Embedding of partially ordered topological spaces in Fell topological hyperspaces

Jinlu Li Department of Mathematics Shawnee State University Portsmouth Ohio 45662. USA (jli@shawnee.edu)

Abstract

Let (X, τ, \leq) be a partially ordered topological space. For every $x \in X$, we denote the subset of X $x^{\downarrow} = \{u \in X : u \leq x\}$. Let C(X) denote the collection of all τ -closed subsets of X and $C^{\downarrow}(X) = \{x^{\downarrow} : x \in X\}$. We consider three ways to topology the hyperspace C(X):

(i) The Fell topology τ_F on C(X), which has a base consisting of the following elements

 $O^- = \{A \in C(X) : A \cap O \neq \emptyset\}$ and $(X \setminus D)^+ = \{A \in C(X) : A \cap D = \emptyset\},\$

for every τ -open subset *O* of *X* and every τ -compact subset *D* of *X*;

- (ii) The Vietoris topology τ_F on C(X), which has a base consisting of O^- and $(X \setminus D)^+$ as defined in (i) with every τ -closed subset D of X;
- (iii) The Hausdorff topology τ_H on C(X) for (X, τ) being a metric space and the topology τ is induced by a metric *d* on *X*. The Hausdorff metric *H* on C(X) is defined, for any distinct *A*, $B \in C(X)$, as

$$H(A, B) = \max\left\{\sup_{a \in A} \left(\inf_{b \in B} d(a, b)\right), \sup_{b \in B} \left(\inf_{a \in A} d(b, a)\right)\right\}$$

In this paper, we consider some properties of the canonical map $x \to x^{\downarrow}$ which is from *X* to *C*(*X*) with respect to the above three topologies τ_F , τ_V , and τ_H on *C*(*X*). We first prove a result that the canonical map topologically order-embeds (*X*, τ , \leq) in ($C^{\downarrow}(X)$, τ_F , \subseteq), in which the canonical map $x \to x^{\downarrow}$ satisfies the following conditions:

- E₁. $x \leq y$ if and only if $x^{\downarrow} \subseteq y^{\downarrow}$;
- E₂. x = y if and only if $x^{\downarrow} = y^{\downarrow}$;
- E₃. The canonical map $x \to x^{\downarrow}$ is continuous from (X, τ) to $(\mathcal{C}^{\downarrow}(X), \tau_F)$;
- E4. The map $x^{\downarrow} \to x$ is continuous from $(\mathcal{C}^{\downarrow}(X), \tau_F)$ to (X, τ) .

Then, we give some counterexamples of locally compact and order-connected (topological) metric Λ -semilattices (X, τ, \leq) (that are special cases of partially ordered metric spaces), in which the canonical map $x \to x^{\downarrow}$ has the following properties:

- (a) It topologically order-embeds (X, τ, \preccurlyeq) in $(\mathcal{C}^{\downarrow}(X), \tau_F, \subseteq)$;
- (b) It is not continuous at every point (excepting one point) from (X, τ) to $(\mathcal{C}^{\downarrow}(X), \tau_V)$;
- (c) It is not continuous at every point from (X, τ) to $(\mathcal{C}^{\downarrow}(X), \tau_H)$.