Warped Proximal Iterations

Patrick L. Combettes

– joint work with Minh N. Bùi –

Department of Mathematics North Carolina State University Raleigh, NC 27695, USA

Workshop on Optimization and Operator Theory dedicated to Professor Lev Bregman Haifa, Israel, November 17, 2021

NC STATE UNIVERSITY

Доклады Академии наук СССР 1965. Том 162, № 3

MATEMATUKA

Л. М. БРЭГМАН

НАХОЖДЕНИЕ ОБЩЕЙ ТОЧКИ ВЫПУКЛЫХ МНОЖЕСТВ МЕТОДОМ ПОСЛЕДОВАТЕЛЬНОГО ПРОЕКТИРОВАНИЯ

(Представлено академиком Л. В. Канторовичем 7 XII 1964)

В настоящей статье рассматривается итеративный метод для нахождения общей точки выпуклых множеств. Этот метод может быть применен для задач оптимального программирования и для некоторых других.

Пусть в действительном гильбертовом пространстве H с расстояннем ρ заданы замкнутые выпуклые множества A_i , $i \in I$, где I— некоторое множество индексов. Пусть $R = \bigcap_{i \in I} A_i$ не пусто. Требуется найти какую-либо точку $x \in R$. Рассмотрим следующий итеративный процесс: берем любую точку $x_0 \in H$, затем выбираем $i(x_0) \in I$ и в множестве $A_{i(x_0)}$ находим точку x_i , ближайщую x_0 , затем так же выбираем $i(x_1) \in I$ и в множестве $A_{i(x_1)}$ находим точку x_2 , ближайщую $k x_1$, и т. д.

PART 1:

Background

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$.

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$.
- Considerable range of applications: optimization,
 - Subdifferential: $M = \partial f$ (Fermat's rule)
 - Kuhn-Tucker operator: $M = \begin{bmatrix} \partial f & L^* \\ -L & \partial g^* \end{bmatrix}$. (Rockafellar 1967)
 - etc. (Eckstein 1994, PLC 2018, Bùi/PLC 2020).

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$.
- Considerable range of applications: optimization, variational inequalities, statistics, mechanics, neural networks, finance, partial differential equations, optimal transportation, signal and image processing, control, game theory, machine learning, economics, mean fields games, etc.

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$.
- The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

• Acknowledging the fact that J_M may be hard to implement, *splitting methods* have been developed: the goal is to express M as a combination of operators, and devise an algorithm that uses these operators individually.

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$M = A + B$$

(Mercier 1979, Lions/Mercier 1979, Tseng 2000)

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$M = \sum_{k=1}^p A_k$$

(Spingarn 1983, Gol'stein 1985, Eckstein/Svaiter 2009, PLC 2009)

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$M = \sum_{k=1}^p L_k^* \circ B_k \circ L_k$$

(Briceño-Arias/PLC 2011)

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$M=A+\sum_{k=1}^p L_k^*\circ (B_k\,\square\, D_k)\circ L_k+C$$

(PLC/Pesquet 2012, Vũ 2013, Condat 2013, Boţ/Hendrich 2013)

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$M=A+\sum_{k=1}^p B_k+C$$

(Raguet/Fadili/Peyré 2013, Briceño-Arias 2015, Davis/Yin 2017, Raguet 2019)

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$egin{aligned} M\colon (x_1,\ldots,x_m)&\mapsto \,\, igstackip_{i=1}^m \left(A_ix_i+C_ix_i+Q_ix_i+
ight.\ &\sum_{k=1}^p L_{ki}^*igg(\left(\left(B_k^m+B_k^c+B_k^l
ight)\Box\left(D_k^m+D_k^c+D_k^l
ight)
ight) \left(\sum_{j=1}^m L_{kj}x_j
ight)
ight)
ight) \end{aligned}$$

(Bùi/PLC 2021)

• Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \to 2^{\mathcal{X}^*}$, find $x \in \mathcal{X}$ such that $0 \in Mx$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

 $x_{n+1} = J_M x_n$, where $J_M = (Id + M)^{-1}$ is the resolvent of M.

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- ... which models in particular

$$\min_{x_1 \in \mathcal{X}_1, \dots, x_m \in \mathcal{X}_m} \sum_{i=1}^m \left(f_i(x_i) + \varphi_i(x_i) \right) + \sum_{k=1}^p \left((g_k + \psi_k) \Box h_k \right) \left(\sum_{j \in I} L_{kj} x_j \right).$$

(Bùi/PLC 2021)

 Can we provide a synthetic view of some of these methods in terms of a resolvent iteration akin to the proximal point algorithm?

PART 2:

The warped resolvent

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations

The warped resolvent: Definition

- \mathcal{X} is a reflexive real Banach space with topological dual \mathcal{X}^* .
- An operator $M\colon \mathcal{X} o 2^{\mathcal{X}^*}$ is monotone if

 $ig(orall(x_1,x_1^*)\in \operatorname{gra} Mig)ig(orall(x_2,x_2^*)\in \operatorname{gra} Mig)\quad \langle x_1-x_2,x_1^*-x_2^*
angle\geqslant 0,$

and maximally monotone if, furthermore, no point in $\mathcal{X} \times \mathcal{X}^*$ can be added to gra M without compromising monotonicity.

Definition

Let $\emptyset \neq D \subset \mathcal{X}$, let $K: D \to \mathcal{X}^*$, and let $M: \mathcal{X} \to 2^{\mathcal{X}^*}$ be such that ran $K \subset \operatorname{ran}(K+M)$ and K+M is injective. ¹ The warped resolvent of M with kernel K is $J_M^K = (K+M)^{-1} \circ K$.

 ${}^{1}A \colon \mathcal{X} \to 2^{\mathcal{X}^{*}}$ is injective if $(\forall x \in \mathcal{X})(\forall y \in \mathcal{X}) Ax \cap Ay \neq \emptyset \Rightarrow x = y.$

 $M\colon \mathcal{X}
ightarrow 2^{\mathcal{X}^*}$ is maximally monotone.

• If \mathcal{X} is Hilbertian and $K = \mathsf{Id}$, J_M^K is the classical resolvent.

 $M\colon \mathcal{X}
ightarrow 2^{\mathcal{X}^*}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and K = Id, J_M^K is the classical resolvent.
- If $K = \nabla f$ and $M = N_C$, J_M^K is the Bregman projection operator (1967).

 $M\colon \mathcal{X}
ightarrow 2^{\mathcal{X}^*}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and $K = \operatorname{Id}$, J_M^K is the classical resolvent.
- If $K = \nabla f$ and $M = N_C$, J_M^K is the Bregman projection operator (1967).
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_M^K is the extended resolvent of (Kassay, 1985).

 $M\colon \mathcal{X}
ightarrow 2^{\mathcal{X}^*}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and K = Id, J_M^K is the classical resolvent.
- If $K = \nabla f$ and $M = N_C$, J_M^K is the Bregman projection operator (1967).
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_M^K is the extended resolvent of (Kassay, 1985).
- Let $f: \mathcal{X} \to]-\infty, +\infty]$ be a Legendre function such that dom $M \subset$ int dom f, and set $K = \nabla f$. Then J_M^K is the *D*-resolvent of (Bauschke/Borwein/PLC, 2003).

 $M\colon \mathcal{X}
ightarrow 2^{\mathcal{X}^*}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and K = Id, J_M^K is the classical resolvent.
- If $K = \nabla f$ and $M = N_C$, J_M^K is the Bregman projection operator (1967).
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_M^K is the extended resolvent of (Kassay, 1985).
- Let $f: \mathcal{X} \to]-\infty, +\infty]$ be a Legendre function such that dom $M \subset$ int dom f, and set $K = \nabla f$. Then J_M^K is the *D*-resolvent of (Bauschke/Borwein/PLC, 2003).
- $A: \mathcal{X} \to 2^{\mathcal{X}^*}$ and $B: \mathcal{X} \to 2^{\mathcal{X}^*}$ are maximally monotone, and $f: \mathcal{X} \to]-\infty, +\infty]$ is a suitable convex function. Set

M = A + B and K: int dom $f \to \mathcal{X}^*$: $x \mapsto \nabla f(x) - Bx$.

Then $J_M^K = (\nabla f + A)^{-1} \circ (\nabla f - B)$ is the Bregman forward-backward operator to be discussed in Part 4.

• Let $K: \mathcal{X} \to \mathcal{X}^*$ be strictly monotone, 3* monotone, and surjective. Then J_M^K is the *K*-resolvent of (Bauschke/Wang/Yao, 2010).

- Let $K: \mathcal{X} \to \mathcal{X}^*$ be strictly monotone, 3^* monotone, and surjective. Then J_M^K is the K-resolvent of (Bauschke/Wang/Yao, 2010).
- Let $\emptyset \neq C \subset \mathcal{X}$ be closed and convex, with normal cone operator N_C . The warped projection operator is $\operatorname{proj}_C^K = J_{N_C}^K = (K+N_C)^{-1} \circ K$.

Left: Warped projections onto B(0; 1). Sets of points projecting onto p_1, p_2 , and p_3 for $K_1 = Id$ and

$$K_2 \colon (\xi_1,\xi_2) \mapsto \left(rac{\xi_1^3}{2} + rac{\xi_1}{5} - \xi_2, \xi_1 + \xi_2
ight)$$

Note that K_2 is not a gradient, so this is not a Bregman projector.

The warped resolvent: Properties

- Sufficient conditions for ran $K \subset ran(K + M)$ and K + M is injective are given in (Bùi/PLC, 2020).
- $J_M^K : D o D$.
- Fix $J_M^K = D \cap \operatorname{zer} M$.
- $p = J_M^K x \Leftrightarrow (p, Kx Kp) \in \operatorname{gra} M.$
- Suppose that M is monotone. Let $x \in D$, and set $y = J_M^K x$ and $y^* = Kx Ky$. Then

$$\operatorname{\mathsf{zer}} M \subset ig\{ z \in \mathcal{X} \ | \ \langle z - y, y^*
angle \leqslant 0 ig\}.$$

• Suppose that M is monotone. Set $p = J_M^K x$ and $q = J_M^K y$. Then

$$\langle p-q, \mathit{K} \mathit{x}-\mathit{K} \mathit{y} \rangle \geqslant \langle p-q, \mathit{K} p-\mathit{K} q \rangle.$$

Warped proximal iterations in Hilbert spaces

PART 3:

Warped proximal iterations in Hilbert spaces

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations

• *M* maximally monotone with $Z = \operatorname{zer} M \neq \emptyset$.

- *M* maximally monotone with $Z = \operatorname{zer} M \neq \emptyset$.
- Iterate

$$\left| \begin{array}{l} (y_n,y_n^*) \in \operatorname{gra} M\\ \lambda_n \in [\varepsilon, 2 - \varepsilon]\\ \operatorname{if} \langle y_n - x_n \mid y_n^* \rangle < 0\\ \lfloor x_{n+1} = x_n + \lambda_n \langle y_n - x_n \mid y_n^* \rangle y_n^* / \|y_n^*\|^2\\ \operatorname{else}\\ \lfloor x_{n+1} = x_n. \end{array} \right|$$

- *M* maximally monotone with $Z = \operatorname{zer} M \neq \emptyset$.
- Iterate

$$\left| \begin{array}{l} (y_n, y_n^*) \in \operatorname{gra} M \\ \lambda_n \in [\varepsilon, 2 - \varepsilon] \\ \operatorname{if} \langle y_n - x_n \mid y_n^* \rangle < 0 \\ \lfloor x_{n+1} = x_n + \lambda_n \langle y_n - x_n \mid y_n^* \rangle y_n^* / ||y_n^*||^2 \\ \operatorname{else} \\ \lfloor x_{n+1} = x_n. \end{array} \right.$$

- Weak convergence to a point in Z if weak cluster points are in Z.
- The weak-to-strong convergence principle (Bauschke/PLC, 2001) gives strong convergence of a 2 half-spaces variant.
- How to choose $(y_n, y_n^*) \in \operatorname{gra} M$?

- *M* maximally monotone with $Z = \operatorname{zer} M \neq \emptyset$.
- Iterate

$$\left|\begin{array}{l} y_n = J_{n_n}^{K_n} \tilde{x}_n \\ y_n^* = \gamma_n^{-1} (K_n \tilde{x}_n - K_n y_n) \\ \lambda_n \in [\varepsilon, 2 - \varepsilon] \\ \text{if } \langle y_n - x_n \mid y_n^* \rangle < 0 \\ \lfloor x_{n+1} = x_n + \lambda_n \langle y_n - x_n \mid y_n^* \rangle y_n^* / \|y_n^*\|^2 \\ \text{else} \\ \lfloor x_{n+1} = x_n. \end{array}\right.$$

- **Key:** Move beyond Minty's parametrization of $\operatorname{gra} M$ and use a warped resolvent to pick $(y_n, y_n^*) \in \operatorname{gra} M$.
- Simply evaluate a warped resolvent at some point \tilde{x}_n .

Notation: $(y^*)^{\sharp} = y^*/||y^*||$ if $y^* \neq 0$; = 0 otherwise.

Theorem

Let $(\gamma_n)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, +\infty[$. For every $n \in \mathbb{N}$, let $\widetilde{x}_n \in \mathcal{X}$ and let $K_n : \mathcal{X} \to \mathcal{X}$ be a monotone operator such that ran $K_n \subset \operatorname{ran}(K_n + \gamma_n M)$ and $K_n + \gamma_n M$ is injective. Suppose that:

•
$$\widetilde{x}_n - x_n \to 0.$$

$$\bullet \hspace{0.2cm} \left< \widetilde{x}_n - y_n \mid \left(K_n \widetilde{x}_n - K_n y_n \right)^{\sharp} \right> \rightarrow 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \left\{ \begin{matrix} \widetilde{x}_n - y_n \ \rightharpoonup \ 0 \\ K_n \widetilde{x}_n - K_n y_n \rightarrow 0 . \end{matrix} \right.$$

Then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a point in Z.

Notation: $(y^*)^{\sharp} = y^*/||y^*||$ if $y^* \neq 0$; = 0 otherwise.

Theorem

Let $(\gamma_n)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, +\infty[$. For every $n \in \mathbb{N}$, let $\widetilde{x}_n \in \mathcal{X}$ and let $K_n : \mathcal{X} \to \mathcal{X}$ be a monotone operator such that ran $K_n \subset \operatorname{ran}(K_n + \gamma_n M)$ and $K_n + \gamma_n M$ is injective. Suppose that:

•
$$\widetilde{x}_n - x_n \to 0.$$

$$\bullet \hspace{0.2cm} \left< \widetilde{x}_n - y_n \mid \left(K_n \widetilde{x}_n - K_n y_n \right)^{\sharp} \right> \rightarrow 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \left\{ \begin{matrix} \widetilde{x}_n - y_n \box{ } \rightarrow \box{ } 0 \\ K_n \widetilde{x}_n - K_n y_n \box{ } 0 \end{matrix} \right.$$

Then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a point in Z.

• We also have a strongly convergent version.

Choosing the evaluation points $(\tilde{x}_n)_{n \in \mathbb{N}}$

The auxiliary sequence $(\tilde{x}_n)_{n \in \mathbb{N}}$ can serve several purposes:

• \widetilde{x}_n can model an additive perturbation of x_n , say $\widetilde{x}_n = x_n + e_n$, where we require only $||e_n|| \to 0$.

Choosing the evaluation points $(\tilde{x}_n)_{n \in \mathbb{N}}$

The auxiliary sequence $(\tilde{x}_n)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_n can model an additive perturbation of x_n , say $\widetilde{x}_n = x_n + e_n$, where we require only $||e_n|| \to 0$.
- Modeling inertia: let $(\alpha_n)_{n\in\mathbb{N}}$ be **any** bounded sequence in \mathbb{R} and set $\tilde{x}_n = x_n + \alpha_n(x_n x_{n-1})$.

The auxiliary sequence $(\tilde{x}_n)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_n can model an additive perturbation of x_n , say $\widetilde{x}_n = x_n + e_n$, where we require only $||e_n|| \to 0$.
- Modeling inertia: let $(\alpha_n)_{n \in \mathbb{N}}$ be **any** bounded sequence in \mathbb{R} and set $\tilde{x}_n = x_n + \alpha_n(x_n x_{n-1})$.
- More generally,

$$(orall n\in\mathbb{N}) \quad \widetilde{x}_n=\sum_{j=0}^n \mu_{n,j}x_j.$$

with $\sum_{j=0}^{n} \mu_{n,j} = 1$ and $(1 - \mu_{n,n})x_n - \sum_{j=0}^{n-1} \mu_{n,j}x_j \to 0$.

The auxiliary sequence $(\tilde{x}_n)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_n can model an additive perturbation of x_n , say $\widetilde{x}_n = x_n + e_n$, where we require only $||e_n|| \to 0$.
- Modeling inertia: let $(\alpha_n)_{n \in \mathbb{N}}$ be **any** bounded sequence in \mathbb{R} and set $\tilde{x}_n = x_n + \alpha_n(x_n x_{n-1})$.
- More generally,

$$(\forall n \in \mathbb{N}) \quad \widetilde{x}_n = \sum_{j=0}^n \mu_{n,j} x_j.$$

with $\sum_{j=0}^{n} \mu_{n,j} = 1$ and $(1 - \mu_{n,n})x_n - \sum_{j=0}^{n-1} \mu_{n,j}x_j \to 0$.

• Nonlinear perturbations can also be considered. For instance, at iteration $n, \tilde{x}_n = \text{proj}_{C_n} x_n$ is an approximation to x_n from some suitable closed convex set $C_n \subset \mathcal{X}$.

Corollary

Let $A: \mathcal{X} \to 2^{\mathcal{X}}$ be maximally monotone, and let $B: \mathcal{X} \to \mathcal{X}$ be monotone and β -Lipschitzian, with zer $(A+B) \neq \emptyset$. Let $W_n: \mathcal{X} \to \mathcal{X}$ be α -strongly monotone and χ -Lipschitzian, and let $\gamma_n \in [\varepsilon, (\alpha - \varepsilon)/\beta]$, let $\lambda_n \in [\varepsilon, 2 - \varepsilon]$, and let $\mathcal{X} \ni e_n \to 0$. Furthermore, let m > 0 and let $(\mu_{n,j})_{n \in \mathbb{N}, 0 \leq j \leq n}$ be bounded and satisfy

• For every n > m and every integer $j \in [0, n - m - 1]$, $\mu_{n,j} = 0$.

• For every
$$n \in \mathbb{N}$$
, $\sum_{j=0}^{n} \mu_{n,j} = 1$.

Iterate

$$\left|\begin{array}{l} \widetilde{x}_n = e_n + \sum_{j=0}^n \mu_{n,j} x_j \\ v_n^* = W_n \widetilde{x}_n - \gamma_n B \widetilde{x}_n \\ y_n = (W_n + \gamma_n A)^{-1} v_n^* \\ y_n^* = \gamma_n^{-1} (v_n^* - W_n y_n) + B y_n \\ if \langle y_n - x_n \mid y_n^* \rangle < 0 \\ \\ x_{n+1} = x_n + \frac{\lambda_n \langle y_n - x_n \mid y_n^* \rangle}{||y_n^*||^2} y_n^* \\ else x_{n+1} = x_n. \end{array}\right.$$

Then $(x_n)_{n \in \mathbb{N}}$ converges weakly to a point in zer (A + B).

Proof:
$$M = A + B$$
 and $K_n = W_n - \gamma_n B$.

Special case: Tseng's algorithm.

Corollary 2: Multivariate inclusions

• **Problem:** find $(x_i)_{i \in I} \in \bigotimes_{i \in I} \mathcal{X}_i$ such that

$$(orall i\in I) \quad 0\in A_ix_i+\sum_{j\in J}L_{ji}^*igg((B_j+D_j)igg(\sum_{k\in I}L_{jk}x_kigg)igg)+C_ix_i$$

• Warping: Apply the Theorem to

$$egin{aligned} M \colon & ((x_i)_{i \in I}, (y_j)_{j \in J}, (v_j^*)_{j \in J}) \mapsto igg(igwedge X_{i \in I} \left(A_i x_i + C_i x_i + \sum_{j \in J} L_{ji}^* v_j^*
ight), \ & igg(B_j y_j + D_j y_j - v_j^* igg), igg(igg(y_j - \sum_{i \in I} L_{ji} x_i igg\} igg) \end{aligned}$$

and $\underline{K_n}$: $(x, y, v^*) \mapsto$

$$egin{aligned} &\left(\left(\gamma_{i,n}^{-1}F_{i,n}x_i-C_ix_i-\sum_{j\in J}L_{ji}^*v_j^*
ight)_{i\in I},\left(au_{j,n}^{-1}W_{j,n}y_j-D_jy_j+v_j^*
ight)_{j\in J}, \ &\left(-y_j+v_j^*+\sum_{i\in I}L_{ji}x_i
ight)_{j\in J}, \end{aligned}$$

where $F_{i,n}$ and $W_{j,n}$ are strongly monotone and Lipschitzian.

Corollary 2: Multivariate inclusions

$$\begin{split} & \text{for } n=0,1,\dots \\ & \text{for every } i \in I \\ & \left[\begin{array}{c} l_{i,n}^{*}=F_{i,n}\widetilde{x}_{i,n}-\gamma_{i,n}C_{i}\widetilde{x}_{i,n}-\gamma_{i,n}\sum_{j\in J}L_{j}^{*}\widetilde{v}_{j,n}^{*} \\ & a_{i,n}^{*}=(F_{i,n}+\gamma_{i,n}A_{i})^{-1}(l_{i,n}^{*}+\gamma_{i,n}s_{i}^{*}) \\ & o_{i,n}^{*}=\gamma_{i,n}^{-1}(l_{i,n}^{*}-F_{i,n}a_{i,n})+C_{i}a_{i,n} \\ & \text{for every } j \in J \\ & \left[\begin{array}{c} l_{j,n}^{*}=W_{j,n}\widetilde{y}_{j,n}-\tau_{j,n}D_{j}\widetilde{y}_{j,n}+\tau_{j,n}\widetilde{v}_{j,n}^{*} \\ & b_{j,n}^{*}=(W_{j,n}+\tau_{j,n}B_{j})^{-1}t_{j,n}^{*} \\ & f_{j,n}^{*}=\tau_{j,n}^{-1}(l_{j,n}^{*}-W_{j,n}b_{j,n})+D_{j}b_{j,n} \\ & c_{j,n}^{*}=\tau_{j,i}^{*}(L_{j,n}^{*}-W_{j,n}b_{j,n})+D_{j}b_{j,n} \\ & c_{j,n}^{*}=r_{j,i}+\sum_{j\in J}L_{j}^{*}c_{j,n} \\ & \text{for every } i \in I \\ & \left[\begin{array}{c} b_{j,n}^{*}=f_{j,n}^{*}-c_{j,n} \\ & c_{j,n}^{*}=r_{j}+b_{j,n}-\sum_{i\in I}L_{ij}a_{i,n} \\ & c_{j,n}^{*}=r_{j}+b_{j,n}-\sum_{i\in I}L_{ij}a_{i,n} \\ & c_{j,n}^{*}=r_{j}+b_{j,n}-\sum_{i\in I}L_{ij}a_{i,n} \\ & c_{j,n}^{*}=r_{j}+a_{j,n}-c_{j,n} \\ & \left[\begin{array}{c} b_{j,n}^{*}=f_{j,n}^{*}-c_{j,n} \\ & c_{j,n}^{*}=r_{j}+a_{j,n}-c_{j,n} \\ & \left[\begin{array}{c} b_{j,n}^{*}=f_{j,n}^{*}-c_{j,n} \\ & c_{j,n}^{*}=r_{j}+a_{j,n}-c_{j,n} \\ & \left[\begin{array}{c} b_{j,n}^{*}=r_{j}+a_{j,n}-c_{j,n} \\ & c_{j,n}^{*}=r_{j}+a_{j,n}-c_{j,n} \\ & \left[\begin{array}{c} b_{n}=\sum_{i\in I}\|a_{i,n}^{*}\|^{2}+\sum_{j\in J}\left(\langle ||b_{j,n}|^{2}+||c_{j,n}^{*}||^{2}\right) \\ & \theta_{n}=\sum_{i\in I}\|a_{i,n}^{*}\|^{2}+\sum_{j\in J}\left(\langle ||b_{j,n}|^{2}+||c_{j,n}^{*}||^{2}\right) \\ & \theta_{n}=\sum_{i\in I}\|a_{n,n}-x_{i,n}\|a_{i,n}^{*}\rangle+\sum_{j\in J}\left(\langle b_{j,n}-y_{j,n}\|b_{j,n}^{*}\rangle+\langle c_{j,n}-v_{j,n}^{*}\|c_{j,n}^{*}\rangle\right) \\ & \text{if } \theta_{n}<0 \\ & \left[\begin{array}{c} \rho_{n}=\lambda_{n}\theta_{n}/\sigma_{n} \\ & \text{else} \\ \\ & \left[\begin{array}{c} \rho_{n}=0 \\ & \text{for every } i \in J \\ \\ & x_{i,n+1}=x_{i,n}+\rho_{n}b_{i,n}^{*} \\ & v_{j,n+1}^{*}=v_{j,n}^{*}+\rho_{n}b_{j,n}^{*}. \\ \end{array} \right] \end{array} \right]$$

- Primal-dual splitting.
 - Consider the inclusion $0 \in Ax + L^*(B(Lx))$ and the associated Kuhn–Tucker operator

 $M\colon \mathcal{X} imes \mathcal{Y} o 2^{\mathcal{X} imes \mathcal{Y}} \colon (x,y^*) \mapsto (Ax+L^*y^*) imes (-Lx+B^{-1}y^*).$

• The cutting plane method of (Alotaibi/PLC/Shahzad, 2014) and (PLC/Eckstein, 2018) generate points $(a_n, a_n^*) \in \operatorname{gra} A$ and $(b_n, b_n^*) \in \operatorname{gra} B$. This implicitly provides

$$(y_n,y_n^*)=ig((a_n,b_n^*),(a_n^*+L^*b_n^*,-La_n+b_n)ig)\in \operatorname{gra} M$$

to construct $H_n \supset \operatorname{zer} M$.

 The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is therefore an instance of the Theorem with

$$K_n: (x, y^*) \mapsto (\gamma_n^{-1}x - L^*y^*, Lx + \mu_n y^*).$$

- Primal-dual splitting.
 - Consider the inclusion $0 \in Ax + L^*(B(Lx))$ and the associated Kuhn–Tucker operator

 $M\colon \mathcal{X} imes \mathcal{Y} o 2^{\mathcal{X} imes \mathcal{Y}} \colon (x,y^*) \mapsto (Ax+L^*y^*) imes (-Lx+B^{-1}y^*).$

• The cutting plane method of (Alotaibi/PLC/Shahzad, 2014) and (PLC/Eckstein, 2018) generate points $(a_n, a_n^*) \in \operatorname{gra} A$ and $(b_n, b_n^*) \in \operatorname{gra} B$. This implicitly provides

$$(y_n,y_n^*)=ig((a_n,b_n^*),(a_n^*+L^*b_n^*,-La_n+b_n)ig)\in \operatorname{gra} M$$

to construct $H_n \supset \operatorname{zer} M$.

 The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is therefore an instance of the Theorem with

$$\underline{K}_n: (x, y^*) \mapsto \left(\gamma_n^{-1}x - L^*y^*, Lx + \mu_n y^*\right).$$

• More generally, the block-iterative projective splitting method of (PLC/Eckstein, 2018) in an instance of the Theorem (Bùi, 2021).

Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with Bregman kernels

Patrick L. Combettes — 2020-11-17 Warped Proximal Iterations

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \to 2^{\mathcal{X}^*}$ and $B: \mathcal{X} \to 2^{\mathcal{X}^*}$ maximally monotone, and $f \in \Gamma_0(\mathcal{X})$ essentially smooth.
- $C = (int \operatorname{dom} f) \cap \operatorname{dom} A \subset int \operatorname{dom} B$ and B is single-valued on int dom B.
- $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})(\forall y^* \in Ay)(\forall z^* \in Az)$ $\langle y - x, By - Bz \rangle \leqslant \kappa D_f(x, y) + \langle y - z, \delta_1(y^* - z^*) + \delta_2(By - Bz) \rangle.$
- The objective is to

find $x \in \mathscr{S} = (\operatorname{int} \operatorname{dom} f) \cap \operatorname{zer} (A + B) \neq \emptyset$.

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \to 2^{\mathcal{X}^*}$ and $B: \mathcal{X} \to 2^{\mathcal{X}^*}$ maximally monotone, and $f \in \Gamma_0(\mathcal{X})$ essentially smooth.
- $C = (int \operatorname{dom} f) \cap \operatorname{dom} A \subset int \operatorname{dom} B$ and B is single-valued on int dom B.
- $\begin{array}{l} \bullet \quad (\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})(\forall y^* \in Ay)(\forall z^* \in Az) \\ \\ \left\langle y x, By Bz \right\rangle \leqslant \kappa D_f(x,y) + \left\langle y z, \delta_1(y^* z^*) + \delta_2(By Bz) \right\rangle. \end{array}$
- The objective is to

find $x \in \mathscr{S} = (\operatorname{int} \operatorname{dom} f) \cap \operatorname{zer} (A + B) \neq \emptyset$.

Apply the warped proximal point algorithm

$$x_{n+1} = J_M^{K_n} x_n$$

to M = A + B with kernel $K_n = \gamma_n^{-1} \nabla f_n - B$ for a suitable essentially smooth function f_n .

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \to 2^{\mathcal{X}^*}$ and $B: \mathcal{X} \to 2^{\mathcal{X}^*}$ maximally monotone, and $f \in \Gamma_0(\mathcal{X})$ essentially smooth.
- $C = (int \operatorname{dom} f) \cap \operatorname{dom} A \subset int \operatorname{dom} B$ and B is single-valued on int dom B.
- $\begin{array}{l} \bullet \ \ (\forall x\in C)(\forall y\in C)(\forall z\in \mathscr{S})(\forall y^*\in Ay)(\forall z^*\in Az)\\ \\ \left\langle y-x,By-Bz\right\rangle\leqslant\kappa D_f(x,y)+\left\langle y-z,\delta_1(y^*-z^*)+\delta_2(By-Bz)\right\rangle. \end{array}$
- The objective is to

find $x \in \mathscr{S} = (\operatorname{int} \operatorname{dom} f) \cap \operatorname{zer} (A + B) \neq \emptyset$.

Apply the warped proximal point algorithm

$$x_{n+1} = J_M^{K_n} x_n$$

to M = A + B with kernel $K_n = \gamma_n^{-1} \nabla f_n - B$ for a suitable essentially smooth function f_n .

• We obtain the Bregman forward-backward splitting algorithm

$$x_{n+1} = ig(
abla f_n + \gamma_n A ig)^{-1} ig(
abla f_n(x_n) - \gamma_n B x_n ig).$$

Convergence

Theorem

"Under suitable assumptions,"

$$x_{n+1} = ig(
abla f_n + \gamma_n A ig)^{-1} ig(
abla f_n(x_n) - \gamma_n B x_n ig) woheadrightarrow x \in \mathscr{S}.$$

• This result provides, for instance, the convergence of the basic Bregman forward-backward splitting method

$$(\nabla f + \gamma A)^{-1} (\nabla f(x_n) - \gamma B x_n),$$

which is new even in Euclidean spaces.

• It also allows us to recover and extend 4, so far unrelated, splitting frameworks.

$x_{n+1} = (\nabla f_n + \gamma_n A)^{-1} (\nabla f_n(x_n) - \gamma_n B x_n)$: Instantiations

- The iteration $x_{n+1} = (\nabla f + \gamma_n A)^{-1} (\nabla f(x_n))$ for finding a zero of A in a reflexive Banach space (Bauschke/Borwein/PLC, 2003).
- The iteration $x_{n+1} = (U_n + \gamma_n A)^{-1} (U_n x_n \gamma_n B x_n)$ for finding a zero of A + B in a Hilbert space, where U_n is a strongly positive Hermitian bounded linear operator (PLC/Vū, 2014).
- The iteration

$$x_{n+1} = (\nabla f + \gamma A)^{-1} (\nabla f(x_n) - \gamma B x_n)$$

for finding a zero of A + B in a Hilbert space, where f is real-valued and strongly convex (Renaud/Cohen, 1997).

The iteration

$$x_{n+1} = ig(
abla f_n + \gamma_n \partial arphi ig)^{-1} ig(
abla f_n(x_n) - \gamma_n
abla \psi(x_n) ig)$$

for minimizing $\varphi + \psi$ in a reflexive Banach space (Nguyen, 2017; see also Bauschke/Bolte/Teboulle, 2017).

References

- M. N. Bùi and PLC, Warped proximal iterations for monotone inclusions, J. Math. Anal. Appl., vol. 491, 2020.
- M. N. Bùi and PLC, Bregman forward-backward operator splitting, *Set-Valued Var. Anal.*, vol. 29, 2021.
- M. N. Bùi and PLC, Multivariate monotone inclusions in saddle form, *Math. Oper. Res.*, to appear.
- M. N. Bùi and PLC, Analysis and numerical solution of a modular convex Nash equilibrium problem, *arxiv*, 2021.
- M. N. Bùi, Projective splitting as a warped proximal algorithm, *arxiv*, 2021.
- H. H. Bauschke and PLC, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. corrected printing, Springer, 2019.

Bregman distance

- $f \in \Gamma_0(\mathcal{X})$ is a Legendre function if it is both (Bauschke/Borwein/PLC, 2001):
 - Essentially smooth: ∂f is both locally bounded and single-valued on its domain.
 - Essentially strictly convex: ∂f^* is locally bounded on its domain and f is strictly convex on every convex subset of dom ∂f .
- Take f ∈ Γ₀(X), Gâteaux differentiable on int dom f ≠ Ø. The associated Bregman distance is

$$egin{aligned} D_f\colon \mathcal{X} imes\mathcal{X} &
ightarrow \left[0,+\infty
ight] \ &(x,y)\mapsto egin{cases} f(x)-f(y)-\langle x-y,
abla f(y)
angle, & ext{if } y\in ext{int dom} f;\ +\infty, & ext{otherwise}. \end{aligned}$$