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PART 1:

Background
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx.
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx.

• Considerable range of applications: optimization,

• Subdifferential: M = ∂f (Fermat’s rule)

• Kuhn-Tucker operator: M =

[
∂f L∗

−L ∂g∗

]
.

[Rockafellar 1967]
• etc. [Eckstein 1994, PLC 2018, Bùi/PLC 2020].
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx.

• Considerable range of applications: optimization, variational in-
equalities, statistics, mechanics, neural networks, finance, partial
differential equations, optimal transportation, signal and image
processing, control, game theory, machine learning, economics,
mean fields games, etc.
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx.

• The proximal point algorithm [Bellman 1966, Martinet 1970, Rock-
afellar 1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations



Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2X

∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Acknowledging the fact that JM may be hard to implement, split-

ting methods have been developed: the goal is to express M as
a combination of operators, and devise an algorithm that uses
these operators individually.
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• The following structures have been considered:

M = A + B

[Mercier 1979, Lions/Mercier 1979, Tseng 2000]
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• The following structures have been considered:

M =

p∑

k=1

Ak

[Spingarn 1983, Gol’stein 1985, Eckstein/Svaiter 2009, PLC 2009]
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• The following structures have been considered:

M =

p∑

k=1

L∗
k ◦ Bk ◦ Lk

[Briceño-Arias/PLC 2011]
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• The following structures have been considered:

M = A +

p∑

k=1

L
∗
k ◦ (Bk �Dk) ◦ Lk + C

[PLC/Pesquet 2012, Vũ 2013, Condat 2013, Boţ/Hendrich 2013]
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• The following structures have been considered:

M = A +

p∑

k=1

Bk + C

[Raguet/Fadili/Peyré 2013, Briceño-Arias 2015, Davis/Yin 2017,
Raguet 2019]
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2X

∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• The following structures have been considered:

M : (x1, . . . , xm) 7→

m

×
i=1

(
Aixi + Cixi + Qixi+

p∑

k=1

L∗
ki

(((
Bm

k + Bc
k + Bl

k

)
�
(
Dm

k + Dc
k + Dl

k

))( m∑

j=1

Lkjxj

)))

[Bùi/PLC 2021]
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Monotone operator splitting

• Basic problem: X a real Banach space. Given a maximally mono-
tone operator M : X → 2

X
∗

, find x ∈ X such that 0 ∈ Mx. The
proximal point algorithm [Bellman 1966, Martinet 1970, Rockafellar
1976]:

xn+1 = JMxn, where JM = (Id + M)−1 is the resolvent of M.

• Splitting methods: express M as a combination of operators, and
devise an algorithm that uses these operators individually.

• ... which models in particular

minimize
x1∈X1,...,xm∈Xm

m∑

i=1

(
fi(xi) + ϕi(xi)

)
+

p∑

k=1

(
(gk + ψk)�hk

)
(
∑

j∈I

Lkjxj

)
.

[Bùi/PLC 2021]

• Can we provide a synthetic view of some of these methods in
terms of a resolvent iteration akin to the proximal point algorithm?
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The warped resolvent

PART 2:

The warped resolvent
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The warped resolvent: Definition

• X is a reflexive real Banach space with topological dual X ∗.

• An operator M : X → 2
X

∗

is monotone if

(
∀(x1, x

∗
1) ∈ gra M

)(
∀(x2, x

∗
2 ) ∈ gra M

)
〈x1 − x2, x

∗
1 − x

∗
2〉 > 0,

and maximally monotone if, furthermore, no point in X × X ∗ can
be added to gra M without compromising monotonicity.

Definition

Let Ø 6= D ⊂ X , let K : D → X ∗, and let M : X → 2X
∗

be such that
ran K ⊂ ran (K +M) and K +M is injective. 1 The warped resolvent of M

with kernel K is JK
M = (K + M)−1 ◦ K.

1A : X → 2
X

∗

is injective if (∀x ∈ X )(∀y ∈ X ) Ax ∩ Ay 6= Ø ⇒ x = y.
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

• If X is Hilbertian and K = Id , JK
M is the classical resolvent.
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

• If X is Hilbertian and K = Id , JK
M is the classical resolvent.

• If K = ∇f and M = NC, JK
M is the Bregman projection operator

(1967).
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

• If X is Hilbertian and K = Id , JK
M is the classical resolvent.

• If K = ∇f and M = NC, JK
M is the Bregman projection operator

(1967).

• If X is strictly convex with normalized duality mapping K, then JK
M

is the extended resolvent of [Kassay, 1985].
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The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

• If X is Hilbertian and K = Id , JK
M is the classical resolvent.

• If K = ∇f and M = NC, JK
M is the Bregman projection operator

(1967).

• If X is strictly convex with normalized duality mapping K, then JK
M

is the extended resolvent of [Kassay, 1985].

• Let f : X → ]−∞,+∞] be a Legendre function such that dom M ⊂
int dom f , and set K = ∇f . Then JK

M is the D-resolvent of
[Bauschke/Borwein/PLC, 2003].

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations



The warped resolvent: Examples

M : X → 2X
∗

is maximally monotone.

• If X is Hilbertian and K = Id , JK
M is the classical resolvent.

• If K = ∇f and M = NC, JK
M is the Bregman projection operator

(1967).

• If X is strictly convex with normalized duality mapping K, then JK
M

is the extended resolvent of [Kassay, 1985].

• Let f : X → ]−∞,+∞] be a Legendre function such that dom M ⊂
int dom f , and set K = ∇f . Then JK

M is the D-resolvent of
[Bauschke/Borwein/PLC, 2003].

• A : X → 2
X

∗

and B : X → 2
X

∗

are maximally monotone, and
f : X → ]−∞,+∞] is a suitable convex function. Set

M = A + B and K : int dom f → X ∗ : x 7→ ∇f (x)− Bx.

Then JK
M = (∇f +A)−1 ◦ (∇f −B) is the Bregman forward-backward

operator to be discussed in Part 4.
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The warped resolvent: Examples

• Let K : X → X ∗ be strictly monotone, 3
∗ monotone, and surjective.

Then JK
M is the K-resolvent of [Bauschke/Wang/Yao, 2010].
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The warped resolvent: Examples

• Let K : X → X ∗ be strictly monotone, 3
∗ monotone, and surjective.

Then JK
M is the K-resolvent of [Bauschke/Wang/Yao, 2010].

• Let Ø 6= C ⊂ X be closed and convex, with normal cone operator
NC. The warped projection operator is projKC = JK

NC
= (K+NC)

−1◦K.

p1

p2 p3

•

••

Left: Warped projections onto B(0; 1). Sets of

points projecting onto p1, p2, and p3 for K1 = Id

and

K2 : (ξ1, ξ2) 7→

(
ξ3

1

2
+
ξ1

5
− ξ2, ξ1 + ξ2

)

Note that K2 is not a gradient, so this is not a

Bregman projector.
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The warped resolvent: Properties

• Sufficient conditions for ran K ⊂ ran (K + M) and K + M is injective
are given in [Bùi/PLC, 2020].

• JK
M : D → D.

• Fix JK
M = D ∩ zer M.

• p = JK
Mx ⇔ (p,Kx − Kp) ∈ gra M.

• Suppose that M is monotone. Let x ∈ D, and set y = JK
Mx and

y∗ = Kx − Ky. Then

zer M ⊂
{

z ∈ X | 〈z − y, y∗〉 6 0
}
.

• Suppose that M is monotone. Set p = JK
Mx and q = JK

My. Then

〈p − q,Kx − Ky〉 > 〈p − q,Kp − Kq〉.
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Warped proximal iterations in Hilbert spaces

PART 3:

Warped proximal iterations in

Hilbert spaces
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Finding zeros of monotone operators: Geometry

• M maximally monotone with Z = zer M 6= Ø.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z
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Finding zeros of monotone operators: Geometry

• M maximally monotone with Z = zer M 6= Ø.

• Iterate 

(yn, y
∗
n) ∈ gra M

λn ∈ [ε, 2 − ε]
if 〈yn − xn | y∗

n〉 < 0⌊
xn+1 = xn + λn〈yn − xn | y∗

n〉y
∗
n/‖y∗

n‖
2

else⌊
xn+1 = xn.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z
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Finding zeros of monotone operators: Geometry

• M maximally monotone with Z = zer M 6= Ø.

• Iterate 

(yn, y
∗
n) ∈ gra M

λn ∈ [ε, 2 − ε]
if 〈yn − xn | y∗

n〉 < 0⌊
xn+1 = xn + λn〈yn − xn | y∗

n〉y
∗
n/‖y∗

n‖
2

else⌊
xn+1 = xn.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z

• Weak convergence to a point in Z if
weak cluster points are in Z.

• The weak–to–strong convergence
principle [Bauschke/PLC, 2001]
gives strong convergence of a 2
half-spaces variant.

• How to choose (yn, y
∗
n) ∈ gra M?
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Finding zeros of monotone operators: Geometry

• M maximally monotone with Z = zer M 6= Ø.

• Iterate 

yn = JKn

γnM x̃n

y∗
n = γ−1

n (Knx̃n − Knyn)
λn ∈ [ε, 2 − ε]
if 〈yn − xn | y∗

n〉 < 0⌊
xn+1 = xn + λn〈yn − xn | y∗

n〉y
∗
n/‖y∗

n‖
2

else⌊
xn+1 = xn.

xn

xn+1

Hn =
{

x ∈ X | 〈x − yn | y∗

n
〉 6 0

} •

Z

• Key: Move beyond Minty’s
parametrization of gra M and
use a warped resolvent to pick
(yn, y

∗
n) ∈ gra M.

• Simply evaluate a warped resolvent
at some point x̃n.
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Convergence

Notation: (y∗)♯ = y∗/‖y∗‖ if y∗ 6= 0; = 0 otherwise.

Theorem

Let (γn)n∈N be a sequence in [ε,+∞[. For every n ∈ N, let x̃n ∈ X and let

Kn : X → X be a monotone operator such that ran Kn ⊂ ran (Kn + γnM)
and Kn + γnM is injective. Suppose that:

• x̃n − xn → 0.

•
〈
x̃n − yn | (Knx̃n − Knyn)

♯
〉
→ 0 ⇒

{
x̃n − yn ⇀ 0

Knx̃n − Knyn → 0.

Then (xn)n∈N converges weakly to a point in Z.
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Convergence

Notation: (y∗)♯ = y∗/‖y∗‖ if y∗ 6= 0; = 0 otherwise.

Theorem

Let (γn)n∈N be a sequence in [ε,+∞[. For every n ∈ N, let x̃n ∈ X and let

Kn : X → X be a monotone operator such that ran Kn ⊂ ran (Kn + γnM)
and Kn + γnM is injective. Suppose that:

• x̃n − xn → 0.

•
〈
x̃n − yn | (Knx̃n − Knyn)

♯
〉
→ 0 ⇒

{
x̃n − yn ⇀ 0

Knx̃n − Knyn → 0.

Then (xn)n∈N converges weakly to a point in Z.

• We also have a strongly convergent version.

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations



Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

• x̃n can model an additive perturbation of xn, say x̃n = xn+en, where
we require only ‖en‖ → 0.
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Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

• x̃n can model an additive perturbation of xn, say x̃n = xn+en, where
we require only ‖en‖ → 0.

• Modeling inertia: let (αn)n∈N be any bounded sequence in R and
set x̃n = xn + αn(xn − xn−1).

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations



Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

• x̃n can model an additive perturbation of xn, say x̃n = xn+en, where
we require only ‖en‖ → 0.

• Modeling inertia: let (αn)n∈N be any bounded sequence in R and
set x̃n = xn + αn(xn − xn−1).

• More generally,

(∀n ∈ N) x̃n =
n∑

j=0

µn,jxj.

with
∑n

j=0
µn,j = 1 and (1 − µn,n)xn −

∑n−1

j=0
µn,jxj → 0.
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Choosing the evaluation points (x̃n)n∈N

The auxiliary sequence (x̃n)n∈N can serve several purposes:

• x̃n can model an additive perturbation of xn, say x̃n = xn+en, where
we require only ‖en‖ → 0.

• Modeling inertia: let (αn)n∈N be any bounded sequence in R and
set x̃n = xn + αn(xn − xn−1).

• More generally,

(∀n ∈ N) x̃n =
n∑

j=0

µn,jxj.

with
∑n

j=0
µn,j = 1 and (1 − µn,n)xn −

∑n−1

j=0
µn,jxj → 0.

• Nonlinear perturbations can also be considered. For instance, at
iteration n, x̃n = projCn

xn is an approximation to xn from some suit-
able closed convex set Cn ⊂ X .
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Corollary 1

Corollary

Let A : X → 2X be maximally monotone, and let B : X → X be monotone and
β-Lipschitzian, with zer (A+B) 6= Ø. Let Wn : X → X be α-strongly monotone and
χ-Lipschitzian, and let γn ∈ [ε, (α − ε)/β], let λn ∈ [ε, 2 − ε], and let X ∋ en → 0.
Furthermore, let m > 0 and let (µn,j)n∈N,06j6n be bounded and satisfy

• For every n > m and every integer j ∈ [0,n − m − 1], µn,j = 0.

• For every n ∈ N,
∑n

j=0
µn,j = 1.

Iterate 

x̃n = en +
∑n

j=0
µn,jxj

v∗n = Wnx̃n − γnBx̃n

yn = (Wn + γnA)−1v∗n
y∗n = γ−1

n (v∗n − Wnyn) + Byn

if 〈yn − xn | y∗n〉 < 0⌊
xn+1 = xn +

λn〈yn − xn | y∗n〉

‖y∗n‖
2

y∗n

else xn+1 = xn.

Then (xn)n∈N converges weakly to a point in zer (A + B).

Proof: M = A + B and Kn = Wn − γnB. Special case: Tseng’s algorithm.
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Corollary 2: Multivariate inclusions

• Problem: find (xi)i∈I ∈×i∈I
Xi such that

(∀i ∈ I) 0 ∈ Aixi +
∑

j∈J

L
∗
ji

(
(Bj + Dj)

(∑

k∈I

Ljkxk

))
+ Cixi

• Warping: Apply the Theorem to

M :
(
(xi)i∈I, (yj)j∈J, (v

∗
j )j∈J

)
7→

(
×
i∈I

(
Aixi + Cixi +

∑

j∈J

L
∗
jiv

∗
j

)
,

×
j∈J

(
Bjyj + Djyj − v

∗
j

)
,×

j∈J

{
yj −

∑

i∈I

Ljixi

} )

and Kn : (x, y, v
∗) 7→

((
γ−1

i,n Fi,nxi − Cixi −
∑

j∈J

L
∗
jiv

∗
j

)

i∈I

,
(
τ−1

j,n Wj,nyj − Djyj + v
∗
j

)
j∈J
,

(
−yj + v

∗
j +

∑

i∈I

Ljixi

)

j∈J

)
,

where Fi,n and Wj,n are strongly monotone and Lipschitzian.
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Corollary 2: Multivariate inclusions

for n = 0,1, . . .

for every i ∈ I
l∗i,n = Fi,nx̃i,n − γi,nCix̃i,n − γi,n

∑
j∈J L∗

jiṽ
∗
j,n

ai,n =
(
Fi,n + γi,nAi

)−1
(l∗i,n + γi,ns∗i )

o∗
i,n = γ−1

i,n (l
∗
i,n − Fi,nai,n) + Ciai,n

for every j ∈ J

t
∗
j,n = Wj,nỹj,n − τj,nDjỹj,n + τj,nṽ

∗
j,n

bj,n =
(
Wj,n + τj,nBj

)−1
t∗j,n

f ∗j,n = τ−1

j,n (t∗j,n − Wj,nbj,n) + Djbj,n

cj,n =
∑

i∈I Ljix̃i,n − ỹj,n + ṽ∗
j,n − rj

for every i ∈ I⌊
a∗

i,n = o∗
i,n +

∑
j∈J L∗

jicj,n

for every j ∈ J⌊
b∗

j,n = f ∗j,n − cj,n

c∗j,n = rj + bj,n −
∑

i∈I Ljiai,n

σn =
∑

i∈I ‖a∗
i,n‖

2 +
∑

j∈J

(
‖b∗

j,n‖
2 + ‖c∗j,n‖

2
)

θn =
∑

i∈I 〈ai,n − xi,n | a∗
i,n〉+

∑
j∈J

(
〈bj,n − yj,n | b∗

j,n〉+ 〈cj,n − v∗
j,n | c∗j,n〉

)

if θn < 0⌊
ρn = λnθn/σn

else⌊
ρn = 0

for every i ∈ I⌊
xi,n+1 = xi,n + ρna∗

i,n

for every j ∈ J⌊
yj,n+1 = yj,n + ρnb∗

j,n

v∗
j,n+1 = v∗

j,n + ρnc∗j,n.
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Further connections

• Primal-dual splitting.

• Consider the inclusion 0 ∈ Ax+L∗(B(Lx)) and the associated
Kuhn–Tucker operator

M : X × Y → 2
X×Y : (x, y∗) 7→ (Ax + L

∗
y
∗)× (−Lx + B

−1
y
∗).

• The cutting plane method of [Alotaibi/PLC/Shahzad, 2014]
and [PLC/Eckstein, 2018] generate points (an,a

∗
n) ∈ gra A and

(bn, b
∗
n) ∈ gra B. This implicitly provides

(yn, y
∗
n) =

(
(an, b

∗
n), (a

∗
n + L

∗
b
∗
n,−Lan + bn)

)
∈ gra M

to construct Hn ⊃ zer M.
• The primal-dual framework of [Alotaibi/PLC/Shahzad, 2014] is

therefore an instance of the Theorem with

Kn : (x, y
∗) 7→

(
γ−1

n x − L
∗
y
∗,Lx + µny

∗
)
.
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• Primal-dual splitting.

• Consider the inclusion 0 ∈ Ax+L∗(B(Lx)) and the associated
Kuhn–Tucker operator

M : X × Y → 2
X×Y : (x, y∗) 7→ (Ax + L

∗
y
∗)× (−Lx + B

−1
y
∗).

• The cutting plane method of [Alotaibi/PLC/Shahzad, 2014]
and [PLC/Eckstein, 2018] generate points (an,a

∗
n) ∈ gra A and

(bn, b
∗
n) ∈ gra B. This implicitly provides

(yn, y
∗
n) =

(
(an, b

∗
n), (a

∗
n + L

∗
b
∗
n,−Lan + bn)

)
∈ gra M

to construct Hn ⊃ zer M.
• The primal-dual framework of [Alotaibi/PLC/Shahzad, 2014] is

therefore an instance of the Theorem with

Kn : (x, y
∗) 7→

(
γ−1

n x − L
∗
y
∗,Lx + µny

∗
)
.

• More generally, the block-iterative projective splitting method of
[PLC/Eckstein, 2018] in an instance of the Theorem (Bùi, 2021).
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Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with

Bregman kernels
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Bregman forward-backward splitting

• X a reflexive real Banach space, A : X → 2X
∗

and B : X → 2X
∗

maximally monotone, and f ∈ Γ0(X ) essentially smooth.

• C = (int dom f ) ∩ dom A ⊂ int dom B and B is single-valued on
int dom B.

• (∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)
〈
y − x,By − Bz

〉
6 κDf (x, y) +

〈
y − z, δ1(y

∗ − z∗) + δ2

(
By − Bz

)〉
.

• The objective is to

find x ∈ S = (int dom f ) ∩ zer (A + B) 6= Ø.

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations



Bregman forward-backward splitting

• X a reflexive real Banach space, A : X → 2X
∗

and B : X → 2X
∗

maximally monotone, and f ∈ Γ0(X ) essentially smooth.

• C = (int dom f ) ∩ dom A ⊂ int dom B and B is single-valued on
int dom B.

• (∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)
〈
y − x,By − Bz

〉
6 κDf (x, y) +

〈
y − z, δ1(y

∗ − z∗) + δ2

(
By − Bz

)〉
.

• The objective is to

find x ∈ S = (int dom f ) ∩ zer (A + B) 6= Ø.

• Apply the warped proximal point algorithm

xn+1 = J
Kn

M xn

to M = A + B with kernel Kn = γ−1
n ∇fn − B for a suitable essentially

smooth function fn.
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• X a reflexive real Banach space, A : X → 2X
∗

and B : X → 2X
∗

maximally monotone, and f ∈ Γ0(X ) essentially smooth.

• C = (int dom f ) ∩ dom A ⊂ int dom B and B is single-valued on
int dom B.

• (∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)
〈
y − x,By − Bz

〉
6 κDf (x, y) +

〈
y − z, δ1(y

∗ − z∗) + δ2

(
By − Bz

)〉
.

• The objective is to

find x ∈ S = (int dom f ) ∩ zer (A + B) 6= Ø.

• Apply the warped proximal point algorithm

xn+1 = J
Kn

M xn

to M = A + B with kernel Kn = γ−1
n ∇fn − B for a suitable essentially

smooth function fn.

• We obtain the Bregman forward-backward splitting algorithm

xn+1 =
(
∇fn + γnA

)−1(
∇fn(xn)− γnBxn

)
.
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Convergence

Theorem

“Under suitable assumptions,”

xn+1 =
(
∇fn + γnA

)−1(
∇fn(xn)− γnBxn

)
⇀ x ∈ S .

• This result provides, for instance, the convergence of the basic
Bregman forward-backward splitting method

(
∇f + γA

)−1(
∇f (xn)− γBxn

)
,

which is new even in Euclidean spaces.

• It also allows us to recover and extend 4, so far unrelated, splitting
frameworks.
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xn+1 = (∇fn + γnA)−1(∇fn(xn)− γnBxn): Instantiations

• The iteration xn+1 =
(
∇f + γnA

)−1(
∇f (xn)

)
for finding a zero of A in

a reflexive Banach space [Bauschke/Borwein/PLC, 2003].

• The iteration xn+1 =
(
Un+γnA

)−1(
Unxn −γnBxn

)
for finding a zero of

A + B in a Hilbert space, where Un is a strongly positive Hermitian
bounded linear operator [PLC/Vũ, 2014].

• The iteration

xn+1 =
(
∇f + γA

)−1(
∇f (xn)− γBxn

)

for finding a zero of A+B in a Hilbert space, where f is real-valued
and strongly convex [Renaud/Cohen, 1997].

• The iteration

xn+1 =
(
∇fn + γn∂ϕ

)−1(
∇fn(xn)− γn∇ψ(xn)

)

for minimizing ϕ + ψ in a reflexive Banach space [Nguyen, 2017;
see also Bauschke/Bolte/Teboulle, 2017].
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M. N. Bùi and PLC, Multivariate monotone inclusions in saddle form,
Math. Oper. Res., to appear.
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Bregman distance

• f ∈ Γ0(X ) is a Legendre function if it is both [Bauschke/Borwein/PLC,

2001]:

• Essentially smooth: ∂f is both locally bounded and single-
valued on its domain.

• Essentially strictly convex: ∂f ∗ is locally bounded on its do-
main and f is strictly convex on every convex subset of
dom ∂f .

• Take f ∈ Γ0(X ), Gâteaux differentiable on int dom f 6= Ø. The asso-
ciated Bregman distance is

Df : X × X → [0,+∞]

(x, y) 7→

{
f (x) − f (y)− 〈x − y,∇f (y)〉, if y ∈ int dom f ;

+∞, otherwise.
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