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Motivation

® Image denoising as optimization problem (MAP in a Bayesian

framework)

® Variational model for approximating u:

min  D(u,x) +t J(u)
ueR" . — ~—~—
Data Fidelity a priori/Regularisation

® Observed image: x € R" (a matrix of dimension nyny := n)
® Regularization parameter t € (0, +00)
® Examples:
* Gaussian noise: D(u,x) = 3||u — x]|3
® Promote sparsity:

® on thesignal: J=1 | (e.g. Compressive Sensing)
® on the variation of the signal: J(u) =3%_, |u; —u|  (Total
Variation denoising: Rudin, Osher, Fatemi 92)

® Many available algorithms to compute a minimizer.



HJ equations and additive noise models x = u +n

® Hamilton-Jacobi equation (HJ)

%(X, t) + H(VS(x,t)) =0 in R" x (0, +00),
S(x,0) = J(x) Vx e R",

® Solution is given by the Lax-Oleinik representation formula

S(x,t) = uigﬂgn{J(U) + tH* (X;L,)}

® |nitial data J correspond to the regularization J.

® Hamiltonian H defines the data fidelity for additive noise model
via H*

® The spatial variable x corresponds to the observed image, the
time t is the regularization parameter.

® Details in [Darbon 15], extension to multitime [Darbon, Meng
20], Bavyesian posterior mean [Darbon, Provencher 20]



Variational non-additive noise models

min {f(v) +g(t,x, v)},

f is the penalizing term

g is the data fidelity
® t is a positive parameter
® 7 denotes the observed image.
In this work, we focus on
min  J*(VH*(v))+ tDy- (%,v),

v€int dom H* N s
—_————
f(v)

g(t,x,v)

® His a Legendre function

® Jis a convex function.



Goals

® Establish connections between (possibly non-convex)
non-additive noise models

(NA) . trr:iin p J*(VH*(v)) + tDy- (%, v),
veint dom H* e v
) g(tx,v)

and additive noise models:
(A) m]ilg {J(x — tv) + tH*(v)}.
veRn

® FEstablish connections between the above noise models and
some HJ PDEs.



Main contributions

Additive model " Non-additive model
Proposition
fe——————— ]
SCe0) = min {J(x — 1) + H*0)} Fxn= min {;Dm (i, v) +I% vy*w»}
ver" veintdomH* t
. Proposition : Proposition :
DV VHY,S®D) Ce- VH(Vm (2)- v,m,t,> 5
HJ PDE | . HJ PDE
Proposition

g(x,t)+H(VXS(x,z»=o SCe. 0+ F(x,) = (H)*09) {%“*’””(V”" (3)) - (v (5) -wurmo) <o

Figure: An illustration of the relations among the non-additive model, the
additive one and the corresponding PDEs



Main assumptions

® J and H are proper, convex, lower semicontinuous functions
on R”

® Jis 1-coercive, and H is a Legendre function.

Short recap: H is Legendre if it satisfies

1. int dom H is non-empty.
2. H is differentiable on int dom H.
3.

0, if x € (dom H) \ (int dom H),

OH() = {{VH(X)}, if x € int dom H.

4. H is strictly convex on int dom H.



Main results

Proposition

Let x € R" and t > 0 satisfy

x € (dom J + tint dom H*) N (tdom H*). Then, the minimizers
in (NA) and (A) exist and are unique. Also, V is the minimizer in
(NA) if and only if it is the minimizer in (A):

arg min {tDH* (%, v) + J*(VH*(V))} = argmin{J(x—tv)+tH*(v)

vEint dom H* veRn

Moreover, the minimal values in the two problems satisfy

min {tDH* (; v) + J*(VH*(V))} +omin{J(x — tv) + tH*(v)}
= (tH)"(x).
“Generalized Moreau decomposition”

[Moreau 65] for t =1 and H = 1|| - ||3, [Combettes, Reyes 11] for
more general cases.



Useful tools for the analysis

Consider

(P1)  min {tH* (’i“) +J(u)},

(P2)  min {{p,x) — tH(p) = J"(p)},

which are equivalent to (A) and (NA), respectively,

(A)  min{J(x — tv) + tH'(v)}.

(NA) min S (VH*(v)) + tDy- (% v) .

v€int dom H*



Main results

Proposition

Let x € dom J + tint dom H*. Then, there exist unique vectors i
and p in R" solving (P1) and (P2), respectively. Moreover, the
following two statements are equivalent:

(a) The vectors i and p solve (P1) and (P2), respectively.
(b) There hold

x=u+tVH(p), and J(a)+ J(p)— (p,T)=0.

Additionally, it holds

ueR"n PGR"

min {tH* (X - “> + J(u)} = max{(p, x) — tH(p) — J*(p)}.



Relations to some HJ PDEs

® The minimal value S(x, t) in (A) solves a HJ PDE,

inf {J(x — tv) + tH*(v)}, xe€R",t >0,

veRn
S50 t) = S (J* + lgom 1) (%), xeR",t =0,
~+o00, xeR" t<O.

¢ The minimal value F(x, t) in (NA) satisfies another HJ PDE,

Fot) inf { Dy (5.v) + S (VH' (V). £>0, (x.t) € D,
| I(;kom H(X) - (J* + ldom H)*(X), t=0, (X, t) € Dy



More details

Proposition
The following statements hold:

(a) S is a convex and lower semi-continuous function with respect
to the joint variable.

(b) S is differentiable at any (x,t) € int dom S, with

VS(x,t) = (p, —H(p)),

where p is the unique maximizer of
(P2)  mingere{ (p,x) — tH(p) — J*(p)}.

(c) For all x € R", we have S(x,0) < J(x). If x € dom J satisfies
dJ(x)Ncl dom H # 0, then S(x,0) = J(x) and
0xS(x,0) = 0J(x) Ncl dom H, where 0,5(x,0) is the
subdifferential of the function y — S(y,0).



Relations to some HJ PDEs

Proposition

The function S solves the following HJ PDE
0S . :
a(x7 t) + H(VS(x,t)) =0, if(x,t)€int dom S,
S(x,0) = Js(x), if x € R",

where Js is a proper, convex, Isc function with
dom J¢ = cl dom H and J¢ = J* in the domain of Jg.
Moreover, the minimizer v in (A) satisfies

7 = VH(V:S(x, 1)),

for all t > 0 and x € dom J + tint dom H*.



Relations to some HJ PDEs

Proposition

Assume that 0 € dom J. Then F is continuously differentiable on
the interior of its domain and satisfies the following differential
equation for all (x, t) € int dom F

%f(x, 0+ H(VH (3)) = H(VH () = ViF(x, 1) = 0.
Also, F satisfies

lim F(x+td,t) = F(x,0), Vd € int dom H*, x € dom (I3, )-

t—0+
Moreover, the minimizer v in (NA) satisfies
_ X
7=VH (VH* <?) ~ VF(x, t)) ,

for all t > 0 and x € tint dom H*.



Poisson noise model
Define

n
P):Zepiv p:(plv"‘apn)ERn'

The function H is a Legendre function with H* given by

n

(vilogyi —yi), ify €[0,+00)",

H*(y) = suﬂg Z (piyi—eP’) = ,z;
e n

P 400, otherwise.

Hence, D+ (%, v) is the Kullback-Leibler distance

Dy~ ();v)zz(| ?———f—v, "|ogv,-).

The variational model with Poisson noise:

ve(mjrnoo)n {tDH* (% V) + J*(log vi,. .., log Vn)} .



Poisson noise model

® The related additive noise model is
n
i J(x —t t i P — Vi .
Vrg}l}gn{ (x —tv) + z;(v og Vv, v)}
=

® The related HJPDEs are



Poisson noise model: Remarks

® A widely used regularization term is the total variation TV
[Le, Chartrand, Asaki 07].
However, there is no convex Isc function J satisfying
J(VH*(v)) = J*(log v1, . ..,log vp) = TV(v).

® An example of appropriate penalizing function f = J*(VH*) is
f(v) =TV(logwvi,...,logvy),

where J is the indicator ball of Meyer's norm.
The corresponding variational denoising model:

v;>0

=

n
min {Z (tv,- — xj log v; + x; log (%’) — x,-) + TV(logvi,...,log v,

[Oh, Harmani, Willet 13]



Poisson noise model: Remarks

The parameter t is related to the exposure time of the sensor:

Let v be the gray level array of the original image, which does
not change over time.

The observed image is a sample from a Poisson distribution
whose rate equals tv, where t is the exposure time of the
sensor [Tendero, Osher 16].

The probability mass function of the Poisson distribution at

x € 7" equals

Pixy) = [ X,

x;!
i=1 !

Then, the corresponding MAP estimator for the denoising
problem with Poisson noise reads

v = argmin {Z(tv,- — xjlog vj) + f(v)} :

ve(0,+o0)" | 17



Multiplicative noise model

n

Z(_l - |Og(—p,')), if p= (p17 oo 7pn) S (—OO, 0)n7

400, otherwise,

n
. = logyi, ify=(y1,...,yn) € (0,400)",
H*(y) = i=1
00, otherwise,

which is the Burg entropy, thus yielding the ltakura-Saito distance

n
X X X;/t
D*<—,>:§:—I X logvi+ X5 1),
H " v 1( ogt+ogv,+ v

i=

The multiplicative noise variational model is

n
. X,'/T.' Xj 1
min t —1+logv; + —log— |+ ——,...,——
VE(O;&-OO)”{ ;( gviT T, & t) ( Vi



Multiplicative noise model

® The related additive noise model is

n
i Jx—tv)—t logv; ¢ .
vE(r(;r]Jlrnoo)" { (X V) ; &Y }

® The related HJPDEs become

03 (110 (0200 ) =

i=1

OF . x; OF
S0t + > log (1 + ?%(x, t)> =

i=1



Multiplicative noise model: Remarks

® The non-convex regularization term
f(v) =TV(logwvi,...,logv,) has been often employed in the
literature [Shi, Osher 08].

® However, there is no convex function J such that

1 1
J <—,...,—> =TV(logvi,...,logv,), v € (0,+00)".

Vi Vn

® We will use f(v) = TV(v) [Aubert, Aujol 08].



Multiplicative noise model: Remarks

® The observation J; on the i-th pixel in the model is the
average of L observations I, ..., /., which are i.i.d. sampled
from the exponential distribution with rate %

® The distribution of J; is the Gamma distribution with
parameters L and VL with density function

L\" 1
f5,(Ji = zilvi) = (v) @zf_le_ui/v’, Vz; € [0, +00).

® Since the pixels J; are independent from each other, the
density function of the whole image J = (J1,...,Jn) is

L\ 1
fJ(J = z|\/) = H <> WZ’,L—leszi/Vf’ z e [0’ —|-OO)".

v
i=1 !

for all z € [0, +00)".



Multiplicative noise model: Remarks

® The corresponding MAP estimator for the denoising problem
with multiplicative noise is

arg min Z (Llog vi + L) + f(v)
ve(0,+o0) | T

which is equivalent to the variational model
+f(v),.

X,'/
Vi
® The time variable t is the number of the observed images, and
the spatial variable x is the summation of the t observed
images.

n
argmin Z <—t+t|og vi +
ve(0,4o00)" 1

with t = L and x = Lz.



Numerical experiments for a Poisson model
For the non-convex variational model

ve(0,4o00)"

min {Z (tvi — xjlog vi) + aTV(logv,...,log v,,)} ,
which is equivalent to the convex one

n
X — tv
min V* +t vilogvi — v;) 3,

ADMM is employed, that is

n )\ 2
vkt = argmin tZ(v,- log vi — vj) + = Hw(k) +tv—x+y(k)H :
ve(0,4o0)" 2

w1 = arg min {J(W) + %HW + (k) +y(k)|]2}
weR”?

Y1) = (K)o (k1) gy ()



Numerical experiments for a Poisson model




Numerical experiments for a Poisson model

(a) The restored image using (b) The restored image using
our model with TV(log) TV

(c) The residual image (40.5) (d) The residual image (+0.5)
using our model with TV(log) using TV



Numerical experiments for a multiplicative model

For the non-convex problem

. ’ x,-/t Xj
m t E —141 i+ —log— | + af ,
ve(O,m )n{ i 1( + log v, ” og t) « (V)}

1

with f(v) =TV <—Vi1, cer, —i> , consider the convex one with

J=(aTV)*

n n
min {J(X— tv) — tZIog v,-} = min {TV’k <X_atv> — tZIog v,-}
i=1

i=1

and apply also an ADMM.



Numerical experiments for a multiplicative model




Numerical experiments for a multiplicative model

(a) The restored image using (b) The restored image using
our model with TV TV (log)

(c) The residual image (+0.5) (d) The residual image (40.5)
using our model with TV using TV (log)



Summary

® We have proposed a variational model for denoising images
with non-additive noise

min {J*(VH*(V)) + tDy- (% v)} .

v€int dom H*

® \We have established its connections with additive noise
models and with HJ PDEs. This could be used for a
knowledge transfer between the corresponding fields.

® We have discussed the Poisson noise and the multiplicative
noise cases.

® \We have shown numerical experiments based on ADMM.

On Hamilton-Jacobi PDEs and image denoising models with certain
non-additive noise, J. Darbon, T. Meng, E. Resmerita, JMIV, in revision.
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