monotone with Z = zerM # 0.

Ho={x€X | (x—y.|y;) <0}
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Finding zeros of monotone operators: Geometry

e M maximally monotone with Z = zerM # 0.

* |terate
(Yn,yn) € QraM
An € 6,2 — €]
if (yp—2n |yn) <0
| %nt1 = %0 + Ay — 20 | yi)yn/llyn
else
| %41 = xn.

|

Ho={x€X | (x—y.|y;) <0}
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Finding zeros of monotone operators: Geometry

e M maximally monotone with Z = zerM # 0.

* |terate
(Yn,yn) € QraM
An € 6,2 — €]
if (yp—2n |yn) <0
| %nt1 = %0 + Ay — 20 | yi)yn/llyn
else
| %41 = xn.

|

* \Weak convergence to a pointin Z if
weak cluster points are in Z.

e The weak-to-strong convergence
principle  (Bauschke/PLC, 200T)
gives strong convergence of a 2
half-spaces variant.

* How to choose (y.,y,) € graM?

Ho={x€X | (x—y.|y;) <0}
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Finding zeros of monotone operators: Geometry

e M maoaximally monotone with Z = zerM # @.
e lterate
Kn =~
Yn = J’me”
Yn = “r'{l(Knxn — Kuyn)
An € 6,2 — €]
if (yn — 20 | yn) <O

| %nt1 =%n + Ao — 20 | yi)yn/llynll?
else

| %41 = %n.

* Key: Move beyond Minty’s
parametrization of graM and
use a warped resolvent to pick
(Yn,¥n) € QraM.

e Simply evaluate a warped resolvent
at some point x,.

Ho={x e X | (x—ya|y;) <0}
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Convergence

Notation: (y*)* = y*/|ly*|| if y* # 0: = 0 otherwise.

Theorem

Let (yn)nen be asequencein [e, +oo[. Foreveryn € N, letx, € X and let
K,: X - X be a monotone operator such that ranK, C ran(K, + v.M)
and K, + v.M is injective. Suppose that:

® X, —xn — 0.
oy 0
o (Fn—yn | (BnFn —Kuyn)') 50 = o 7m
(=9 | (B )’ {Knin — Kuwyn — 0.
Then (x,)nen cOnverges weakly to a pointin Z.
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Convergence

Notation: (y*)* = y*/|ly*|| if y* # 0: = 0 otherwise.

Theorem

Let (yn)nen be asequencein [e, +oo[. Foreveryn € N, letx, € X and let
K,: X - X be a monotone operator such that ranK, C ran(K, + v.M)
and K, + v.M is injective. Suppose that:

® X, —xn — 0.
oy 0
o (Fn—yn | (BnFn —Kuyn)') 50 = o 7m
(=9 | (B )’ {Knin — Kuwyn — 0.
Then (x,)nen cOnverges weakly to a pointin Z.

* \We also have a strongly convergent version.
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Choosing the evaluation points (x, )nen

The auxiliary sequence (x,).en CaN serve several purposes:

® x, can model an additive perturbation of x,,, say x, = x,+e,, where
we require only |le,|| — 0.
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Choosing the evaluation points (x, )nen

The auxiliary sequence (x,).en CaN serve several purposes:

® x, can model an additive perturbation of x,,, say x, = x,+e,, where
we require only |le,|| — 0.

* Modeling inertia: let (ax)nen be any bounded sequence in R and
setx, = xn + an(xn — 2n—1).
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Choosing the evaluation points (x, )nen

The auxiliary sequence (x,).en CaN serve several purposes:

® x, can model an additive perturbation of x,,, say x, = x,+e,, where
we require only |le,|| — 0.

* Modeling inertia: let (ax)nen be any bounded sequence in R and
setx, = xn + an(xn — 2n—1).

* More generally,
n
(Vn € N) Xn = anij.
Jj=0

WIth 37 gt = 1.aNd (1 = a0 ) — 307" i iy — 0.
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Choosing the evaluation points (x, )nen

The auxiliary sequence (x,).en CaN serve several purposes:

® x, can model an additive perturbation of x,,, say x, = x,+e,, where
we require only |le,|| — 0.

* Modeling inertia: let (ax)nen be any bounded sequence in R and
setx, = xn + an(xn — 2n—1).

* More generadlly,

n
(Vn € N) Xn = anij.
Jj=0
WIth 37 gt = 1.aNd (1 = a0 ) — 307" i iy — 0.
* Nonlinear perturbations can also be considered. For instance, at
iteration n, X, = Proj,x» is an approximation to x, from some suit-
able closed convex set C, C X.
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Corollary 1

Corollary

LetA: X — 2% be maximally monotone, and let B: X — X be monotone and
B-Lipschitzian, with zer (A+B) # @. Let Wy, : X — X be a-strongly monotone and
x-Lipschitzian, and let v, € [e,(a —€)/B]. let \n € [e,2 — €], and let X > e, — 0.
Furthermore, let m > 0 and let (i, j)nen,0<j<n € POUNded and satisfy

° Foreveryn > m and every integerj € [0,n —m — 1], p, ; = 0.
* Foreveryn € N, 3% up, = 1.

Iterate

Xn =en + 3570 Hn %

U;'; = WniXn — ’VnBEEn

Yn = (Wn + 1mA) Loy

Yn =V ( Wnyn)+Byn

if (yn — xn \yn) <0

Anlyn —%n | ¥5) .

Fal = T O
n

| elsex, 1 =xn.
Then (xn)nen converges weakly to a point inzer (A + B).

Proof: M = A+ Band K, = W, — y,B. Special case: Tseng'’s algorithm.
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Corollary 2: Multivariate inclusions

* Problem: find (x;)icr € XX, _, i such that
(Vl S I) 0cAx; + ZL; ((BJ + DJ) < Zijxk)) + Cix;
Jjed kel
e Warping: Apply the Theorem to
M: ((x:)ier, 0))jes, (V] )jes) — (X (Aixi + Cix; + ZL];U;),

iel Jjed
X (Biy; +Dyyj — v ), X {yj - ZLjixi} )
Jjed Jjed iel
and K, : (x,y,0") s

((’an X — Cix; — ZLJZUJ)

—1 *
(T Wiy = Dy +07 )i
jed iel

(—yj +vi + ZLjixi) >7
et

iel
where F; , and W, ,, are strongly monotone and Lipschitzian.
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Corollary 2: Multivariate inclusions

forn=0,1,...
foreveryiel
Ln = FinXin = %inCilin — Yim 2Xjey LiVin
in= (Fin+ 'Yi,nAi)il(l:,n + YinSi)
0 = Vi (Ui — Finin) + Cittin
foreveryjedJ
tn = Windjn — 1nD¥jn + 100 n
bjn = (an + W,nB/)ilt;,n
i = T2 & = Winbjn) + Dibjn
Cjn = EielL/iEz,n i+ U;n -
foreveryiel
| @in=0in+ ngJ Licjn
foreveryjedJ
{ L
Cn =Tj+bjn = Xier Ljitin
on = Yier lainll® + Zjes (165007 + llcfalI?)
On = 2151 {@in —Xin | a:,n) + ZJGJ (<bj,n —Yin | bj*,n> + <51,n - U_;*.n | C;n>)
if 6, <0
| pn = Anbn/on
else
\_ =20
foreveryiel
| %int1 =2Xin + paal,
foreveryjedJ
{ Yin+1 =Yjn + pnbjn,
U1 = Ujn + Pui-
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Further connections

® Primal-dual splitting.

e Consider the inclusion 0 € Ax + L*(B(Lx)) and the associated
Kuhn-Tucker operator

M:XxY—29Y: (x,y") = (Ax + L*y*) x (~Lx + B 'y").

® The cutting plane method of (Alotaibi/PLC/Shahzad, 2014)
and (PLC/Eckstein, 2018) generate points (a.,a;) € graA and
(b, b;) € graB. This implicitly provides

(yn7y;) = ((a’hb;)’ (a;: +L*b;:7 _Lan +bn)) € grOM

to construct H, D zerM.
® The primal-dual framework of (Alofaibi/PLC/Shahzad, 2014) is
therefore an instance of the Theorem with

Ku: (2,y") = (v e — L*y", La + pny™).
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Further connections

® Primal-dual splitting.

e Consider the inclusion 0 € Ax + L*(B(Lx)) and the associated
Kuhn-Tucker operator

M:XxY—29Y: (x,y") = (Ax + L*y*) x (~Lx + B 'y").

® The cutting plane method of (Alotaibi/PLC/Shahzad, 2014)
and (PLC/Eckstein, 2018) generate points (a.,a;) € graA and
(b, b;) € graB. This implicitly provides

(yn7y;) = ((a’hb;)’ (a;: +L*b;:7 _Lan +bn)) € grOM

to construct H, D zerM.
® The primal-dual framework of (Alofaibi/PLC/Shahzad, 2014) is
therefore an instance of the Theorem with
Ku: (0,5") = (w0 ' — L'y Lo + pny™).

* More generadlly, the block-iterative projective splitting method of
(PLC/Eckstein, 2018) in an instance of the Theorem (Bui, 2021).
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Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with
Bregman kernels
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Bregman forward-backward splitting

* X a reflexive real Banach space, A: X — 2% and B: x — 2%
maximally monotone, and f € Iy (X') essentially smmooth.

e C = (intfdomf) N domA cC inftdomB and B is single-valued on
infdom B.

o (Vx € C)(Vy € C)(Vz € &) (Vy* € Ay)(Vz* € Az)
(y —x,By — Bz) < kD¢(x,y) + (y — 2,61(y" —2") + 62(By — Bz)).
® The objective is to
find x € . = (intdomf) Nnzer(A + B) # Q.
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Bregman forward-backward splitting

* X a reflexive real Banach space, A: X — 2% and B: x — 2%
maximally monotone, and f € Iy (X') essentially smmooth.

e C = (intfdomf) N domA cC inftdomB and B is single-valued on
infdom B.

° (Vx e C)(Vy € C)(Vz € ) (Vy™ € Ay)(Vz" € Az)
(y —x,By — Bz) < kD¢(x,y) + (y — 2,61(y" —2") + 62(By — Bz)).
® The objective is to
find x € . = (intdomf) Nnzer(A + B) # Q.
* Apply the warped proximal point algorithm
X1 = I %n

to M = A + B with kernel K,, = ~, V£, — B for a suitable essentially
smooth function f;.
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Bregman forward-backward splitting

* X a reflexive real Banach space, A: X — 2% and B: x — 2%
maximally monotone, and f € Iy (X') essentially smmooth.

e C = (intfdomf) N domA cC inftdomB and B is single-valued on
infdom B.

° (Vx e C)(Vy € C)(Vz € ) (Vy™ € Ay)(Vz" € Az)
(y —x,By — Bz) < kD¢(x,y) + (y — 2,61(y" —2") + 62(By — Bz)).
® The objective is to
find x € . = (intdomf) Nnzer(A + B) # Q.
* Apply the warped proximal point algorithm
X1 = I %n

to M = A + B with kernel K,, = ~, V£, — B for a suitable essentially
smooth function f;.

* \We obtain the Bregman forward-backward splitting algorithm

Xn+1 = (vfn + 'YnA) - (an (xn) — 'Yann) :
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Convergence

“Under suitable assumptions,”

Xnt1 = (Vo + %A)_I(an(xn) — YBxn) — x€ .7,

e This result provides, for instance, the convergence of the basic
Bregman forward-backward splitting method

(Vf +~A) " (Vf(xn) — vBan),

which is new even in Euclidean spaces.

e |t also allows us to recover and extend 4, so far unrelated, splitting
frameworks.
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Xni1 = (Vi +7A) YVfu(xn) — 1Bxy): Instantiations

* The iteration x,41 = (Vf + %A)fl(Vf(xn)) for finding a zero of A in
a reflexive Banach space (Bauschke/Borwein/PLC, 2003).

* Theiteration x,11 = (Un+71mA) ! (Unxn —ynBx») for finding a zero of
A + B in a Hilbert space, where U, is a strongly positive Hermitian
bounded linear operator (PLC/VU, 2014).

* The iteration
%ns1 = (VF +7A) " (VF(xn) — 7Bxn)

for finding a zero of A + B in a Hilbert space, where f is real-valued
and strongly convex (Renaud/Cohen, 1997).

e The iteration
Xnt1 = (an + 7n8€0)71 (an(xn) - 'anw(xn))

for minimizing ¢ + v in a reflexive Banach space (Nguyen, 2017;
see also Bauschke/Bolte/Teboulle, 2017).
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Bregman distance

® feTy(X)isalegendre functionifitis both (Bauschke/Borwein/PLC,
2001):

® Essentially smooth: of is both locally bounded and single-
valued on its domain.

® Essentially strictly convex: of* is locally bounded on its do-

main and f is strictly convex on every convex subset of
dom of.

e Take f € Iy(X). Gateaux differentiable on int domf # @. The asso-
ciated Bregman distance is

Df: X x X — [0, +00]

(ty) > {f(x) —f() — (x— 3, VFB)), ity € intdomf;

400, otherwise.
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