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Global Monotonicity of Set-Valued Mappings

H = Hilbert space, T :H = H set-valued mapping, operator J

gph T ={(x,y)|y € T(x)}, dom T = {x|T(x)#0}

Monotomcuty. ¥ € T(x0), y1 € T(x1) = (x1 —x0,y1 —Yo0) > 0
Maximality: 74 monotone T’ with gph T strictly D gph T

Basic problem to solve for a given T mapping
Find x such that 0 € T(x)

Resolvants: (/+cT)™!, ¢ >0 nonexpansive from monotonicity

Proximal point algorithm: x**1 = (/ 4+ ¢, T)7}(x¥), cx /e
under max mononicity, {x¥} converges to a solution (if 3)



Subgradients Beyond Convex Analysis

function f : H — (—o0, 00|, lower semicontinuous, # co

Regular (“Fréchet”) subgradients: y € 0f(x)
F(x') = F(x) + (X' — x) + oI — x]])
General (“limiting”) subgradients: y € 0f(x)
3{x"}, {y*}, with y” € f(x"), such that
YWy, x¥—=x f(x")—=f(x) <o
Monotonicity characterization of the mapping Of : H = H

Of max monotone <= Of monotone <= f convex

Proximal point algorithm: for solving 0 € 9f(x) (optimization)
XKL = (I + ¢ 0f)1(xK) = x**1 = argmin, fk
for the function f*(x) := f(x) + ﬁHX ek

application to dual problem underlies ALM in convex programming



Localization for Nonconvex Functions?

Local monotonicity: of T:H = H at (x*,y*) €gph T
the monotonicity holds in neighborhood X x ) of (x*, y*)
likewise defined: local max monotonicity

Localized algorithm: for finding X with 0 € T(X)
proximal point iterations succeed if started near a solution!
Local minimization: 0 € Jf(X) is necessary for local optimality
find such x by local execution of the proximal point algorithm?
k+1 — 3 “subcritical point” of fk: 0 € afk(xk*1)

X

Challenges

e articulating the algorithm with local minimization steps

e trouble from the weak convergence in the definition of Of

= henceforth assume the Hilbert space H is finite-dimensional




Local Monotonicity From Variational Convexity

function f : H — (—o0, 00|, lower semicontinuous, # co
for simplicity, let f(x) depend continuously on (x,y) € gph Of

Variational convexity: of f at x* for y* € 0f(x")
3 open convex neighborhood X' x ) of (x*, y*) and some
convex Isc function f on X such that, for (x,y) € X x Y,

(x,y) €gphdf <= (x,y)€gphdf = f(x)="7(x)

Consequences of variational convexity

(a) the mapping T = Jf is maximal monotone in X' x )
(b) f(x') > f(x)+ (y,x — x) forall X' € X,
when (x,y) € gphOf in X x Y

moreover equivalence holds when y* & 5f(x*)



Strong Monotonicity and Variational Strong Convexity

Strong monotonicity: of T:H = H in X x Y at level s >0
(x1 — X0, y1 — Yo) > s||x1 — xo||? for all (x;,y;) € [X¥ x Y]Ngph T
maximal: if gph T can’t be enlarged in X x ) with this maintained
Variational strong convexity: of f at level s >0

same as earlier except with f strongly convex at level s on X
this corresponds to f(x) — 5||x||? being convex on X

Consequences of variational strong convexity

(a) T = Of is strongly maximal monotone at level s in X x Y
(b) f(X')>f(x)+ (y,x' —x) + 5[|x' — x|]? for all X' € X,
when (x,y) € gphdf in X x Y

moreover equivalence holds when y* € Of (x*)



Variational Convexity Versus Convexity

Local convexity from variational convexity?

variational convexity of f for X x JJ = convexity of f on X
when ) = # or when f = fy + d¢ for C closed convex, f € C!

Example 1: f(x) = max{l1 —e*,1—e ¥} forx € R
graph = two “concave wings” rising from the origin of R x R

f is variationally convex at x* =0 for y* =0 J

Example 2: f(x1,x2) = x2+0p(x1,x2), P = {(X]_,XQ) ‘ Xo = x12}
graph = a "tilted parabola” floatingin R x R x R

f is variationally strongly convex everywhere, yet dom f nonconvexJ
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