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Objectives of the Presentation

Objectives

(a) We study equilibrium problems for which the bifunction is pseudo-monotone
in reflexive Banach spaces.

(b) We propose an extra-gradient like method with self-adaptive step sizes.

(c) Obtain weak convergence of the sequence of iterates.

(d) Application to GNEP in differential games.

(e) Numerical illustrations given to support the theoretical analysis.
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Introduction

Introduction

E = reflexive Banach space; C 6= ∅, C = closed, convex subset of E ;
g : E × E → R such that g(x , x) = 0,∀x ∈ E . In this talk, we consider the
Equilibrium Problem (shortly EP):

find z∗ ∈ C such that g(z∗, y) ≥ 0, ∀ y ∈ C . (1)

We denote the set of solutions of the EP (1) by EP(g).

Convex minimization, Fixed point problems, Complementarity problems, Nash
equilibria problem in noncooperative games, Variational Inequality Problems,
Vector Minimization Problems are special cases of EP (1).

Iusem and Sosa (2003) showed that the generalization given by the EP (1)
formulation above is genuine, in the sense that there are EP problems which do
not fit the format of such particular cases mentioned above.
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Introduction

Definition

A bifunction g : E × E → R is said to be

monotone if g(x , y) + g(y , x) ≤ 0, ∀x , y ∈ E ;

pseudo-monotone if g(x , y) ≥ 0 =⇒ g(y , x) ≤ 0, ∀x , y ∈ E .

Definition

The bifunction g : E × E → R is said to satisfy a Lipschitz-type condition (see
Mastroeni 2003) if there exist two positive constants c1, c2 such that

g(x , y) + g(y , z) ≥ g(x , z)− c1‖x − y‖2 − c2‖y − z‖2, ∀x , y , z ∈ E . (2)
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Introduction

Definition

Bregman (1967) Given f : E → R, a strictly convex and Gâteaux differentiable
function. The Bregman distance with respect to f is the function Df : domf×
int(domf )→ [0,+∞) defined by

Df (u, v) = f (u)− f (v)− 〈∇f (v), u − v〉 ∀u ∈ domf , v ∈ int(domf ). (3)

The Bregman distance does not satisfy all the properties of metric. The
symmetric and triangular inequality properties do not hold but it has the following
important properties which follows directly from its definition:

(i) Df (u, v) = 0 if and only if u = v ;

(ii) (three point identity): for any z ∈ domf and u, v ∈ int(domf )

〈∇f (v)−∇f (z), z − u〉 = Df (u, v)− Df (u, z)− Df (z , v); (4)

SHEHU YEKINI (ZJNU) LEPSC November 17, 2021 6 / 36



Iterative Methods

Iterations

1. One of the important methods for solving the EP (1) is the Extragradient
Method (EM).

The EM was originally designed for solving the saddle point problem by
Korpelevich (1976).

In 2008, Quoc et al. (2008) extended EM to solve the pseudo-monotone EP (1) in
Euclidean spaces.
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Iterative Methods

Algorithm

Given xn ∈ C and λn > 0, compute yn and xn+1 as follows:
yn = argmin

y∈C

{
λng(xn, y) + 1

2 ||y − xn||2
}

xn+1 = argmin
y∈C

{
λng(yn, y) + 1

2 ||y − xn||2
}
,

(5)

where 0 < λn < min
{

1
2c1
, 1
2c2

}
.

SHEHU YEKINI (ZJNU) LEPSC November 17, 2021 8 / 36



Iterative Methods

2. EM has further been extended to infinite dimensional settings. E.g., Anh and
An 2015; 2019; Bigi et al. 2009; Bigi and Passacantando 2015; Hieu 2018a; Hieu
et al. 2018; Jolaoso and Aphane 2020a; ur Rehman et al. 2019; Vuong et al.
2013; Vuong 2018.

EM involves solving minimization problem on C twice per iteration and two
evaluations of g(., y) per iteration. This could be computationally expensive and
thus, a drawback.
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Iterative Methods

3. Lyashko and Semenov (2016), proposed a Popov’s type extragradient algorithm
to solve EP (1). The method involves two minimization problems on C but one
evaluation of g(., y) per iteration in Hilbert spaces.
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Iterative Methods

Algorithm

Given xn, yn ∈ C , compute xn+1 and yn+1 as follows:
xn+1 = argmin

y∈C

{
λg(yn, y) + 1

2 ||y − xn||2
}

yn+1 = argmin
y∈C

{
λg(yn, y) + 1

2 ||y − xn+1||2
}
,

(6)

where 0 < λ < 1
2(c1+c2)

.
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Motivational Example

Example

Example

Let E = `p := {ζ = (ζ1, ζ2, . . . ) : (
∑∞

i=1 |ζi |p)
1
p <∞} for 1 < p <∞ and

f : E → R be defined by f (x) = ‖x‖p. Let

C = {ζ : (ζ1, ζ2, . . . ) ∈ `p : ζi ≥ 0 and ‖ζ‖ ≤ p, ∀i ∈ N}

and g : C × C → R be defined by g(x , y) = (p − ||x ||)〈x , y − x〉 for all x , y ∈ C .
Clearly, EP(g) 6= ∅, g is pseudo-monotone and not monotone (x =

(
5
2 , 0, 0, . . .

)
and y = (3, 0, 0, . . . )). Also, g satisfies Lipschitz-like condition with c1 = c2 = 3p

2 .
However, all the above-mentioned methods cannot be applied to solve the EP (1).
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Motivational Example

Some other methods have been proposed to solve EP in reflexive Banach spaces,
e.g., Takahashi & Zembayashi (2009), Reich & Sabach (2010), Kassay et al.
(2011), Eskandani et al. (2020), etc. Most of the methods proposed either involve
two evaluations of g(., y) per iteration or minimization problem on C twice per
iteration or projection onto intersection of two half-spaces.
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Proposed Method

Our Method

Algorithm

Given xn, yn−1, yn and λn > 0, compute xn+1 and yn+1 as follows:
xn+1 = argmin

y∈Hn

{
λng(yn, y) + Df (y , xn)

}
yn+1 = argmin

y∈C
{λn+1g(yn, y) + Df (y , xn+1)} ,

(7)
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Proposed Method

Remark

1. The method involves one minimization problem on C and one evaluation of
g(., y) per iteration with self-adaptive step sizes λn.

2. The method is proposed in
a reflexive Banach space which is more general than most available methods.
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Proposed Method

We assume that the following assumptions are satisfied.

Condition

(B1) f is proper, convex and lower semicontinuous;

(B2) f is uniformly Fréchet differentiable;

(B3) f is β-strongly convex on every C ⊂ E ;

(B4) f is a strongly coercive and Legendre function which is bounded.
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Proposed Method

Condition

Let g : E × E → R be a bifunction such that

(A1) g is pseudomonotone;

(A2) g satisfies the Lipschitz-like condition;

(A3) g(x , ·) is convex, lower semicontinuous and subdifferentiable for every x ∈ C ;

(A4) g(·, y) is sequentially weakly upper semicontinuous on C for every fixed
y ∈ C , i.e., if {xn} ⊂ C such that xn ⇀ x ∈ C , then
lim supn→∞ g(xn, y) ≤ g(x , y);

(A5) For all bounded sequences {xn}, {yn} ∈ C such that ‖xn − yn‖ → 0, n→∞,
the inequality

lim sup
n→∞

g(xn, yn) ≥ 0

holds;

(A6) EP(g) 6= ∅.
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Proposed Method

Let A : C → E∗ be an operator and g(x , y) := 〈Ax , y − x〉 for every x , y ∈ C , the
EP reduces to VIP(C,A):

find x∗ ∈ C such that 〈Ax∗, y − x∗〉 ≥ 0, ∀ y ∈ C . (8)
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Proposed Method

Suppose

(C1) A is pseudo-monotone on C , i.e., if 〈Ax , y − x〉 ≥ 0⇒ 〈Ay , x − y〉 ≥ 0 for
all x , y ∈ C ;

(C2) L-Lipschitz continuous, i.e., there exists a constant L > 0, such that, for
every x , y ∈ C , ‖Ax − Ay‖ ≤ L‖x − y‖;

(C3) weakly sequentially continuous, i.e., if for any sequence {xn} ⊂ C such that
xn ⇀ x , we have Axn ⇀ Ax ;

(C4) Sol(C ,A) 6= ∅.

then Conditions (A1)-(A6) are satisfied with L = c1
2 = c2

2 .
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Proposed Method

Algorithm

Given xn, yn−1, yn and λn > 0, compute xn+1 and yn+1 as follows: xn+1 = Proj fHn

(
∇f ∗[∇f (xn)− λnA(yn)]

)
yn+1 = Proj fC

(
∇f ∗[∇f (xn+1)− λn+1A(yn)]

)
,

(9)
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Proposed Method

Lemma

Suppose {xn} and {yn} are generated by our proposed Algorithm. Then

Df (p, xn+1) ≤ Df (p, xn)−
(

1− 2σλn
βλn+1

)
Df (yn, xn)

−
(

1− σλn
βλn+1

)
Df (xn+1, yn) +

2σλn
βλn+1

Df (xn, yn−1),

for all n ≥ 1, where p ∈ EP(g), β is the strongly convexity constant of f and
σ ∈ (0, β/3).
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Proposed Method

Theorem

Let C be a nonempty, closed and convex subset of a real reflexive Banach space
E. Suppose that f , g satisfy above Conditions. Then the sequences {xn} and {yn}
generated by (7) converge weakly to a solution of the EP (1).
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Proposed Method

Corollary

Let C be a nonempty, closed and convex subset of a real reflexive Banach space
E . Assume that A satisfies the above conditions. Then the sequences {xn} and
{yn} generated by (9) converges weakly to a solution of the VIP(C ,A).
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Application

Application

Let I = {1, 2, . . . ,N} be the set of players with each player i ∈ I controlling
variable x i ∈ Bi , Bi is a Banach space and B = B1 × B2 × · · · × BN . The point x i

is called the strategy of the ith player. We denote by x ∈ B, the vector of
strategies x = (x1, . . . , xN) and x−i denotes the vector formed by all player
decision variables x j except the player i . Thus, we can write x = (x i , x−i ) which is
the shorthand to denote the vector x =

(
x1, . . . , x i−1, x i , x i+1, . . . , xN

)
. Given a

subset X of B (called the feasible set for the GNEP), the set
Xi (x

−i ) = {x i ∈ Bi : (x i , x−i ) ∈ X} denotes the strategy set of the ith player
when the remaining player choose strategies x−i (see, e.g., Rosen (1965)). We
note that the aim of the ith player given the strategy x−i is to choose a strategy
x i such that x i solves the following minimization problem:

min θi (x
i , x−i ) such that x i ∈ Xi (x

−i ). (10)

For any given x−i , we denote the solution set of (10) by Soli (x
−i ). Using the

above notation, we give the precise definition of the GNEP as follows (see, e.g.,
Iusem and Nasri (2011)).

Definition

A GNEP is define as finding x̄ ∈ X such that x̄ i ∈ Soli (x̄
−i ) for every i ∈ I .
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Application

Theorem

Consider the GNEP such that

(a) X is closed and convex,

(b) θi is continuously differentiable for every i ∈ I ,

(c) θi (·, x−i ) : Bi → R is convex for every i ∈ I and every x ∈ X .
Define an operator F : B → B∗ as

F (x) =
(
∇x1θ1(x), . . . ,∇xNθN(x)

)
,

where ∇x i θi denotes the gradient of θi with respect to its first argument. Then
every solution of EP(g), with g(x , y) := 〈F (x), y − x〉 is a solution of the GNEP.
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Numerical Experiments

Example

Consider the EP (1) with g : C × C → R defined by

g(x , y) = 〈Mx + F(y) + q, y − x〉

where q is a vector in Rm,M and F are m ×m matrices such that M is
symmetric and positive semidefinite, and F −M is negative semidefinite. The
feasible set C ⊂ Rm is defined by C = {x ∈ Rm : Qx ≤ b}, where Q is a matrix of
size l ×m generated randomly in [−2, 2] and b is a vector in Rm generated
randomly in [1,3]. We choose the Bregman function f (x) = 1

2 ||x ||
2.
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Numerical Experiments

table

Table: Computation result

Prop.Alg. EGM SEM PEM
m = 5 Iter. 23 35 54 31

Time (sec) 0.5351 0.9021 1.6107 0.6605
m = 10 Iter. 68 98 132 90

Time (sec) 3.5926 3.9732 4.9471 3.7579
m = 20 Iter. 166 237 274 222

Time (sec) 3.8769 5.2072 6.2164 4.7159
m = 50 Iter. 292 414 449 389

Time (sec) 7.3758 13.2904 16.2664 8.1766
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Numerical Experiments

Example

Consider the same bifunction g defined in previous example and

C :=
{
x = (x1, . . . , xm)T : ||x || ≤ 1 and xi ≥ a, i = 1, . . . ,m

}
where a < 1/

√
m. Let f : Rm → R be defined by

(i) f (x) =
m∑
i=1

xi log(xi ), (ii) f (x) = −
m∑
i=1

log(xi ) (iii) f (x) =
1

2
||x ||2.

Then

(i) ∇f (x) =
(

1 + log(x1), . . . , 1 + log(xm)
)T

(ii) ∇f (x) = −
(1

x
, . . . ,

1

xm

)T
(iii) ∇f (x) = x ,

respectively.
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Numerical Experiments

Example

Moreover,

(i) Df (x , y) =
∑m

i=1

(
xi log

(
xi
yi

)
+ yi − xi

)
which is the Kullback-Leibler

distance (KLD),

(ii) Df (x , y) =
∑m

i=1

(
xi
yi
− log

(
xi
yi

)
− 1
)

which is the Itakura-Saito distance

(ISD),

(iii) Df (x , y) = 1
2 ||x − y ||2 which is the squared Euclidean distance (SED),
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Numerical Experiments

table

Table: Computation result

KLD ISD SED
m = 10 Iter. 44 30 37

Time
(sec)

0.8881 0.9880 1.7544

m = 50 Iter. 357 240 176
Time
(sec)

23.1684 14.5520 10.3720

m = 70 Iter. 546 365 270
Time
(sec)

39.1003 25.6851 20.0191

m = 100 Iter. 869 581 432
Time
(sec)

75.6700 49.9736 35.5233
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Future Research

Future Research

Inertial version of our proposed method in reflexive Banach spaces has not
been studied in the literature.

A modification of our method without any further minimization on the
half-space Hn would be desired.
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THANKS FOR LISTENING
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