Embedding of partially ordered topological spaces in Fell topological hyperspaces

Jinlu Li
Department of Mathematics
Shawnee State University
Portsmouth Ohio 45662. USA (jli@shawnee.edu)

Abstract

Let (X, τ, \preccurlyeq) be a partially ordered topological space. For every $x \in X$, we denote the subset of X $x^{\downarrow}=\{u \in X: u \preccurlyeq x\}$. Let $C(X)$ denote the collection of all τ-closed subsets of X and $C^{\downarrow}(X)=\left\{x^{\downarrow}: x\right.$ $\in X\}$. We consider three ways to topology the hyperspace $C(X)$:

(i) The Fell topology τ_{F} on $C(X)$, which has a base consisting of the following elements

$$
O^{-}=\{A \in C(X): A \cap O \neq \emptyset\} \text { and }(X \backslash D)^{+}=\{A \in C(X): A \cap D=\emptyset\}
$$

for every τ-open subset O of X and every τ-compact subset D of X;
(ii) The Vietoris topology τ_{F} on $C(X)$, which has a base consisting of O^{-}and $(X \backslash D)^{+}$as defined in (i) with every τ-closed subset D of X;
(iii) The Hausdorff topology τ_{H} on $C(X)$ for (X, τ) being a metric space and the topology τ is induced by a metric d on X. The Hausdorff metric H on $C(X)$ is defined, for any distinct $A, B \in C(X)$, as

$$
H(A, B)=\max \left\{\sup _{a \in A}\left(\inf _{b \in B} d(a, b)\right), \sup _{b \in B}\left(\inf _{a \in A} d(b, a)\right)\right\} .
$$

In this paper, we consider some properties of the canonical map $x \rightarrow x^{\downarrow}$ which is from X to $C(X)$ with respect to the above three topologies τ_{F}, τ_{V}, and τ_{H} on $C(X)$. We first prove a result that the canonical map topologically order-embeds (X, τ, \preccurlyeq) in ($C^{\downarrow}(X), \tau_{F}, \subseteq$), in which the canonical map $x \rightarrow x^{\downarrow}$ satisfies the following conditions:
E. $x \preccurlyeq y$ if and only if $x^{\downarrow} \subseteq y^{\downarrow}$;

E2. $x=y$ if and only if $x^{\downarrow}=y^{\downarrow}$;
E_{3}. The canonical map $x \rightarrow x^{\downarrow}$ is continuous from (X, τ) to $\left(C^{\downarrow}(X), \tau_{F}\right)$;
E_{4}. The map $x^{\downarrow} \rightarrow x$ is continuous from $\left(C^{\downarrow}(X), \tau_{F}\right)$ to (X, τ).
Then, we give some counterexamples of locally compact and order-connected (topological) metric \wedge-semilattices (X, τ, \preccurlyeq) (that are special cases of partially ordered metric spaces), in which the canonical map $x \rightarrow x^{\downarrow}$ has the following properties:
(a) It topologically order-embeds (X, τ, \preccurlyeq) in $\left(C^{\downarrow}(X), \tau_{F}, \subseteq\right)$;
(b) It is not continuous at every point (excepting one point) from (X, τ) to $\left(C^{\downarrow}(X), \tau_{V}\right)$;
(c) It is not continuous at every point from (X, τ) to $\left(C^{\downarrow}(X), \tau_{H}\right)$.

