LOCAL MONOTONICITY OF SUBGRADIENT MAPPINGS

Terry Rockafellar University of Washington, Seattle

Workshop on Optimization and Operator Theory The Technion, Haifa, Israel (virtual) 15–17 October 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Global Monotonicity of Set-Valued Mappings

 $\mathcal{H} = \mathsf{Hilbert space}, \quad \mathcal{T} : \mathcal{H} \rightrightarrows \mathcal{H} \mathsf{ set-valued mapping, operator}$

 $\operatorname{gph} T = \{(x, y) \mid y \in T(x)\}, \quad \operatorname{dom} T = \{x \mid T(x) \neq \emptyset\}$

 $\begin{array}{lll} \text{Monotonicity:} & y_0 \in \mathcal{T}(x_0), \ y_1 \in \mathcal{T}(x_1) \Longrightarrow \langle x_1 - x_0, y_1 - y_0 \rangle \geq 0 \\ \text{Maximality:} & \nexists \text{ monotone } \mathcal{T}' \text{ with } \operatorname{gph} \mathcal{T}' \text{ strictly } \supset \operatorname{gph} \mathcal{T} \end{array}$

Basic problem to solve for a given T mapping

Find x such that $0 \in T(x)$

Resolvants: $(I + cT)^{-1}$, c > 0 <u>nonexpansive</u> from monotonicity

Proximal point algorithm: $x^{k+1} = (I + c_k T)^{-1}(x^k)$, $c_k \nearrow c_{\infty}$ under max mononicity, $\{x^k\}$ converges to a solution (if \exists)

Subgradients Beyond Convex Analysis

function $f:\mathcal{H}
ightarrow(-\infty,\infty]$, lower semicontinuous, $ot\equiv\infty$

Regular ("Frêchet") subgradients: $y \in \partial f(x)$ $f(x') \ge f(x) + \langle y, x' - x \rangle + o(||x' - x||)$ General ("limiting") subgradients: $y \in \partial f(x)$ $\exists \{x^{\nu}\}, \{y^{\nu}\}, \text{ with } y^{\nu} \in \partial f(x^{\nu}), \text{ such that}$ $y^{\nu} \overrightarrow{w} y, \quad x^{\nu} \to x, \quad f(x^{\nu}) \to f(x) < \infty$ Monotonicity characterization of the mapping $\partial f : \mathcal{H} \Rightarrow \mathcal{H}$ $\partial f \text{ max monotone} \iff \partial f \text{ monotone} \iff f \text{ convex}$

Proximal point algorithm: for solving $0 \in \partial f(\bar{x})$ (optimization)

$$x^{k+1} = (I + c_k \partial f)^{-1}(x^k) \iff x^{k+1} = \operatorname{argmin}_x f^k$$

for the function $f^k(x) := f(x) + \frac{1}{2c_k} ||x - x^k||^2$

application to dual problem underlies ALM in convex programming

Localization for Nonconvex Functions?

Local monotonicity: of $T : \mathcal{H} \rightrightarrows \mathcal{H}$ at $(x^*, y^*) \in \operatorname{gph} T$ the monotonicity holds in neighborhood $\mathcal{X} \times \mathcal{Y}$ of (x^*, y^*) likewise defined: local <u>max</u> monotonicity Localized algorithm: for finding \bar{x} with $0 \in T(\bar{x})$ proximal point iterations succeed if started near a solution! Local minimization: $0 \in \partial f(\bar{x})$ is <u>necessary</u> for <u>local</u> optimality find such \bar{x} by <u>local</u> execution of the proximal point algorithm? $x^{k+1} = a$ "subcritical point" of f^k : $0 \in \partial f^k(x^{k+1})$

Challenges

- articulating the algorithm with local <u>minimization</u> steps
- implications for f of merely <u>local</u> monotonicity of ∂f ?????
- trouble from the <u>weak</u> convergence in the definition of ∂f

 \implies henceforth assume the Hilbert space $\mathcal H$ is <u>finite-dimensional</u>

Local Monotonicity From Variational Convexity

function $f : \mathcal{H} \to (-\infty, \infty]$, lower semicontinuous, $\not\equiv \infty$ for simplicity, let f(x) depend continuously on $(x, y) \in \operatorname{gph} \partial f$

Variational convexity: of f at x^* for $y^* \in \partial f(x^*)$

∃ open convex neighborhood $\mathcal{X} \times \mathcal{Y}$ of (x^*, y^*) and some **convex** lsc function \widehat{f} on \mathcal{X} such that, for $(x, y) \in \mathcal{X} \times \mathcal{Y}$,

$$(x,y) \in \operatorname{gph} \partial f \iff (x,y) \in \operatorname{gph} \partial \widehat{f} \implies f(x) = \widehat{f}(x)$$

Consequences of variational convexity

(a) the mapping $T = \partial f$ is maximal monotone in $\mathcal{X} \times \mathcal{Y}$ (b) $f(x') \ge f(x) + \langle y, x' - x \rangle$ for all $x' \in \mathcal{X}$, when $(x, y) \in \mathrm{gph} \, \partial f$ in $\mathcal{X} \times \mathcal{Y}$

moreover **equivalence** holds when $y^* \in \partial f(x^*)$

Strong Monotonicity and Variational Strong Convexity

Strong monotonicity: of $T : \mathcal{H} \rightrightarrows \mathcal{H}$ in $\mathcal{X} \times \mathcal{Y}$ at level s > 0 $\langle x_1 - x_0, y_1 - y_0 \rangle \ge s ||x_1 - x_0||^2$ for all $(x_i, y_i) \in [\mathcal{X} \times \mathcal{Y}] \cap \text{gph } T$ maximal: if gph T can't be enlarged in $\mathcal{X} \times \mathcal{Y}$ with this maintained

Variational strong convexity: of f at level s > 0same as earlier except with \hat{f} strongly convex at level s on \mathcal{X} this corresponds to $f(x) - \frac{s}{2}||x||^2$ being convex on \mathcal{X}

Consequences of variational strong convexity

(a) $T = \partial f$ is strongly maximal monotone at level s in $X \times Y$ (b) $f(x') \ge f(x) + \langle y, x' - x \rangle + \frac{s}{2} ||x' - x||^2$ for all $x' \in X$, when $(x, y) \in \operatorname{gph} \partial f$ in $X \times Y$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

moreover **equivalence** holds when $y^* \in \partial f(x^*)$

Variational Convexity Versus Convexity

Local convexity from variational convexity?

variational convexity of f for $\mathcal{X} \times \mathcal{Y} \implies$ convexity of f on \mathcal{X} when $\mathcal{Y} = \mathcal{H}$ or when $f = f_0 + \delta_C$ for C closed convex, $f \in C^1$

Example 1: $f(x) = \max\{1 - e^x, 1 - e^{-x}\}$ for $x \in \mathbb{R}$ graph = two "concave wings" rising from the origin of $\mathbb{R} \times \mathbb{R}$

f is variationally convex at $x^* = 0$ for $y^* = 0$

Example 2: $f(x_1, x_2) = x_2 + \delta_P(x_1, x_2), P = \{(x_1, x_2) \mid x_2 = x_1^2\}$ graph = a "tilted parabola" floating in $R \times R \times R$

f is variationally strongly convex everywhere, yet dom f nonconvex

References

[1] R.T. Rockafellar (2019) "Variational convexity and local monotonicity of subgradient mappings," *Vietnam Journal of Mathematics* (issue in honor of A.D. loffe's 80th birthday)

[2] R.T. Rockafellar (2019) "Progressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicity," *Set-valued and Variational Analysis*

[3] R.T. Rockafellar (2020) "Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality," *Mathematical Programming*

 [4] R.T. Rockafellar (2021) "Convergence of augmented Lagrangian methods in extensions beyond nonlinear programming," Mathematical Programming

downloads: sites.washington.edu/~rtr/mypage.html