
A Multidimensional Approach to
Non-Cooperative Strategic Games

Shipra Singh

Department of Mathematics,
Technion-Israel Institute of Technology,

Haifa, Israel

November 11, 2021

Shipra Singh
A Multidimensional Approach to Non-cooperative Strategic Games
1 / 29



Agenda

1. An Outlook on Equilibrium Problems of Non-Cooperative Strate-
gic Games

2. Multidimensional Generalized Nash Equilibrium Problem

3. Multidimensional Spot Electricity Market Model

4. Solving Method

Shipra Singh
A Multidimensional Approach to Non-cooperative Strategic Games
2 / 29



1. An Outlook on Equilibrium Problems of Non-Cooperative Strategic
Games

The study of an equilibrium problem was started by Cournot (1838),
involved with an oligopolistic economy. However, Nash (1950,1951)
introduced this concept formally. Subsequently, Arrow and Debreu
(1954) extended it to generalized Nash equilibrium problem which is
useful in mathematical modelings of various economic world prob-
lems, for instance, routing problems in communication networks, some
design problems arise in engineering applications, oligopolistic market
problems, environmental models and many more.

N−Person Non-Cooperative Game: Nash Equilibrium Problem

I There are N players; each called player w(w = 1, 2, . . . ,N),

I xw: vector of player w’s strategies,
I x−w: vector of strategies of all players except player w,
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I Kw: set of player w’s strategies,
I f w(xw, x−w): cost function/utility function/payoff function of the

player w.
I Player w’s optimization problem:

Min
xw

f w(xw, x−w)

such that xw ∈ Kw.

I A tuple of N players strategies y = (y1, y2, . . . , yw−1, yw, yw+1, . . . , yN)
is called a Nash equilibrium if for each w = 1, 2, . . . ,N, yw is an
optimal solution of the above-mentioned optimization problem.
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N−Person Non-Cooperative Game: Generalized Nash
Equilibrium Problem

I In the classical Nash game, the strategy set of each player is inde-
pendent of the other player’s strategies.

I We may consider a more general situation where the strategy set
of a player is dependent on the other player’s strategies through
some joint constraints.

I This may sound strange, since it is assumed that each player must
know the other player’s strategies to know his/her feasible strat-
egy set. In other words, it is supposed that the players choose their
strategies independently of each other, and then the constraints in-
volving those strategies must somehow be satisfied.

I However one may imagine, for example, that there is a ’regulator’
in the game who can impose taxes on players, thereby forcing
their actions to satisfy the constraints.
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I K: a nonempty closed and convex set, (just for an example)

K = {x = (x1, x2, . . . , xw−1, xw, xw+1, . . . , xN) :
N∑

w=1
xw < ρ},

I Kw(x−w): strategy set of the player w that is allowed to depend on
the rival players’ strategies vector x−w, (just for an example)

Kw(x−w) = {xw : (xw, x−w) ∈ K}.

I If we fix the rival players’ strategies x−w, the aim of the player w is
to choose a strategy xw ∈ Kw(x−w) which solves the optimization
problem:

Min
xw

f w(xw, x−w)

such that xw ∈ Kw(x−w).

I A tuple of N players strategies y = (y1, y2, . . . , yw−1, yw, yw+1, . . . , yN)
is called a Generalized Nash equilibrium if for each w = 1, 2, . . . ,N,
yw is an optimal solution of the above-mentioned optimization
problem with y−w = x−w.
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2. Multidimensional Generalized Nash Equilibrium Problem (MDGNEP)

Notation

I There are N players; each called player w(w = 1, 2, . . . ,N),
I s = (sα) ∈ Ωs◦,s1 : multidimensional parameter of evolution,

where α = 1, 2, . . . ,m and Ωs◦,s1 is a hyperparallelepiped with
the opposite diagonal points s◦ = (s1

◦, s
2
◦, . . . , s

m
◦ ) and

s1 = (s1
1, s

2
1, . . . , s

m
1 ) in Rm

+,
I Ωs◦,s1 : it is equivalent to the closed interval s◦ ≤ s ≤ s1 via the

product order on Rm
+,

I s = (s1, s2, . . . , sm): in noncooperative strategic games, it can be
motivated as; s1 as the given physical time, s2 as the availability
of players, s3 as the facility given to players, s4 as the time period
choice of players, s5 as the temporal effect (which concerns the
player’s strategy behavior that changes as time evolves), and so
on.
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I x = x(s) ∈ L2(Ωs◦,s1 ,Rn): vector of strategies of all players at the
given evolution parameter s, in other words strategy vector x is a
function of the parameter s,

I xw = xw(s) ∈ L2(Ωs◦,s1 ,Rnw): vector of strategies of the player
w,

I x−w = x−w(s) ∈ L2(Ωs◦,s1 ,Rn−nw): vector of strategies of all
players except the player w,

I n: n =
N∑

w=1
nw,

I x(s) = (xw(s), x−w(s)) ∈ L2(Ωs◦,s1 ,Rn): this is just another way
of writing the vector x(s) in L2(Ωs◦,s1 ,Rn), that is,

x(s) = (x1(s), x2(s), . . . , xw−1(s), xw(s), xw+1(s), . . . , xN(s)),
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I K: a nonempty, closed and convex subset of L2(Ωs◦,s1 ,Rn),
I Kw(x−w(s)): nonempty, closed and convex feasible set (strategy

set) in L2(Ωs◦,s1 ,Rnw) of the player w for any given strategy vector
x−w(s) of rival players,

I xw(s) ∈ Kw(x−w(s)): represents that the strategy vector x = x(s)
is feasible for all w = 1, 2, . . . ,N and for all s ∈ Ωs◦,s1 ,

I Fw(x(s)) =

∫
Γs◦,s1

f w
α (xw(s), x−w(s))dsα: total cost/loss function

that the player w incurs when the rival players have chosen the
strategy x−w(s).
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Glimpse of the Cost Function
Fw : L2(Ωs◦,s1 ,Rn) → R is defined in terms of the path-independent
curvilinear integral

Fw(x(s)) =

∫
Γs◦,s1

f w
α (xw(s), x−w(s))dsα,

where the summation over the repeated indices is assumed, Γs◦,s1 ⊂
Ωs◦,s1 is a piecewise smooth curve joining the opposite diagonal points
s◦ and s1 in Ωs◦,s1 , dsα = (ds1, ds2, . . . , dsm) is the differential element
of the multidimensional parameter of evolution sα, f w

α (xw(s), x−w(s))
is a real-valued continuously differentiable function, and
f w
α (xw(s), x−w(s))dsα, is a nonautonomous closed (completely inte-

grable) Lagrangian 1-form, that is, it satisfies

Dαf w
β = Dβf w

α , α, β = 1, 2, . . . ,m and α 6= β,

where Dα and Dβ are total derivative operators.
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Formulation of MDGNEP
To find a feasible strategy x = x(s) ∈ L2(Ωs◦,s1 ,Rn) such that for all
w = 1, 2, . . . ,N, we have xw(s) ∈ Kw(x−w(s)) and for all pw(s) ∈
Kw(x−w(s)), the following inequality holds

Fw(x(s)) = Fw(xw(s), x−w(s)) ≤ Fw(pw(s), x−w(s)).

Special Cases

I If the multidimensional parameter of evolution s = (sα) ∈ Ωs◦,s1

is a single or linear dimensional parameter of evolution, that is,
m = 1, then Ωs◦,s1 is simply the closed real interval [s◦, s1] in R+

(set of non-negative real numbers). Further, we consider Γs◦,s1 =
[0,T] ⊂ [s◦, s1] where T denotes an arbitrary time. Now, our for-
mulated (MDGNEP) reduces to the time-dependent generalized
Nash equilibrium problem, studied by Aussel, Gupta and Mehra
(2016).
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I If all the functions are independent of the multidimensional
parameter of evolution s then our formulated (MDGNEP)
reduces to the classical generalized Nash equilibrium problem.

Variational Inequality Formulation of MDGNEP

I The set-valued map A : K → 2K , given as

A(x(s)) =

N∏
w=1

Kw(x−w(s)) ∀ x(s) ∈ K.
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I A functional Z : K → R which is defined as

Z(x(s)) =

∫
Γs◦,s1

zα(x(s))dsα,

where zα is the real-valued continuously differentiable function
and zα(x(s))dsα is nonautonomous closed (completely integrable)
Lagrangian 1-form.

I ∂zα
∂x (y(s)) is the partial derivative of the function zα with respect

to the argument x(s) at the strategy vector y(s) ∈ K.
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I The multidimensional quasi-variational inequality problem is
defined as follows:
(MDQVIP) to find a vector y(s) ∈ K such that y(s) ∈ A(y(s))
and∫

Γs◦,s1

〈
∂zα
∂x

(y(s)), x(s)− y(s)
〉

dsα ≥ 0 ∀ x(s) ∈ A(y(s)).

I Assume that ∂zα
∂x (x(s)) =

(
∂f w
α

∂xw (x(s))
)N

w=1
for any x(s) ∈ K, and

for each w = 1, 2, . . . ,N and each x−w(s), the multidimensional
cost functional Fw is convex on K in the argument xw(s). Then,
y(s) ∈ K is a multidimensional generalized Nash equilibrium if
and only if it is a solution to (MDQVIP).
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Existence of Equilibrium
Let y(t) ∈ K be an arbitrary strategy vector, ∂zα

∂x (y(s)) =
(
∂f w
α

∂xw (y(s))
)N

w=1
,

and for each w = 1, 2, . . . ,N and a given y−w(s) the multidimensional
cost functional Fw be convex on K in the argument yw(s). Assume
that there exist a nonempty, closed and compact subset D ⊂ K and
ŷ(s) ∈ D such that

N∑
w=1

∫
Γs◦,s1

〈
∂f w
α

∂xw (ŷ(s)), ŷw(s)− xw(s)
〉

dsα < 0 ∀ x(s) ∈ K\D with ŷ(s) ∈ A(x(s)).

Then (MDQVIP) has a solution.

Shipra Singh
A Multidimensional Approach to Non-cooperative Strategic Games
15 / 29



3. Multidimensional Spot Electricity Market Model

Notation

I The electricity market is centralized by an independent system
operator (ISO) and has N nodes.

I Each node consists of only one generator/producer w ∈ M =
1, 2, . . . ,N and inelastic demand at each node is known,

I s = (s1, s2, . . . , sm): multidimensional parameter of evolution, in
electricity market problems, it can be interpreted as; s1 as the time
period for generating/delivery of electricity, s2 as the manpower,
s3 as the generator’s capacity of producing electricity, and so on,

I Dw(s) ∈ L2(Ωs◦,s1 ,R+): demand function,
I pw(s) ∈ L2(Ωs◦,s1 ,R+): quantity of generated electricity (produc-

tion function) by the generator w,
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I p−w(s) ∈ L2(Ωs◦,s1 ,R
N−1
+ ): quantity of generated electricity by

all generators except the generator w,
I Aw(s)pw(s) + Bw(s)(pw(s))2: true cost to generate the pw(s) units

of electricity by the generator w, where Aw(s), Bw(s) ∈ L2(Ωs◦,s1 ,R+)
are the true parameters values.

The ISO’s Problem

I aw(s), bw(s) ∈ L2(Ωs◦,s1 ,R+): bid parameters,
I aw(s)pw(s) + bw(s)(pw(s))2: bid generation cost (bid function)

provided by wth generator to ISO.
I ISO computes a production vector p(s) = (pw(s))w∈M to mini-

mize the total generation cost bidden by the all generators.
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ISO has to solve the following multidimensional variational problem:

minimizep(s)

N∑
w=1

∫
Γs◦,s1

(aw(s)pw(s) + bw(s)(pw(s))2, . . .
m times

,

aw(s)pw(s) + bw(s)(pw(s))2)dsα

subject to
{

pw(s) ≥ Dw(s), ∀ w ∈ M, a.e. on Γs◦,s1 . (1)

The solution set of multidimensional variational problem (1) is denoted
by SISO. For the further demonstration, we define a set for the given
p−w(s) as

Sw(p−w(s)) = {pw(s) ∈ L2(Ωs◦,s1 ,R+) : (pw(s), p−w(s)) ∈ SISO}.
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Figure: Spot Electricity Market Problem for three Generators
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The Generator’s Problem

I Every generator w bids a electricity generating cost aw(s)pw(s) +
bw(s)(pw(s))2 to the ISO and then generator w receives the best
quantity of electricity pw(s) from the ISO.

I aw(s)+2bw(s)pw(s): market price of the generating electricity for
the generator w (marginal price),

I (aw(s)+2bw(s)pw(s))pw(s): revenue received by the generator w,
I (aw(s)pw(s) + 2bw(s)(pw(s))2)− (Aw(s)pw(s) + Bw(s)(pw(s))2):

profit of the generator w.
I We note here that the production vector p(s) is supplied by the

ISO problem (1).
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The multidimensional spot electricity market problem with each
generator w, is to solve the following multidimensional bilevel varia-
tional problem:

maximizeaw(s),bw(s),p(s)

∫
Γs◦,s1

([(aw(s)pw(s) + 2bw(s)(pw(s))2)

−(Aw(s)pw(s) + Bw(s)(pw(s))2)],

. . .
m times

, [(aw(s)pw(s) + 2bw(s)(pw(s))2)

−(Aw(s)pw(s) + Bw(s)(pw(s))2)])dsα

subject to


aw(s) ∈ [Ew(s),Fw(s)], a.e. on Γs◦,s1 ,

bw(s) ∈ [Pw(s),Qw(s)], a.e. on Γs◦,s1 ,

p(s) = (pw(s))w∈M = (pw(s), p−w(s)) ∈ SISO, a.e. on Γs◦,s1 ,
(2)

where 0 ≤ Ew(s) ≤ Fw(s) and 0 ≤ Pw(s) ≤ Qw(s) define the feasible
range for the bids (aw(s), bw(s)).
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An equilibrium of the generator’s problem (2) is a multidimensional
generalized Nash equilibria in the sense of our formulated (MDGNEP),
if we follow the following notation

x(s) = (a(s), b(s), p(s)), xw(s) = (aw(s), bw(s), pw(s)),

x−w(s) = (a−w(s), b−w(s), p−w(s)),

f w
α (x(s)) = (f w

1 (x(s)), f w
2 (x(s)), . . . , f w

m (x(s)))

= ([(Aw(s)pw(s)+Bw(s)(pw(s))2)−(aw(s)pw(s)+2bw(s)(pw(s))2)],

. . .
m times

, [(Aw(s)pw(s) + Bw(s)(pw(s))2)

−(aw(s)pw(s) + 2bw(s)(pw(s))2)]),

Kw = {(aw(s), bw(s)) : Ew(s) ≤ aw(s) ≤ Fw(s) and

Pw(s) ≤ bw(s) ≤ Qw(s), a.e., on Γs◦,s1},

Kw(x−w(s)) = Kw × Sw(p−w(s)).
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4. Solving Method

System of Projected Dynamical System
We consider the following system of projected dynamical system (SPDS)
for α = 1, 2, . . . ,m on the set-valued map A, where x(.) ∈ A(x(.)):

dx(·, τ)

dτ
= ΠA(x(·,τ))

(
x(·, τ),−∂zα

∂x
(x(·, τ))

)
,

x(·, 0) = x◦(·) ∈ A(x(·)),
(3)

where ΠA(x(·)) : L2(Ωs◦,s1 ,Rn)×L2(Ωs◦,s1 ,Rn)→ L2(Ωs◦,s1 ,Rn) is the
operator defined by

ΠA(x(·))(x(.), v(.)) := lim
δ→0+

projA(x(·))(x(·) + δv(·))− x(·)
δ

,

for all x(.) ∈ A(x(·)) and v(.) ∈ L2(Ωs◦,s1 ,Rn).
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Formulation of SPDS as MDGNEP

I A point y(·) ∈ K is called a critical point of (SPDS) if y(.) ∈
A(y(.)) and for α = 1, 2, . . . ,m

ΠA(y(·))

(
y(·),−∂zα

∂x
(y(·))

)
= 0.

I Assume that ∂zα
∂x (x(.)) =

(
∂f w
α

∂xw (x(.))
)N

w=1
for any x(.) ∈ K, and

for each w = 1, 2, . . . ,N and each x−w(.), the multidimensional
cost functional Fw is convex on K in the argument xw(.). Then,
y(.) ∈ K is a multidimensional generalized Nash equilibrium if
and only if it is a critical point of (SPDS).
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Numerical Experiments

I We solve the formulated multidimensional spot electricity market
model for three generators, w = 1, 2, 3, see Figure 1.

I Let m = 2 and Ωs◦,s1 = Ω(1,2),(5,10) be the rectangle determined
by the opposite diagonal points (1, 2) and (5, 10) in R2

+.
I Γ(1,2),(5,10) be the piecewise smooth curve joining the opposite

diagonal points (1, 2) and (5, 10) of Ω(1,2),(5,10).
I We consider the parameter s = (sα) = (t, c) ∈ Ω(1,2),(5,10) where

t represents the given time period for producing electricity and c
denotes the given generator’s capacity of producing electricity.

I The constraint set of the ISO problem is given as

KISO = {p(s) ∈ L2(Ω(1,2),(5,10),R3
+) : pw(s) ≥ Dw(s) ∀w = 1, 2, 3

and a.e. on Γ(1,2),(5,10)}.
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I We discretize the Ω(1,2),(5,10) as by selecting points si = (ti, ci) ∈{( k
4 ,

k
2

)
: k ∈ {4, 5, 6, . . . , 20}

}
.

I we get the following (SPDS) at each point si: for each w = 1, 2, 3,
we have to find a point y(si) = (a(si), b(si), p(si)) ∈ K subset of
L2(Ω(1,2),(5,10),R3+3+3

+ ) such that yw(si) = (aw(si), bw(si), pw(si)) ∈
Kw(si)×Sw(p−w(si)) and for all (âw(si), b̂w(si), pw(si)) ∈ Kw(si)×
Sw(p−w(si)), the following holds∫

Γ(1,2),(5,10)

[pw(si)(aw(si)−âw(si))+2(pw(si))
2(bw(si)−b̂w(si))](dt+dc) ≥ 0.

I After a simple calculation, we find the critical points of each
(SPDS) for each si. We then interpolate the points and finally
get the approximate curves of equilibria of multidimensional spot
electricity market problem (2). They are displayed in Figure 2.
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Figure: Curves of Equilibria of Multidimensional Spot Electricity Market
Problem
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A Comparative Study

Generator(w) Max. Profit (MDGNEP) Max. Profit (DGNEP)
1 381312 4762.6667
2 3041568 37770.6667
3 10255248 127104

Note: For calculating the maximize profit of each generator in the
case of (MDGNEP), we consider the piecewise smooth curve
Γ(1,2)(5,10) as (t, 2t), that is c = 2t, for 1 ≤ t ≤ 5.
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THANK YOU
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