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Abstract

We study the split feasibility and fixed point problems for Lipschitzian
pseudocontractive and nonexpansive mappings in real Hilbert spaces.
Using Tikhonov’s regularization technique, we propose and analyze
iterative schemes for approximating solutions to such problems.
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Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm
∥ · ∥, and let K be a nonempty, closed and convex subset of H.

weak conv.: ‘xn ⇀ x ’ i.e ⟨xn, y⟩ → ⟨x , y⟩ as n → ∞ for all y ∈ H.

Let T : H → H be a mapping. Fix(T ) := {x ∈ H : Tx = x}.

Definition: A mapping T : H → H is said to be:

(i) L-Lipschitzian if there exists a constant L > 0 such that

∥Tx − Ty∥ ≤ L∥x − y∥ ∀x , y ∈ H.

T is a contraction if L ∈ [0, 1). If L = 1, T is nonexpansive;

(ii) Pseudocontractive if

⟨Tu − Tv , u − v⟩ ≤ ∥u − v∥2 ∀u, v ∈ H;
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Introduction

Definition

(iii) Quasi-pseudocontractive if Fix(T ) ̸= ∅ and

⟨Tu − v , u − v⟩ ≤ ∥u − v∥2 ∀u ∈ H, v ∈ Fix(T );

(iv) Monotone if
⟨Tu − Tv , u − v⟩ ≥ 0 ∀u, v ∈ H.

T is monotone if and only if I − T is pseudocontractive.
The solutions of the operator equation Tu = 0 coincide with the fixed
points of I − T .

We denote the solution set of the operator equation Tu = 0 by zer T .

Definition

The metric projection of x ∈ H on K is defined as

PKx := argmin{∥x − y∥ : y ∈ K}.
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Introduction

Let H1 and H2 be real Hilbert spaces, C ⊂ H1 and Q ⊂ H2 be nonempty,
closed and convex and A : H1 → H2 be a bounded linear operator.

Split Feasibility Problem (Censor & Elfving, 1994)

Find x∈ C such that Ax ∈ Q. (SFP)

An iterative scheme derived from the multiprojection algorithm in
(Censor & Elfving, 1994).
The multidistance projection algorithm in (Byrne, 2001).
CQ-algorithm (Byrne, 2002)

xn+1 = PC (xn − γAT (I − PQ)Axn), n ∈ N. (1)

The SFP is equivalent to the following constrained optimization problem:

min
x∈C

f (x) :=
1

2
∥Ax − PQAx∥2. (2)

f is continuously differentiable and its gradient ∇f is given by

∇f (x) = A∗(I − PQ)Ax .
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Introduction

(Xu, 2010)

x1 ∈ H1, xn+1 = PC (xn − γ∇f (xn)), n ∈ N, (3)

where 0 < γ < 2
∥A∥2 . (3) converges weakly to a solution of the SFP.

Xu (Xu, 2010 ) considered the following Tikhonov regularization:

min
x∈C

f τ (x) :=
1

2
∥Ax − PQAx∥2 +

1

2
τ∥x∥2, (4)

where τ > 0 is the regularization parameter. Note that,
∇f τ (x) = A∗(I − PQ)Ax + τx .

Theorem (Xu, 2010)

x1 ∈ H1, xn+1 = PC (xn − γ∇f τn(xn)), n ∈ N, (5)

where γ ∈ (0, 2
∥A∥2 ) and

∑∞
n=1 τn < ∞. Then {xn} converges weakly to a

solution of the SFP.
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Introduction: Split Feasibility and Fixed Point Problem

Let T : H1 → H1 and S : H2 → H2 be two mappings with nonempty fixed
point sets Fix(T ) and Fix(S), respectively.

Split Common Fixed Point Problem (SCFPP) (Censor & Segal 2010)

Find x ∈ Fix(T ) such that Ax ∈ Fix(S). (SCFPP).

The SCFPP generalizes the SFP. A more general problem is the following
composite problem:

Split Feasibility and Fixed Point Problem (SFFPP)

Find x∗ ∈ C ∩ Fix(T ) such that Ax∗ ∈ Q ∩ Fix(S). (6)

We denote the solution set of the SFFPP by Γ.
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Iterative schemes for solving SFFPP

Ceng et al.; 2012
x1 ∈ C ,
zn = PC (I − γn∇f τn)xn,
xn+1 = βnxn + (1− βn)TPC (xn − γn∇f τn(zn)), n ∈ N.

(7)

Chen et al.; 2015
x1 ∈ C ,
qn = PC (I − γn∇f S)xn,
wn = PC (xn − γn∇f S(qn))
zn = (1− βn)wn + βnTwn

xn+1 = (1− αn)wn + αnTzn, n ∈ N,

(8)

where ∇f S := A∗(I − SPQ)A.

S is a nonexapnsive mapping and T is Lipschitzian pseudocontractive
mapping.
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Iterative schemes for solving SFFPP

Wongsasinchai, 2021

x1 ∈ C ,
qn = PC (I − γn∇f Sτn)xn,
wn = PC (xn − γn∇f Sτnqn),
sn = (1− δn)wn + δnTwn,
zn = (1− βn)sn + βnTsn,
xn+1 = (1− αn)zn + αnTzn, n ∈ N,

(9)

where
∇f Sτn := A∗(I − SPQ)A+ τnI .

The sequences generated by (9) converge weakly to a point in the solution
set Γ if {γn} ⊂ [a, b] for some a, b ∈ (0, 1

τn+2∥A∥2 ), {τn} ⊂ (0,∞),∑∞
n=1 τn < ∞ and 0 < a < αn < b < βn < c < δn < d < 1√

L2+1+1+L2
.
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Motivation for the study

The extragradient algorithms (7) - (9) for solving the SFFPP involve
the computation of four metric projections per iteration. Since
computing metric projection amounts to solving a minimization
problem, the computation of four metric projections per iteration does
increase the computational burden of the algorithm.

Thus a more economical approach is to reduce the number of
projections per iteration.

Using Tikhonov’s regularization technique, we propose and analyze
iterative scheme for approximating solutions to the SFFPP for the
case where S is nonexpansive and T is Lipschitzian pseudocontractive.
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Preliminaries

Lemma 1

If T : H → H is a pseudocontractive mapping, then its fixed point set
Fix(T ) is closed and convex.

Definition

Let T : H → H be a mapping. The mapping I − T is said to be
demiclosed at 0 if for any sequence {xn} in H, the assumptions xn ⇀ x∗

and (I − T )xn → 0 imply that Tx∗ = x∗.

Lemma 2 (Zhou, 2009)

Let H be a real Hilbert space and K be a closed and convex subset of H.
Let T : K → K be a continuous pseudocontractive mapping. Then I − T
is demiclosed at zero.
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Preliminaries

Lemma 3 (Chen et al.; 2015)

Let K be a nonempty, closed and convex subset of a real Hilbert space H
and let S : K → K be a nonexpansive mapping. Set
∇f S := A∗(I − SPK )A. Then

⟨x − y ,∇f S(x)−∇f S(y)⟩ ≥ 1

2∥A∥2
∥∇f S(x)−∇f S(y)∥2. (10)

Lemma 4 (Tan & Xu, 1993)

Let {an}∞1 and {bn}∞1 be two sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ an + bn ∀n ∈ N.

If
∑∞

n=1 bn < ∞, then limn→∞ an exists.
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Preliminaries

Lemma 5 (Yao et al.; 2015)

Let H be a real Hilbert space and T : H → H be an L-Lipschitzian
mapping with L ≥ 1. Set Tα = (1− α)I + αT ((1− κ)I + κT ). If
0 < α < κ < 1

1+
√
1+L2

and T is quasi-pseudocontractive, then Tα is

quasi-nonexpansive and

∥Tαx−x∗∥2 ≤ ∥x−x∗∥2−α(κ−α)(1−κL)2∥Tx−x∥2 ∀x ∈ H, x∗ ∈ Fix(T ).

Lemma 6 (Xu, 2010 )

Let K be a nonempty, closed and convex subset of a Hilbert space H. Let
{xn} be a bounded sequence which satisfies the following two properties:
• every weak limit point of {xn} lies in K ;
and
• limn→∞ ∥xn − x∥ exists for every x ∈ K .
Then {xn} converges weakly to a point in K .
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Main Results

Algorithm

Let C and Q be nonempty, closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator and let A∗ : H2 → H1 be the adjoint of A. Let S : H2 → H2 be a
nonexpansive mapping and T : H1 → H1 be an L-Lipschitzian
pseudocontractive mapping with L ≥ 1. Suppose that
Γ := {x∗ ∈ H1 : x

∗ ∈ C ∩ Fix(T ), Ax∗ ∈ Q ∩ Fix(S)} ≠ ∅ and let {xn} be
a sequence generated as follows:

x1 ∈ C ,
un = PC (xn − γn∇f Sτn(xn)),
xn+1 = (1− αn)un + αnT ((1− βn)un + βnTun), n ∈ N,

(11)

where

∇f Sτn(xn) = ∇f S(xn) + τnxn, ∇f S(xn) = A∗(I − SPQ)Axn.
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Main Result

We further assume the following conditions:

(i) τn ∈ [0, 1) with
∑∞

n=1 τn < ∞;

(ii) 0 < a ≤ γn ≤ b < 1
τn+∥A∥2 ;

(iii) 0 < c < αn < d < βn < e < 1
1+

√
1+L2

.

The following lemmata are used in the proof of our main theorem.

Lemma 3.1

Given the data in Algorithm (11), the mapping PC (I − γn∇f Sτn) : C → C
is a strict contraction with constant (1− γnτn).

Proof

Let x , y ∈ C . Then

∥PC (x − γn∇f Sτnx)− PC (y − γn∇f Sτny)∥2 = (1− γnτn)
2∥x − y∥2

≤ ∥x − y∥2. (12)
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Main Result

Lemma 3.2

The sequence {xn} generated by (11) is bounded.

Sketch of the proof

Let p ∈ Γ.
• ∥un − p∥ ≤ ∥xn − p∥+ γnτn∥p∥. (13)

Using Lemma 5 and (13), we get

• ∥xn+1 − p∥ ≤ ∥xn − p∥+ γnτn∥p∥. (14)

The result follows by applying Lemma 4 to (14).
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Main Result

Theorem 3.3

The sequence {xn} generated by Algorithm (11) converges weakly to a
point in Γ.

Sketch of the proof

Let tn := xn − γn∇f Sτn(xn) and x ∈ Γ.

∥xn+1 − x∥2 ≤ ∥xn − x∥2 − γn(1− γn∥A∥2)∥Axn − SPQAxn∥2

−γnτn∥xn∥2(2− γnτn)

−γn∥PQAxn − Axn∥2 + 2γnτn⟨x + γn∇f Sxn, xn⟩
−∥tn − PC tn∥2 − αn(βn − αn)(1− βnL)

2∥Tun − un∥2.(15)
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Main Result

Proof (contd)

Rearranging and taking the limit of (15) as n → ∞, we see that

∥Axn − SPQAxn∥ → 0 as n → ∞, (16)

∥PQAxn − Axn∥ → 0 as n → ∞, (17)

and
∥tn − PC tn∥ → 0, ∥Tun − un∥ → 0 as n → ∞. (18)

It follows from (16) that

∥tn − xn∥ = ∥xn − γn∇f Sτn(xn)− xn∥
≤ γn∥A∗∥∥Axn − SPQAxn∥+ γnτn∥xn∥ → 0 as n → ∞.(19)
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Main Result

Proof (contd)

Using (18) and the fact that T is L-Lipschitzian, we find that

∥xn+1 − un∥ = αn∥T ((1− βn)un + βnTun)− un∥
≤ αn(Lβn + 1)∥Tun − un∥ → 0 as n → ∞. (20)

Furthermore, from (16) and (17) it follows that

∥PQAxn − SPQAxn∥ → 0 as n → ∞. (21)

Choose a weakly convergent subsequence {xni} of {xn} and let p be its
weak limit. Then we have uni ⇀ p and Axni ⇀ Ap as i → ∞. Since I − T
and I − S are demiclosed at zero by Lemma 2, it follows that p ∈ Fix(T )
and Ap ∈ Fix(S). Furthermore, since C and Q are weakly closed, it also
follows that p ∈ C and Ap ∈ Q. Thus p ∈ Γ. The conclusion thus follows
by invoking Lemma 1, Lemma 3.2 and Lemma 6.
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Application

Split feasibility and convex minimization problem (SFCMP)

Let g : H1 → R be a convex and differentiable function with L-Lipschitz
continuous gradient ∇g and let A : H1 → H2 be a bounded linear
operator. Consider the SFCMP: Find x∗ ∈ H1 such that

x∗ ∈ C ∩ arg min
x∈H1

g(x) and Ax∗ ∈ Q. (22)

The SFCMP serves as a model for some applied problems in image
processing and signal recovery such as finding the minimum energy for
bandlimited signals, and constrained denoising problems.
The mapping ∇g : H1 → H1 satisfies the following inequality:

⟨∇g(x)−∇g(y), x − y⟩ ≥ 1

L
∥∇g(x)−∇g(y)∥2. (23)

From (23) ∇g is monotone. Consequently, I −∇g is a Lipschitzian
pseudocontractive mapping with Lipschitz constant (1 + L).
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Application

We denote the solution set of the SFCMP (22) by Γ4. The SFCMP (22)
can be recast as follows: Find

x∗ ∈ H1 such that x∗ ∈ C ∩ zer (∇g) and Ax∗ ∈ Q.

We therefore obtain the following theorem regarding the approximation of
solutions to the SFCMP (22).

Theorem 4.1

Let H1, H2 be real Hilbert spaces, and let C and Q be nonempty, closed
and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a
bounded linear operator and let A∗ : H2 → H1 be the adjoint of A. Let
g : H1 → R be a convex and differentiable function with L- Lipschitz
continuous gradient ∇g . Suppose that Γ4 ̸= ∅ and let {xn} be the
sequence generated by (11) where T = I −∇g , S = I , and the conditions
(i), (ii) and (iii∗) 0 < c < αn < d < βn < e < 1

1+
√

1+(1+L)2
. Then the

sequence {xn} converges weakly to a point in Γ4.
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Numerical Example

Let H1 = R and H2 = R× R equipped with the Euclidean inner products
and the induced norms denoted by | · | and ∥ · ∥, respectively. Let
C = [0,∞) and Q = {x ∈ H2 : 1 ≤ ∥x∥ ≤ 3}. Define T : H1 → H1 by

Tx :=

{
x − 1 + 4

x+1 if x ∈ [0,∞),

3 otherwise,

and S : H2 → H2 by

Sx := (
−x1
2

+
3

2
,
x2
3

+
1

3
) ∀x = (x1, x2) ∈ H2.

T is Lipschitzian Pseudocontractive for x , y ∈ [0,∞) (Yao et al. 2014). If
x ∈ [0,∞) and y ∈ (−∞, 0), then (x − y) > 0 and y − 4x

x+1 < 0. Here,

⟨Tx − Ty , x − y⟩ ≤ |x − y |2

|Tx − Ty | ≤ 5|x − y |.
The above inequalities obviously hold if x , y ∈ (−∞, 0). Therefore, it
follows that T is an L-Lipschitzian pseudocontractive mapping with L = 5.
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Numerical Example

S is nonexpansive. Let A : H1 → H2 be defined by Ax = ( x3 ,
x
6 ) ∀ x ∈ H1.

In this example Γ = {3}. We choose τn = 1
(n2+1)

, γn = 2n
n+5 , δn = 3n

100n+1 ,

βn = 7n
100n+1 , αn = 13n

100n+1 for all n ≥ 1. We compare the performance of
our Algorithm 15 (Ade) with that of algorithms (9) (Won) and (8) (Che)
using different initial values x1. SC:error = |xn+1 − xn| < 10−7.

Table: Numerical results.

Ade Won Che

Case Ia CPU time (sec) 0.0011 0.0233 0.0044
x1 = 6 No of Iter. 16 35 161

Case Ib CPU time (sec) 0.0012 0.0023 0.0030
x1 = 25.65 No. of Iter. 18 40 192

Case Ic CPU time (sec) 0.0022 0.0238 0.0028
x1 = 98.22 No of Iter. 19 45 221

Case Id CPU time (sec) 0.0015 0.0025 0.0086
x1 = 0.222 No of Iter. 15 31 156
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Numerical Example
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Conclusion

Conclusion

We have studied the split feasibility and fixed point problem for
Lipschitzian pseudocontractive and nonexpansive mappings in real Hilbert
spaces. By combining the gradient-projection method with Ishikawa
iterations, we have proposed a new iterative scheme that involves the
computation of just two metric projections per iteration. We have
established a weak convergence theorem and have given an application of
our main result.

Thank You
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