Warped Proximal Iterations

Patrick L. Combettes
- joint work with Minh N. Bùi -
Department of Mathematics
North Carolina State University
Raleigh, NC 27695, USA
Workshop on Optimization and Operator Theory dedicated to Professor Lev Bregman
Haifa, Israel, November 17, 2021

Lev Bregman 1965's paper

Доклады Академиинаук СССР 1965. Том 162, ふः 3

МАТЕМАТИКА

Л. М. БРЭГМАН

НАХОЖДЕНИЕ ОБЩЕЙ ТОЧКИ ВЫПУКЛЫХ МНОЖЕСТВ МЕТОДОМ ПОСЛЕДОВАТЕЛЬНОГО ПРОЕКТИРОВАНИЯ

(Представлено академиком Л. В. Канторовичем 7 ХІІ 1964)

В настоящей статье рассматривается итеративный метод для нахождения общей точки выпуклых множеств. Этот метод может быть применен для задач оптимального программирования и для некоторых других.

Пусть в действительном гильбертовом пространстве H с расстоянием ρ заданы замкнутые выпуклые множества $A_{i}, i \in I$, где I - некоторое множество индексов. Пусть $R=\bigcap_{i \in I} A_{i}$ не пусто. Требуется найти какую-либо точку $x \in R$. Рассмотрим следующий итеративный процесс: берем любую точку $x_{0} \in H$, затем выбираем $i\left(x_{0}\right) \in I$ и в множестве $A_{i\left(x_{0}\right)}$ находим точку x_{1}, ближайшую к x_{0}, затем так же выбираем $i\left(x_{1}\right) \in I$ и в множестве $A_{i\left(x_{1}\right)}$ находим точку x_{2}, ближайшую к x_{1}, и т. д.

PART 1:

Background

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.
- Considerable range of applications: optimization,
- Subdifferential: $M=\partial f$ (Fermat's rule)
- Kuhn-Tucker operator: $M=\left[\begin{array}{cc}\partial f & L^{*} \\ -L & \partial g^{*}\end{array}\right]$.
(Rockafellar 1967)
- etc. (Eckstein 1994, PLC 2018, Bùi/PLC 2020).

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.
- Considerable range of applications: optimization, variational inequalities, statistics, mechanics, neural networks, finance, partial differential equations, optimal transportation, signal and image processing, control, game theory, machine learning, economics, mean fields games, etc.

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$.
- The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(\mathrm{Id}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Acknowledging the fact that J_{M} may be hard to implement, splitting methods have been developed: the goal is to express M as a combination of operators, and devise an algorithm that uses these operators individually.

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=A+B
$$

(Mercier 1979, Lions/Mercier 1979, Tseng 2000)

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M .
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=\sum_{k=1}^{p} A_{k}
$$

(Spingarn 1983, Gol'stein 1985, Eckstein/Svaiter 2009, PLC 2009)

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M .
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=\sum_{k=1}^{p} L_{k}^{*} \circ B_{k} \circ L_{k}
$$

(Briceño-Arias/PLC 2011)

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n}, \text { where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M .
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=A+\sum_{k=1}^{p} L_{k}^{*} \circ\left(B_{k} \square D_{k}\right) \circ L_{k}+C
$$

(PLC/Pesquet 2012, Vũ 2013, Condat 2013, Boţ/Hendrich 2013)

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
M=A+\sum_{k=1}^{p} B_{k}+C
$$

(Raguet/Fadili/Peyré 2013, Briceño-Arias 2015, Davis/Yin 2017, Raguet 2019)

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(\mathrm{ld}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- The following structures have been considered:

$$
\begin{aligned}
& M:\left(x_{1}, \ldots, x_{m}\right) \mapsto \underset{i=1}{\underset{X}{X}}\left(A_{i} x_{i}+C_{i} x_{i}+Q_{i} x_{i}+\right. \\
& \left.\quad \sum_{k=1}^{p} L_{k i}^{*}\left(\left(\left(B_{k}^{m}+B_{k}^{c}+B_{k}^{l}\right) \square\left(D_{k}^{m}+D_{k}^{c}+D_{k}^{l}\right)\right)\left(\sum_{j=1}^{m} L_{k j} x_{j}\right)\right)\right)
\end{aligned}
$$

(Büi/PLC 2021)

Monotone operator splitting

- Basic problem: \mathcal{X} a real Banach space. Given a maximally monotone operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$, find $x \in \mathcal{X}$ such that $0 \in M x$. The proximal point algorithm (Bellman 1966, Martinet 1970, Rockafellar 1976):

$$
x_{n+1}=J_{M} x_{n} \text {, where } J_{M}=(\mathrm{Id}+M)^{-1} \text { is the resolvent of } M \text {. }
$$

- Splitting methods: express M as a combination of operators, and devise an algorithm that uses these operators individually.
- ... which models in particular

$$
\underset{x_{1} \in \mathcal{X}_{1}, \ldots, x_{m} \in \mathcal{X}_{m}}{\operatorname{minimize}} \sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+\varphi_{i}\left(x_{i}\right)\right)+\sum_{k=1}^{p}\left(\left(g_{k}+\psi_{k}\right) \square h_{k}\right)\left(\sum_{j \in I} L_{k j} x_{j}\right) .
$$

(Büi/PLC 2021)

- Can we provide a synthetic view of some of these methods in terms of a resolvent iteration akin to the proximal point algorithm?

The warped resolvent

PART 2:

The warped resolvent

The warped resolvent: Definition

- \mathcal{X} is a reflexive real Banach space with topological dual \mathcal{X}^{*}.
- An operator $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is monotone if

$$
\left(\forall\left(x_{1}, x_{1}^{*}\right) \in \operatorname{gra} M\right)\left(\forall\left(x_{2}, x_{2}^{*}\right) \in \operatorname{gra} M\right) \quad\left\langle x_{1}-x_{2}, x_{1}^{*}-x_{2}^{*}\right\rangle \geqslant 0,
$$

and maximally monotone if, furthermore, no point in $\mathcal{X} \times \mathcal{X}^{*}$ can be added to gra M without compromising monotonicity.

Definition

Let $\varnothing \neq D \subset \mathcal{X}$, let $K: D \rightarrow \mathcal{X}^{*}$, and let $M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ be such that ran $K \subset \operatorname{ran}(K+M)$ and $K+M$ is injective. ${ }^{1}$ The warped resolvent of M with kernel K is $J_{M}^{K}=(K+M)^{-1} \circ K$.

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.
- If $K=\nabla f$ and $M=N_{C}, J_{M}^{K}$ is the Bregman projection operator (1967).

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.
- If $K=\nabla f$ and $M=N_{C}, J_{M}^{K}$ is the Bregman projection operator (1967).
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_{M}^{K} is the extended resolvent of (Kassay, 1985).

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.
- If $K=\nabla f$ and $M=N_{C}, J_{M}^{K}$ is the Bregman projection operator (1967).
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_{M}^{K} is the extended resolvent of (Kassay, 1985).
- Let $f: \mathcal{X} \rightarrow$] $-\infty,+\infty$] be a Legendre function such that $\operatorname{dom} M \subset$ int dom f, and set $K=\nabla f$. Then J_{M}^{K} is the D-resolvent of (Bauschke/Borwein/PLC, 2003).

The warped resolvent: Examples

$M: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is maximally monotone.

- If \mathcal{X} is Hilbertian and $K=\mathrm{ld}, J_{M}^{K}$ is the classical resolvent.
- If $K=\nabla f$ and $M=N_{C}, J_{M}^{K}$ is the Bregman projection operator (1967).
- If \mathcal{X} is strictly convex with normalized duality mapping K, then J_{M}^{K} is the extended resolvent of (Kassay, 1985).
- Let $f: \mathcal{X} \rightarrow$] $-\infty,+\infty$] be a Legendre function such that $\operatorname{dom} M \subset$ int dom f, and set $K=\nabla f$. Then J_{M}^{K} is the D-resolvent of (Bauschke/Borwein/PLC, 2003).
- $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ are maximally monotone, and $f: \mathcal{X} \rightarrow]-\infty,+\infty]$ is a suitable convex function. Set

$$
M=A+B \quad \text { and } \quad K: \operatorname{int} \operatorname{dom} f \rightarrow \mathcal{X}^{*}: x \mapsto \nabla f(x)-B x .
$$

Then $J_{M}^{K}=(\nabla f+A)^{-1} \circ(\nabla f-B)$ is the Bregman forward-backward operator to be discussed in Part 4.

The warped resolvent: Examples

- Let $K: \mathcal{X} \rightarrow \mathcal{X}^{*}$ be strictly monotone, 3^{*} monotone, and surjective. Then J_{M}^{K} is the K-resolvent of (Bauschke/Wang/Yao, 2010).

The warped resolvent: Examples

- Let $K: \mathcal{X} \rightarrow \mathcal{X}^{*}$ be strictly monotone, 3^{*} monotone, and surjective. Then J_{M}^{K} is the K-resolvent of (Bauschke/Wang/Yao, 2010).
- Let $\emptyset \neq C \subset \mathcal{X}$ be closed and convex, with normal cone operator N_{C}. The warped projection operator is proj$j_{C}^{K}=J_{N_{C}}^{K}=\left(K+N_{C}\right)^{-1} \circ K$.

Left: Warped projections onto $B(0 ; 1)$. Sets of points projecting onto p_{1}, p_{2}, and p_{3} for $K_{1}=I d$ and

$$
K_{2}:\left(\xi_{1}, \xi_{2}\right) \mapsto\left(\frac{\xi_{1}^{3}}{2}+\frac{\xi_{1}}{5}-\xi_{2}, \xi_{1}+\xi_{2}\right)
$$

Note that K_{2} is not a gradient, so this is not a Bregman projector.

The warped resolvent: Properties

- Sufficient conditions for ran $K \subset \operatorname{ran}(K+M)$ and $K+M$ is injective are given in (Büi/PLC, 2020).
- $J_{M}^{K}: D \rightarrow D$.
- Fix $J_{M}^{K}=D \cap$ zer M.
- $p=J_{M}^{K} x \Leftrightarrow(p, K x-K p) \in \operatorname{gra} M$.
- Suppose that M is monotone. Let $x \in D$, and set $y=J_{M}^{K} x$ and $y^{*}=K x-K y$. Then

$$
\operatorname{zer} M \subset\left\{z \in \mathcal{X} \mid\left\langle z-y, y^{*}\right\rangle \leqslant 0\right\} .
$$

- Suppose that M is monotone. Set $p=J_{M}^{K} x$ and $q=J_{M}^{K} y$. Then

$$
\langle p-q, K x-K y\rangle \geqslant\langle p-q, K p-K q\rangle .
$$

Warped proximal iterations in Hillbert spaces

PART 3:

Warped proximal iterations in Hilbert spaces

Finding zeros of monotone operators: Geometry

- M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.

Finding zeros of monotone operators: Geometry

- M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.
- Iterate

$$
\begin{aligned}
& \left(y_{n}, y_{n}^{*}\right) \in \operatorname{gra} M \\
& \lambda_{n} \in[\varepsilon, 2-\varepsilon] \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& x_{n+1}=x_{n}+\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle y_{n}^{*} /\left\|y_{n}^{*}\right\|^{2} \\
& \text { else } \\
& \left\lfloor x_{n+1}=x_{n} .\right.
\end{aligned}
$$

Finding zeros of monotone operators: Geometry

- M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.
- Iterate

$$
\begin{aligned}
& \left(y_{n}, y_{n}^{*}\right) \in \operatorname{gra} M \\
& \lambda_{n} \in[\varepsilon, 2-\varepsilon] \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& \left\lfloor\quad x_{n+1}=x_{n}+\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle y_{n}^{*} /\left\|y_{n}^{*}\right\|^{2}\right. \\
& \text { else } \\
& \left\lfloor x_{n+1}=x_{n} .\right.
\end{aligned}
$$

- Weak convergence to a point in Z if weak cluster points are in Z.
- The weak-to-strong convergence principle (Bauschke/PLC, 2001) gives strong convergence of a 2 half-spaces variant.
- How to choose $\left(y_{n}, y_{n}^{*}\right) \in \operatorname{gra} M$?

Finding zeros of monotone operators: Geometry

- M maximally monotone with $Z=\operatorname{zer} M \neq \emptyset$.
- Iterate

$$
\begin{aligned}
& y_{n}=J_{\gamma_{n} K_{n}}^{K_{n}} \widetilde{x}_{n} \\
& y_{n}^{*}=\gamma_{n}^{1}\left(K_{n} \widetilde{x}_{n}-K_{n} y_{n}\right) \\
& \lambda_{n} \in[\varepsilon, 2-\varepsilon] \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& \left\lfloor x_{n+1}=x_{n}+\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle y_{n}^{*} /\left\|y_{n}^{*}\right\|^{2}\right. \\
& \text { else } \\
& \left\lfloor x_{n+1}=x_{n} .\right.
\end{aligned}
$$

- Key: Move beyond Minty's parametrization of gra M and use a warped resolvent to pick $\left(y_{n}, y_{n}^{*}\right) \in \operatorname{gra} M$.
- Simply evaluate a warped resolvent at some point \widetilde{x}_{n}.

Convergence

Notation: $\left(y^{*}\right)^{\sharp}=y^{*} /\left\|y^{*}\right\|$ if $y^{*} \neq 0 ;=0$ otherwise.

Theorem

Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\left[\varepsilon,+\infty\left[\right.\right.$. For every $n \in \mathbb{N}$, let $\widetilde{x}_{n} \in \mathcal{X}$ and let $K_{n}: \mathcal{X} \rightarrow \mathcal{X}$ be a monotone operator such that ran $K_{n} \subset \operatorname{ran}\left(K_{n}+\gamma_{n} M\right)$ and $K_{n}+\gamma_{n} M$ is injective. Suppose that:

- $\tilde{x}_{n}-x_{n} \rightarrow 0$.
- $\left\langle\widetilde{x}_{n}-y_{n} \mid\left(K_{n} \widetilde{x}_{n}-K_{n} y_{n}\right)^{\sharp}\right\rangle \rightarrow 0 \Rightarrow\left\{\begin{array}{l}\widetilde{x}_{n}-y_{n} \rightharpoonup 0 \\ K_{n} \widetilde{x}_{n}-K_{n} y_{n} \rightarrow 0 .\end{array}\right.$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in Z.

Convergence

Notation: $\left(y^{*}\right)^{\sharp}=y^{*} /\left\|y^{*}\right\|$ if $y^{*} \neq 0 ;=0$ otherwise.

Theorem

Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\left[\varepsilon,+\infty\left[\right.\right.$. For every $n \in \mathbb{N}$, let $\widetilde{x}_{n} \in \mathcal{X}$ and let $K_{n}: \mathcal{X} \rightarrow \mathcal{X}$ be a monotone operator such that ran $K_{n} \subset \operatorname{ran}\left(K_{n}+\gamma_{n} M\right)$ and $K_{n}+\gamma_{n} M$ is injective. Suppose that:

- $\tilde{x}_{n}-x_{n} \rightarrow 0$.
- $\left\langle\widetilde{x}_{n}-y_{n} \mid\left(K_{n} \widetilde{x}_{n}-K_{n} y_{n}\right)^{\sharp}\right\rangle \rightarrow 0 \Rightarrow\left\{\begin{array}{l}\tilde{x}_{n}-y_{n} \rightharpoonup 0 \\ K_{n} \widetilde{x}_{n}-K_{n} y_{n} \rightarrow 0 .\end{array}\right.$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in Z.

- We also have a strongly convergent version.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.
- Modeling inertia: let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in \mathbb{R} and set $\widetilde{x}_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$.

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.
- Modeling inertia: let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in \mathbb{R} and set $\widetilde{x}_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$.
- More generally,

$$
\begin{gathered}
\qquad(\forall n \in \mathbb{N}) \quad \widetilde{x}_{n}=\sum_{j=0}^{n} \mu_{n, j} x_{j} . \\
\text { with } \sum_{j=0}^{n} \mu_{n, j}=1 \text { and }\left(1-\mu_{n, n}\right) x_{n}-\sum_{j=0}^{n-1} \mu_{n, j} x_{j} \rightarrow 0 .
\end{gathered}
$$

Choosing the evaluation points $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$

The auxiliary sequence $\left(\widetilde{x}_{n}\right)_{n \in \mathbb{N}}$ can serve several purposes:

- \widetilde{x}_{n} can model an additive perturbation of x_{n}, say $\widetilde{x}_{n}=x_{n}+e_{n}$, where we require only $\left\|e_{n}\right\| \rightarrow 0$.
- Modeling inertia: let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in \mathbb{R} and set $\widetilde{x}_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right)$.
- More generally,

$$
\begin{gathered}
\qquad(\forall n \in \mathbb{N}) \quad \widetilde{x}_{n}=\sum_{j=0}^{n} \mu_{n, j} x_{j} . \\
\text { with } \sum_{j=0}^{n} \mu_{n, j}=1 \text { and }\left(1-\mu_{n, n}\right) x_{n}-\sum_{j=0}^{n-1} \mu_{n, j} x_{j} \rightarrow 0 .
\end{gathered}
$$

- Nonlinear perturbations can also be considered. For instance, at iteration $n, \widetilde{x}_{n}=\operatorname{proj}_{C_{n}} x_{n}$ is an approximation to x_{n} from some suitable closed convex set $C_{n} \subset \mathcal{X}$.

Corollary 1

Corollary

Let $A: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ be maximally monotone, and let $B: \mathcal{X} \rightarrow \mathcal{X}$ be monotone and β-Lipschitzian, with zer $(A+B) \neq \emptyset$. Let $W_{n}: \mathcal{X} \rightarrow \mathcal{X}$ be α-strongly monotone and χ-Lipschitzian, and let $\gamma_{n} \in[\varepsilon,(\alpha-\varepsilon) / \beta]$, let $\lambda_{n} \in[\varepsilon, 2-\varepsilon]$, and let $\mathcal{X} \ni e_{n} \rightarrow 0$. Furthermore, let $m>0$ and let $\left(\mu_{n, j}\right)_{n \in \mathbb{N}, 0 \leqslant j \leqslant n}$ be bounded and satisfy

- For every $n>m$ and every integer $j \in[0, n-m-1], \mu_{n, j}=0$.
- For every $n \in \mathbb{N}, \sum_{j=0}^{n} \mu_{n, j}=1$.

Iterate

$$
\begin{aligned}
& \widetilde{x}_{n}=e_{n}+\sum_{j=0}^{n} \mu_{n, j} x_{j} \\
& v_{n}^{*}=W_{n} \widetilde{x}_{n}-\gamma_{n} B \widetilde{x}_{n} \\
& y_{n}=\left(W_{n}+\gamma_{n} A\right)^{-1} v_{n}^{*} \\
& y_{n}^{*}=\gamma_{n}^{-1}\left(v_{n}^{*}-W_{n} y_{n}\right)+B y_{n} \\
& \text { if }\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle<0 \\
& \left\lvert\, x_{n+1}=x_{n}+\frac{\lambda_{n}\left\langle y_{n}-x_{n} \mid y_{n}^{*}\right\rangle}{\left\|y_{n}^{*}\right\|^{2}} y_{n}^{*}\right. \\
& \text { else } x_{n+1}=x_{n} .
\end{aligned}
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in zer $(A+B)$.
Proof: $M=A+B$ and $K_{n}=W_{n}-\gamma_{n} B$.
Special case: Tseng's algorithm.

Corollary 2: Multivariate inclusions

- Problem: find $\left(x_{i}\right)_{i \in I} \in X_{i \in I} \mathcal{X}_{i}$ such that

$$
(\forall i \in I) \quad 0 \in A_{i} x_{i}+\sum_{j \in J} L_{j i}^{*}\left(\left(B_{j}+D_{j}\right)\left(\sum_{k \in I} L_{j k} x_{k}\right)\right)+C_{i} x_{i}
$$

- Warping: Apply the Theorem to

$$
\begin{aligned}
M:\left(\left(x_{i}\right)_{i \in I},\left(y_{j}\right)_{j \in J},\right. & \left.\left(v_{j}^{*}\right)_{j \in J}\right) \mapsto\left(X\left(A_{i} x_{i}+C_{i} x_{i}+\sum_{j \in J} L_{j i}^{*} v_{j}^{*}\right)\right. \\
& \left.\underset{j \in J}{X}\left(B_{j} y_{j}+D_{j} y_{j}-v_{j}^{*}\right), \underset{j \in J}{X}\left\{y_{j}-\sum_{i \in I} L_{j i} x_{i}\right\}\right)
\end{aligned}
$$

and $K_{n}:\left(x, y, v^{*}\right) \mapsto$

$$
\begin{aligned}
&\left(\left(\gamma_{i, n}^{-1} F_{i, n} x_{i}-C_{i} x_{i}-\sum_{j \in J} L_{j i}^{*} v_{j}^{*}\right)_{i \in I},\left(\tau_{j, n}^{-1} W_{j, n} y_{j}-D_{j} y_{j}+v_{j}^{*}\right)_{j \in J}\right. \\
&\left.\left(-y_{j}+v_{j}^{*}+\sum_{i \in I} L_{j i} x_{i}\right)_{j \in J}\right),
\end{aligned}
$$

where $F_{i, n}$ and $W_{j, n}$ are strongly monotone and Lipschitzian.

Corollary 2: Multivariate inclusions

```
for \(n=0,1, \ldots\)
    for every \(i \in I\)
    \(l_{i, n}^{*}=F_{i, n} \widetilde{x}_{i, n}-\gamma_{i, n} C_{i} \widetilde{x}_{i, n}-\gamma_{i, n} \sum_{j \in J} L_{j i}^{*} \widetilde{v}_{j, n}^{*}\)
    \(a_{i, n}=\left(F_{i, n}+\gamma_{i, n} A_{i}\right)^{-1}\left(l_{i, n}^{*}+\gamma_{i, n} s_{i}^{*}\right)\)
    \(o_{i, n}^{*}=\gamma_{i, n}^{-1}\left(l_{i, n}^{*}-F_{i, n} a_{i, n}\right)+C_{i} a_{i, n}\)
    for every \(j \in J\)
        \(t_{j, n}^{*}=W_{j, n} \widetilde{y}_{j, n}-\tau_{j, n} D_{j} \widetilde{y}_{j, n}+\tau_{j, n} \widetilde{v}_{j, n}^{*}\)
        \(b_{j, n}=\left(W_{j, n}+\tau_{j, n} B_{j}\right)^{-1} t_{j, n}^{*}\)
        \(f_{j, n}^{*}=\tau_{j, n}^{-1}\left(t_{j, n}^{*}-W_{j, n} b_{j, n}\right)+D_{j} b_{j, n}\)
        \(c_{j, n}=\sum_{i \in I} L_{j i} \widetilde{x}_{i, n}-\widetilde{y}_{j, n}+\widetilde{v}_{j, n}^{*}-r_{j}\)
    for every \(i \in I\)
        \(\left\lfloor a_{i, n}^{*}=o_{i, n}^{*}+\sum_{j \in J} L_{j i}^{*} c_{j, n}\right.\)
    for every \(j \in J\)
        \(b_{j, n}^{*}=f_{j, n}^{*}-c_{j, n}\)
        \(c_{j, n}^{*}=r_{j}+b_{j, n}-\sum_{i \in I} L_{j i} a_{i, n}\)
    \(\sigma_{n}=\sum_{i \in I}\left\|a_{i, n}^{*}\right\|^{2}+\sum_{j \in J}\left(\left\|b_{j, n}^{*}\right\|^{2}+\left\|c_{j, n}^{*}\right\|^{2}\right)\)
    \(\theta_{n}=\sum_{i \in I}\left\langle a_{i, n}-x_{i, n} \mid a_{i, n}^{*}\right\rangle+\sum_{j \in J}\left(\left\langle b_{j, n}-y_{j, n} \mid b_{j, n}^{*}\right\rangle+\left\langle c_{j, n}-v_{j, n}^{*} \mid c_{j, n}^{*}\right\rangle\right)\)
    if \(\theta_{n}<0\)
        \(\left\lfloor\rho_{n}=\lambda_{n} \theta_{n} / \sigma_{n}\right.\)
    else
    \(\rho_{n}=0\)
    for every \(i \in I\)
    \(x_{i, n+1}=x_{i, n}+\rho_{n} a_{i, n}^{*}\)
    for every \(j \in J\)
        \(y_{j, n+1}=y_{j, n}+\rho_{n} b_{j, n}^{*}\)
        \(v_{j, n+1}^{*}=v_{j, n}^{*}+\rho_{n} c_{j, n}^{*}\).
```


Further connections

- Primal-dual splitting.
- Consider the inclusion $0 \in A x+L^{*}(B(L x))$ and the associated Kuhn-Tucker operator

$$
M: \mathcal{X} \times \mathcal{Y} \rightarrow 2^{\mathcal{X} \times \mathcal{Y}}:\left(x, y^{*}\right) \mapsto\left(A x+L^{*} y^{*}\right) \times\left(-L x+B^{-1} y^{*}\right)
$$

- The cutting plane method of (Alotaibi/PLC/Shahzad, 2014) and (PLC/Eckstein, 2018) generate points $\left(a_{n}, a_{n}^{*}\right) \in \operatorname{gra} A$ and $\left(b_{n}, b_{n}^{*}\right) \in$ gra B. This implicitly provides

$$
\left(y_{n}, y_{n}^{*}\right)=\left(\left(a_{n}, b_{n}^{*}\right),\left(a_{n}^{*}+L^{*} b_{n}^{*},-L a_{n}+b_{n}\right)\right) \in \operatorname{gra} M
$$

to construct $H_{n} \supset \operatorname{zer} M$.

- The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is therefore an instance of the Theorem with

$$
K_{n}:\left(x, y^{*}\right) \mapsto\left(\gamma_{n}^{-1} x-L^{*} y^{*}, L x+\mu_{n} y^{*}\right)
$$

Further connections

- Primal-dual splitting.
- Consider the inclusion $0 \in A x+L^{*}(B(L x))$ and the associated Kuhn-Tucker operator

$$
M: \mathcal{X} \times \mathcal{Y} \rightarrow 2^{\mathcal{X} \times \mathcal{Y}}:\left(x, y^{*}\right) \mapsto\left(A x+L^{*} y^{*}\right) \times\left(-L x+B^{-1} y^{*}\right)
$$

- The cutting plane method of (Alotaibi/PLC/Shahzad, 2014) and (PLC/Eckstein, 2018) generate points $\left(a_{n}, a_{n}^{*}\right) \in \operatorname{gra} A$ and $\left(b_{n}, b_{n}^{*}\right) \in$ gra B. This implicitly provides

$$
\left(y_{n}, y_{n}^{*}\right)=\left(\left(a_{n}, b_{n}^{*}\right),\left(a_{n}^{*}+L^{*} b_{n}^{*},-L a_{n}+b_{n}\right)\right) \in \operatorname{gra} M
$$

to construct $H_{n} \supset \operatorname{zer} M$.

- The primal-dual framework of (Alotaibi/PLC/Shahzad, 2014) is therefore an instance of the Theorem with

$$
K_{n}:\left(x, y^{*}\right) \mapsto\left(\gamma_{n}^{-1} x-L^{*} y^{*}, L x+\mu_{n} y^{*}\right)
$$

- More generally, the block-iterative projective splitting method of (PLC/Eckstein, 2018) in an instance of the Theorem (Büi, 2021).

Warped proximal iterations with Bregman kernels

PART 4:

Warped proximal iterations with Bregman kernels

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ maximally monotone, and $f \in \Gamma_{0}(\mathcal{X})$ essentially smooth.
- $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} A \subset \operatorname{int} \operatorname{dom} B$ and B is single-valued on int dom B.
- $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})\left(\forall y^{*} \in A y\right)\left(\forall z^{*} \in A z\right)$

$$
\langle y-x, B y-B z\rangle \leqslant \kappa D_{f}(x, y)+\left\langle y-z, \delta_{1}\left(y^{*}-z^{*}\right)+\delta_{2}(B y-B z)\right\rangle .
$$

- The objective is to

$$
\text { find } x \in \mathscr{S}=(\operatorname{intdom} f) \cap \operatorname{zer}(A+B) \neq \emptyset
$$

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ maximally monotone, and $f \in \Gamma_{0}(\mathcal{X})$ essentially smooth.
- $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} A \subset \operatorname{int} \operatorname{dom} B$ and B is single-valued on int dom B.
- $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})\left(\forall y^{*} \in A y\right)\left(\forall z^{*} \in A z\right)$

$$
\langle y-x, B y-B z\rangle \leqslant \kappa D_{f}(x, y)+\left\langle y-z, \delta_{1}\left(y^{*}-z^{*}\right)+\delta_{2}(B y-B z)\right\rangle .
$$

- The objective is to

$$
\text { find } x \in \mathscr{S}=(\operatorname{intdom} f) \cap \operatorname{zer}(A+B) \neq \emptyset
$$

- Apply the warped proximal point algorithm

$$
x_{n+1}=J_{M}^{K_{n}} x_{n}
$$

to $M=A+B$ with kernel $K_{n}=\gamma_{n}^{-1} \nabla f_{n}-B$ for a suitable essentially smooth function f_{n}.

Bregman forward-backward splitting

- \mathcal{X} a reflexive real Banach space, $A: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ and $B: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ maximally monotone, and $f \in \Gamma_{0}(\mathcal{X})$ essentially smooth.
- $C=(\operatorname{int} \operatorname{dom} f) \cap \operatorname{dom} A \subset \operatorname{int} \operatorname{dom} B$ and B is single-valued on int dom B.
- $(\forall x \in C)(\forall y \in C)(\forall z \in \mathscr{S})\left(\forall y^{*} \in A y\right)\left(\forall z^{*} \in A z\right)$

$$
\langle y-x, B y-B z\rangle \leqslant \kappa D_{f}(x, y)+\left\langle y-z, \delta_{1}\left(y^{*}-z^{*}\right)+\delta_{2}(B y-B z)\right\rangle .
$$

- The objective is to

$$
\text { find } x \in \mathscr{S}=(\operatorname{intdom} f) \cap \operatorname{zer}(A+B) \neq \emptyset
$$

- Apply the warped proximal point algorithm

$$
x_{n+1}=J_{M}^{K_{n}} x_{n}
$$

to $M=A+B$ with kernel $K_{n}=\gamma_{n}^{-1} \nabla f_{n}-B$ for a suitable essentially smooth function f_{n}.

- We obtain the Bregman forward-backward splitting algorithm

$$
x_{n+1}=\left(\nabla f_{n}+\gamma_{n} A\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} B x_{n}\right) .
$$

Convergence

Theorem

"Under suitable assumptions,"

$$
x_{n+1}=\left(\nabla f_{n}+\gamma_{n} A\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} B x_{n}\right) \rightharpoonup x \in \mathscr{S} .
$$

- This result provides, for instance, the convergence of the basic Bregman forward-backward splitting method

$$
(\nabla f+\gamma A)^{-1}\left(\nabla f\left(x_{n}\right)-\gamma B x_{n}\right),
$$

which is new even in Euclidean spaces.

- It also allows us to recover and extend 4, so far unrelated, splitting frameworks.

$x_{n+1}=\left(\nabla f_{n}+\gamma_{n} A\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} B x_{n}\right)$: Instantiations

- The iteration $x_{n+1}=\left(\nabla f+\gamma_{n} A\right)^{-1}\left(\nabla f\left(x_{n}\right)\right)$ for finding a zero of A in a reflexive Banach space (Bauschke/Borwein/PLC, 2003).
- The iteration $x_{n+1}=\left(U_{n}+\gamma_{n} A\right)^{-1}\left(U_{n} x_{n}-\gamma_{n} B x_{n}\right)$ for finding a zero of $A+B$ in a Hilbert space, where U_{n} is a strongly positive Hermitian bounded linear operator (PLC/Vũ, 2014).
- The iteration

$$
x_{n+1}=(\nabla f+\gamma A)^{-1}\left(\nabla f\left(x_{n}\right)-\gamma B x_{n}\right)
$$

for finding a zero of $A+B$ in a Hilbert space, where f is real-valued and strongly convex (Renaud/Cohen, 1997).

- The iteration

$$
x_{n+1}=\left(\nabla f_{n}+\gamma_{n} \partial \varphi\right)^{-1}\left(\nabla f_{n}\left(x_{n}\right)-\gamma_{n} \nabla \psi\left(x_{n}\right)\right)
$$

for minimizing $\varphi+\psi$ in a reflexive Banach space (Nguyen, 2017; see also Bauschke/Bolte/Teboulle, 2017).

References

目 M. N. Bùi and PLC, Warped proximal iterations for monotone inclusions, J. Math. Anal. Appl., vol. 491, 2020.

目 M. N. Bǔi and PLC, Bregman forward-backward operator splitting, Set-Valued Var. Anal., vol. 29, 2021.
(R. M. N. Büi and PLC, Multivariate monotone inclusions in saddle form, Math. Oper. Res., to appear.
(R. M. Bùi and PLC, Analysis and numerical solution of a modular convex Nash equilibrium problem, arxiv, 2021.
(R. M. Büi, Projective splitting as a warped proximal algorithm, arxiv, 2021.
H. H. Bauschke and PLC, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. corrected printing, Springer, 2019.

Bregman distance

- $f \in \Gamma_{0}(\mathcal{X})$ is a Legendre function if it is both (Bauschke/Borwein/PLC, 2001):
- Essentially smooth: ∂f is both locally bounded and singlevalued on its domain.
- Essentially strictly convex: ∂f^{*} is locally bounded on its domain and f is strictly convex on every convex subset of $\operatorname{dom} \partial f$.
- Take $f \in \Gamma_{0}(\mathcal{X})$, Gâteaux differentiable on int $\operatorname{dom} f \neq \emptyset$. The associated Bregman distance is

$$
\begin{aligned}
D_{f}: \mathcal{X} \times \mathcal{X} & \rightarrow[0,+\infty] \\
(x, y) & \mapsto \begin{cases}f(x)-f(y)-\langle x-y, \nabla f(y)\rangle, & \text { if } y \in \operatorname{int} \operatorname{dom} f ; \\
+\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

