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Open problems and Conclusion

Definition

Examples

f : X → R+∞ strictly convex, smooth, (Bregman, 1967)

Bregman distance : Df(x, y) := f(x)− f(y)− 〈∇f(y), x − y〉
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Definition

Examples

Using specific choices of f, we obtain:

Kullback-Liebler divergence A distance between positive vectors, used in

information theory, statistics, portfolio selection,...

Itakura-Saito divergence A non-symmetric measure of difference

between probability distributions. Used to measure sound quality and

speech processing

Squared Euclidean (`2) distance for f(·) := (1/2)‖ · ‖2 we have
Df(x, y) = (1/2)‖x − y‖2
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What is the Bregman distance really measuring?

Df(x, y) = f(x)− f(y)− 〈∇f(y), x − y〉 =

(Fenchel− Young) = f(x) + f∗(∇f(y))− 〈∇f(y), x〉

Hence, Df(x, y) = 0 ⇐⇒ ∇f(x) = ∇f(y)

so Df measures distance between images of the gradient map!
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Definition
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If f is smooth, then

Df(x, y) ≥ 0 ∀ x, y ⇐⇒ f is convex

Due to a “Fenchel-Young” property for the graph of∇f:

f(x) + f∗(v)≥〈x, v〉 ∀ x ∈ X, v ∈ X∗

f(x) + f∗(v)=〈x, v〉 ⇐⇒ v = ∇f(x)

An analogous property holds for max-mon T!

7-27



8/27

Classical Bregman distance

Generalized Bregman distances

Open problems and Conclusion

Definition
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The familyH(T) Introduced in [RSB-Svaiter, 2002]

For T : X ⇒ X∗ max-mon, the Fitzpatrick familyH(T) consists of
functions h : X × X∗ → R+∞ convex and norm-weak∗ lsc, s.t.

h(x, v)≥〈x, v〉 ∀ x ∈ X, v ∈ X∗

h(x, v)=〈x, v〉 ⇐⇒ v ∈ Tx,

Fenchel-Young gives h(x, v) := f(x) + f∗(v) ∈ H(∂f)
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H(T) and the Fitzpatrick function

H(T) has a smallest and a biggest element. The smallest one is the
Fitzpatrick function1:

FT(x, v) := sup
(z,w)∈G(T)

〈z − x, v − w〉+ 〈x, v〉.

The biggest is σT = cl conv(π + δG(T)) and in fact

σT(x, v) := FT
∗(v, x),

where π := 〈·, ·〉.

1Fitzpatrick, 1988.
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The Fitzpatrick case
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Generalized Bregman envelopes

Definition for two maps

Applications

Extending the Bregman distance to a generic T

For T max-mon, x, y ∈ D(T), and h ∈ H(T), recall that

h(x, v)≥〈x, v〉 ∀ x ∈ X, v ∈ X∗

h(x, v)=〈x, v〉 ⇐⇒ v ∈ Tx,

The ”sharp” version D
],h
T (x, y) := supv∈Ty h(x, v)− 〈x, v〉

The ”flat” version D
[,h
T (x, y) := infv∈Ty h(x, v)− 〈x, v〉

Note that the distance depends on the choice of h!

10-27



10/27

Classical Bregman distance

Generalized Bregman distances

Open problems and Conclusion

Definition

The Fitzpatrick case

Examples

Generalized Bregman envelopes

Definition for two maps

Applications

Extending the Bregman distance to a generic T

For T max-mon, x, y ∈ D(T), and h ∈ H(T), recall that

h(x, v)≥〈x, v〉 ∀ x ∈ X, v ∈ X∗

h(x, v)=〈x, v〉 ⇐⇒ v ∈ Tx,

The ”sharp” version D
],h
T (x, y) := supv∈Ty h(x, v)− 〈x, v〉

The ”flat” version D
[,h
T (x, y) := infv∈Ty h(x, v)− 〈x, v〉

Note that the distance depends on the choice of h!

10-27



10/27

Classical Bregman distance

Generalized Bregman distances

Open problems and Conclusion

Definition

The Fitzpatrick case

Examples

Generalized Bregman envelopes

Definition for two maps

Applications

Extending the Bregman distance to a generic T

For T max-mon, x, y ∈ D(T), and h ∈ H(T), recall that

h(x, v)≥〈x, v〉 ∀ x ∈ X, v ∈ X∗

h(x, v)=〈x, v〉 ⇐⇒ v ∈ Tx,

The ”sharp” version D
],h
T (x, y) := supv∈Ty h(x, v)− 〈x, v〉

The ”flat” version D
[,h
T (x, y) := infv∈Ty h(x, v)− 〈x, v〉

Note that the distance depends on the choice of h!

10-27



10/27

Classical Bregman distance

Generalized Bregman distances

Open problems and Conclusion

Definition

The Fitzpatrick case

Examples

Generalized Bregman envelopes

Definition for two maps

Applications

Extending the Bregman distance to a generic T

For T max-mon, x, y ∈ D(T), and h ∈ H(T), recall that

h(x, v)≥〈x, v〉 ∀ x ∈ X, v ∈ X∗

h(x, v)=〈x, v〉 ⇐⇒ v ∈ Tx,

The ”sharp” version D
],h
T (x, y) := supv∈Ty h(x, v)− 〈x, v〉

The ”flat” version D
[,h
T (x, y) := infv∈Ty h(x, v)− 〈x, v〉

Note that the distance depends on the choice of h!

10-27



11/27

Classical Bregman distance

Generalized Bregman distances

Open problems and Conclusion

Definition

The Fitzpatrick case

Examples

Generalized Bregman envelopes
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Particular case 1: T = ∇f and h = hFY = f + f∗

If f convex and smooth, choose then

D
],hFY

∇f
(x, y) = D

[,hFY

∇f
(x, y) = Df(x, y),

for (x, y) 6∈ (dom f \ dom∇f)× dom∇f (region where coincides with

the classical Bregman distance)
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Particular case 2: T max-mon and h = FT

The “sharp” version D
],h
T (x, y) := supv∈Ty FT(x, v)− 〈x, v〉

The “flat” version D
[,h
T (x, y) := infv∈Ty FT(x, v)− 〈x, v〉

where FT(x, v) := sup(z,w)∈G(T)〈z − x, v − w〉+ 〈x, v〉.
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T = ∇f and h = F∇f
Example 1. Negative Burg entropy

f : R → R defined as

f(t) =

{
− log t, t > 0
+∞, c.c.

D
F∇f

∇f
(x, y) =


(√

x

y
− 1

)2

, x ≥ 0, y > 0

+∞, c.c.

Used F∇f from [Bauschke-McLaren-Sendov, 2005]
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Definition

The Fitzpatrick case

Examples
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Definition for two maps

Applications

T = ∇f and h = F∇f
Example 2: negative Boltzmann-Gibbs-Shannon/Kullback-Leibler/ entropy

f : R → R defined as f(t) =


t log t − t, t > 0

0 t = 0
+∞, c.c.

D
F∇f

∇f
(x, y) =



y

e
, x = 0, y ≥ 0

x

[
W(e x

y
) +

1

W(e x
y
)
− 2

]
, x > 0, y > 0

+∞, c.c.

W : R++ → R++ inverse of t → tet (Lambert-W function). Used

F∇f from [Bauschke-McLaren-Sendov, 2005]
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Examples

Generalized Bregman envelopes

Definition for two maps

Applications

Prox-envelopes: Moreau, Bregman, Fitzpatrick

The Moreau prox-envelope of a convex θ : R → R:

eMγ (θ)(x) := infw
{
θ(w) +

1

γ
‖w − x‖2

}
The Bregman prox-envelope:

eBγ(θ)(x) := infw
{
θ(w) +

1

γ
Df(w, x)

}
,

where Df(x, y) = DhFY

∇f (x, y) = D
(f+f∗)
∇f

(x, y) classical Bregman
distance
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A new family of Prox-envelopes

The Fitzpatrick prox-envelope:

eFγ(θ)(x) := infw
{
θ(w) +

1

γ
D
F∇f

∇f
(w, x)

}
or, in general, taking D

?,h
T ∈ {D],h

T ,D[,h
T }:

e
?,h,T
γ (θ)(x) := infw

{
θ(w) +

1

γ
D
?,h
T (w, x)

}
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Examples

Generalized Bregman envelopes

Definition for two maps

Applications

Asymptotic behaviour when γ ↓ 0:

θ convex, proper, lsc, y ∈ dom T ∩ dom θ

(dom T ∩ dom θ)× {y} ⊆ domD],h
T

ϕµ(·) := θ(·) + 1
µD

],h
T (·, y) is coercive for some µ ∈ R++.

Let sγ ∈ Argminϕγ . Then, as γ ↓ 0,

D],h
T (sγ , y) → 0.

If T is str. mon. over dom T ∩ dom θ,

sγ ⇀ y, e],h,Tγ (θ)(y) ↑ θ(y), θ(sγ) → θ(y),
1

γ
D],h

T (sγ , y) → 0.
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Definition for two maps

Applications

Bregman vs. Fitzpatrick envelope for θ(t) := |t − (1/2)| for
Kullback-Leibler f, T = log(·)

Bregman envelope color key Fitzpatrick envelope

h = f + f∗ h = F∇f

*Credit for the figures: Scott Lindstrom
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Applications

Bregman distance between two set-valued maps

T, S : X ⇒ X∗, T max-mon, S gral., hT ∈ H(T):

The “sharp” version

D
],hT
S (x, y) := supv∈Sy hT(x, v)− 〈x, v〉

The “flat” version

D
[,hT
S (x, y) := infv∈Sy hT(x, v)− 〈x, v〉
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Definition for two maps

Applications

A new measure of degree of overlap between Tx and Sy

T max-mon, h ∈ H(T), (x, y) ∈ D(T)× D(S) :

(a) If S loc. bded in intD(S), weakly-closed valued,

(x, y) 6∈ bdryD(S)× bdryD(T).

D
[,h
S (x, y) = 0 ⇐⇒ Sy ∩ Tx 6= ∅

(b) D
],h
S (x, y) = 0 ⇐⇒ Sy ⊂ Tx
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T max-mon, h ∈ H(T), u ∈ X∗: Find x s.t. u ∈ Tx (PT)
If (PT) difficult, find y sol. of the “better conditioned” problem

(PS) u ∈ Sy

For this y, find x s.t. D
],h
S (x, y) ≤ ε , then x solves

(PT,ε) u ∈ Te(ε, x),

where

Te(ε, x) := {v ∈ X∗ : 〈x − y, v − w〉 ≥ −ε ∀ (y,w) ∈ G(T)}

Note: D
],h
S (·, y) is convex and x solves an ε-approximation of (PT)!
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An enlargement of T induced by h ∈ H(T)

T max-mon, the enlargement Lh of T is

Lh(ε, x) := {v ∈ X∗ : h(x, v)− (x, v) ≤ ε}.

Consider the problem:

(PS) find x ∈ X s.t. 0 ∈ Sx + Tx.

GBDs define approximate solutions of (PS) using Lh
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Applications

T max-mon, S point-to-set, h ∈ H(T)

Consider the following statements:

(a) 0 ∈ Lh(ε, x) + Sx.

(b) D[,h
−S(x, x) ≤ ε.

Then (a) =⇒ (b) (necessary condition for optimality). Moreover, if

dom S is open and S is locally bounded with weakly closed images,

then the two statements are equivalent.
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Some Questions

(a) How can we use these new distances for obtaining more

efficient solution techniques for variational

inequalities/inclusion problems

(b) When T = S = ∂f, will the Fitzpatrick distances play a role
similar to that of the classical Bregman distances (Bregman

projections, convergence analysis, etc)?

(c) Can these distances be used to regularize/penalize in prox-like

iterations for variational inequalities?
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Conclusions

Convex functions appear naturally when studying maximally

monotone operators.

Some notions involving convex functions (such as classical

Bregman distances), can be extended to maximally monotone

operators, thus producing new tools both for convex analysis

and for maximal monotone theory.
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