LOCAL MONOTONICITY OF SUBGRADIENT MAPPINGS

Terry Rockafellar
University of Washington, Seattle

Workshop on Optimization and Operator Theory
The Technion, Haifa, Israel (virtual)
15–17 October 2021
Global Monotonicity of Set-Valued Mappings

\(\mathcal{H} = \) Hilbert space, \(T : \mathcal{H} \ni \mathcal{H} \) set-valued mapping, operator

\[
\text{gph } T = \{(x, y) \mid y \in T(x)\}, \quad \text{dom } T = \{x \mid T(x) \neq \emptyset\}
\]

Monotonicity: \(y_0 \in T(x_0), \ y_1 \in T(x_1) \implies \langle x_1 - x_0, y_1 - y_0 \rangle \geq 0 \)

Maximality: \(\not\exists \) monotone \(T' \) with \(\text{gph } T' \) strictly \(\supset \) \(\text{gph } T \)

Basic problem to solve for a given \(T \) mapping

Find \(x \) such that \(0 \in T(x) \)

Resolvants: \((I + cT)^{-1}, \ c > 0 \) nonexpansive from monotonicity

Proximal point algorithm: \(x^{k+1} = (I + c_k T)^{-1}(x^k), \ c_k \uparrow c_\infty \)

under max mononicity, \(\{x^k\} \) converges to a solution (if \(\exists \))
function $f : \mathcal{H} \to (-\infty, \infty]$, lower semicontinuous, $\not\equiv \infty$

Regular ("Fréchet") subgradients: $y \in \hat{\partial} f(x)$
$$f(x') \geq f(x) + \langle y, x' - x \rangle + o(||x' - x||)$$

General ("limiting") subgradients: $y \in \partial f(x)$
$$\exists \{x^{\nu}\}, \{y^{\nu}\}, \text{with } y^{\nu} \in \hat{\partial} f(x^{\nu}), \text{such that}$$
$$y^{\nu} \xrightarrow{w} y, \quad x^{\nu} \to x, \quad f(x^{\nu}) \to f(x) < \infty$$

Monotonicity characterization of the mapping $\partial f : \mathcal{H} \Rightarrow \mathcal{H}$
$$\partial f \text{ max monotone } \iff \partial f \text{ monotone } \iff f \text{ convex}$$

Proximal point algorithm: for solving $0 \in \partial f(\bar{x})$ (optimization)
$$x^{k+1} = (I + c_k \partial f)^{-1}(x^k) \iff x^{k+1} = \arg\min_x f^k$$
for the function $f^k(x) := f(x) + \frac{1}{2c_k}||x - x^k||^2$

application to dual problem underlies ALM in convex programming
Localization for Nonconvex Functions?

Local monotonicity: of $T: \mathcal{H} \to \mathcal{H}$ at $(x^*, y^*) \in \text{gph} \ T$

the monotonicity holds in neighborhood $\mathcal{X} \times \mathcal{Y}$ of (x^*, y^*)

likewise defined: local max monotonicity

Localized algorithm: for finding \bar{x} with $0 \in T(\bar{x})$

proximal point iterations succeed if started near a solution!

Local minimization: $0 \in \partial f(\bar{x})$ is necessary for local optimality

find such \bar{x} by local execution of the proximal point algorithm?

x^{k+1} = a “subcritical point” of f^k: $0 \in \partial f^k(x^{k+1})$

Challenges

- articulating the algorithm with local minimization steps
- implications for f of merely local monotonicity of ∂f
- trouble from the weak convergence in the definition of ∂f

\implies henceforth assume the Hilbert space \mathcal{H} is finite-dimensional
Local Monotonicity From Variational Convexity

function $f : \mathcal{H} \to (-\infty, \infty]$, lower semicontinuous, $\not\equiv \infty$

for simplicity, let $f(x)$ depend continuously on $(x, y) \in \text{gph} \partial f$

Variational convexity: of f at x^* for $y^* \in \partial f(x^*)$

\exists open convex neighborhood $\mathcal{X} \times \mathcal{Y}$ of (x^*, y^*) and some convex lsc function \hat{f} on \mathcal{X} such that, for $(x, y) \in \mathcal{X} \times \mathcal{Y}$,

$(x, y) \in \text{gph} \partial f \iff (x, y) \in \text{gph} \partial \hat{f} \implies f(x) = \hat{f}(x)$

Consequences of variational convexity

(a) the mapping $T = \partial f$ is maximal monotone in $\mathcal{X} \times \mathcal{Y}$
(b) $f(x') \geq f(x) + \langle y, x' - x \rangle$ for all $x' \in \mathcal{X}$, when $(x, y) \in \text{gph} \partial f$ in $\mathcal{X} \times \mathcal{Y}$

moreover equivalence holds when $y^* \in \hat{\partial f}(x^*)$
Strong Monotonicity and Variational Strong Convexity

Strong monotonicity: of $T : \mathcal{H} \rightarrow \mathcal{H}$ in $\mathcal{X} \times \mathcal{Y}$ at level $s > 0$

$$\langle x_1 - x_0, y_1 - y_0 \rangle \geq s \|x_1 - x_0\|^2$$
for all $(x_i, y_i) \in [\mathcal{X} \times \mathcal{Y}] \cap \text{gph } T$

Maximal: if $\text{gph } T$ can’t be enlarged in $\mathcal{X} \times \mathcal{Y}$ with this maintained

Variational strong convexity: of f at level $s > 0$

same as earlier except with $\hat{\mathcal{f}}$ strongly convex at level s on \mathcal{X}

this corresponds to $f(x) - \frac{s}{2} \|x\|^2$ being convex on \mathcal{X}

Consequences of variational strong convexity

(a) $T = \partial f$ is strongly maximal monotone at level s in $X \times Y$

(b) $f(x') \geq f(x) + \langle y, x' - x \rangle + \frac{s}{2} \|x' - x\|^2$ for all $x' \in X$, when $(x, y) \in \text{gph } \partial f$ in $X \times Y$

moreover equivalence holds when $y^* \in \hat{\partial f}(x^*)$
Variational Convexity Versus Convexity

Local convexity from variational convexity?

Variational convexity of f for $\mathcal{X} \times \mathcal{Y} \implies$ convexity of f on \mathcal{X}
when $\mathcal{Y} = \mathcal{H}$ or when $f = f_0 + \delta_C$ for C closed convex, $f \in C^1$

Example 1:

$f(x) = \max\{1 - e^x, 1 - e^{-x}\}$ for $x \in \mathbb{R}$

Graph = two “concave wings” rising from the origin of $\mathbb{R} \times \mathbb{R}$

f is variationally convex at $x^* = 0$ for $y^* = 0$

Example 2:

$f(x_1, x_2) = x_2 + \delta_P(x_1, x_2), \quad P = \{(x_1, x_2) \mid x_2 = x_1^2\}$

Graph = a “tilted parabola” floating in $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$

f is variationally strongly convex everywhere, yet $\text{dom } f$ nonconvex

downloads: sites.washington.edu/~rtr/mypage.html