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Abstract

In this talk, after reviewing some old results in nonlinear ergodic  
theory and their applications to the study of the asymptotic  
behavior of quasi-autonomous dissipative systems, we 
concentrate  on first order expansive type evolution and 
difference equationsand  present some old and new results on 
the asymptotic behavior of  the solutions, as well as periodic 
solutions to such systems.

This is joint work with Mohsen Rahimi Piranfar.
E-mail address: m.piranfar@gmail.com
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Notations

H is a real Hilbert space endowed with scalar product ⟨ꞏ,ꞏ⟩,  
induced norm ∥ ꞏ ∥ and identity operator I.
A : D(A) ⊂ H →H is a (possibly multivalued) maximal  
monotone operator.
By →  and ⇀ we respectively denote strong and weak
convergence in H.

For a curve u : [0,+∞ ) → H, we denote
F(u(t)) = {q ∈H : limt→+∞ ∥u(t) − q∥ exists},

Tσ = 1 ∫TT 0 u(t)dt,
ωw(u(t)) the set of all weak cluster points of the net
u(t).
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Preliminaries

Definition
A mapping T : D ⊂ H → H is nonexpansive if

∥Tx− Ty∥ ≤ ∥x − y∥ ∀x, y ∈D,

where D is a nonempty subset of H.

The following theorem was proved in 1965, independently 
by  Browder, Kirk and Gohde.

Theorem
Suppose that T : D →  D is a nonexpansive mapping, where D 
is a  nonempty, bounded, closed and convex subset of H, then 
T has a fixed point  and Fix(T) := {x : Tx = x} is closed and 
convex.
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Preliminaries

Although in the Banach fixed point theorem, all orbits converge to the unique
fixed point of T, this fact does not hold for a nonexpansive mapping, and orbits
may not converge at all. Baillon, in 1975, proved that the Cesaro means of the
Picard iterates of any nonexpansive mapping T, always converge weakly to a
fixed point of T, provided that FixT ്∅.

Theorem
Let C be a nonempty, closed and convex subset of H, and T be a 
nonexpansive mapping from  C into itself. If the set Fix(T) is nonempty, then for 
each x ∈ C, the Cesaro  means
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converges weakly to some y ∈ FixT.
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Preliminaries

If C is not convex, then Fix(T) may be empty, and then Baillon’s  
proof is not applicable. To avoid the convexity assumption on 
C,  we are going to introduce the notion of nonexpansive
curves.

Definition

The curve u(t) in H is nonexpansive if for all r,s,h ≥ 0, we  
have ∥u(r + h) − u(s + h)∥ ≤ ∥u(r) − u(s)∥.
u(t) is an almost nonexpansive curve if for all r,s,h ≥ 0, we  
have ∥ur+h − us+h∥2 ≤ ∥u(r) − u(s)∥2 + ε(r,s), where
limr,s→+∞ ε(r, s) = 0.
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Preliminaries

Definition (Asymptotic center)
Given a bounded curve u(t) in H, the asymptotic center c of u(t)
is  defined as follows: for every 𝑞𝜖𝐻, let                                              
ϕ(q) =  lim supt→+∞ ∥u(t) − q∥ଶ. Then ϕ is a continuousand  
strictly convex function on H, satisfying ϕ(q) → +∞ as   
∥q∥ →  +∞ .  Therefore ϕ achieves its minimum on H at a
unique  point c, called the asymptotic center of the net u(t).
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Nonexpansive and Almost Nonexpansive Curves

Theorem (BDR, 1990)
Let u(t) be an almost nonexpansive curve in H. Then the 
following  are equivalent:
(i) F(u(t)) ≠ ∅.
(ii) lim infT→+∞ ∥σT∥ <+∞ .
(iii) σT converges weakly to p ∈H.  
Moreover under these conditions we
have:

conv (ωw(u(t))) ∩ F(u(t)) = {p}.
p is the asymptotic center of the net u(t).
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Nonexpansive and Almost Nonexpansive Curves

Definition

The curve u(t) in H is asymptotically regular if for all h >0,
u(t + h) − u(t) → 0 as t→ +∞ .
u(t) is a weakly asymptotically regular curve in H if
u(t + h) − u(t) ⇀ 0 as t→ +∞ .
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Nonexpansive and Almost Nonexpansive Curves

Theorem (BDR, 1990)
Let u(t) be a weakly asymptotically regular and almost  
nonexpansive curve in H. Then the following are
equivalent:
(i) F(u(t)) ≠ ∅.
(ii) lim inft→+∞ ∥u(t)∥ <+∞ .
(iii) u(t) converges weakly to p ∈H.
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Quasi-autonomous Dissipative Systems

Backgrounds

Asymptotic behavior of dissipative systems of the form

 −𝑢ሶ  (t) ∈Au(t),  
u(0) = u0, (1)

where A is a maximal monotone operator in H and u0 ∈D(A) 
is  arbitrary have been studied by several authors in the
1970s.

Behzad Djafari Rouhani
Expansive Type Evolution and Difference Equations



Introduction Dissipative Systems Expansive-type Systems

Behzad Djafari Rouhani
Expansive Type Evolution and Difference Equations

Quasi-autonomous Dissipative Systems

Backgrounds

Using the notion of nonexpansive and almost nonexpansive
curves  in H, Djafari-Rouhani extended their result to the case 
of quasi-autonomous

− 𝑢ሶ  (t) ∈Au(t) + f(t),  
u(0) = u0, (2)

without assuming A to have a nonempty zero set.



Introduction Dissipative Systems Expansive-type Systems

Quasi-autonomous Dissipative Systems

Theorem (BDR, 1990)

If u is a weak solution of the system (2) on every interval [0,T],
and satisfies supt>0 ∥u(t)∥ < +∞ , and if f− f∞ ∈ L1((0,+∞ ) ; H)
for some 𝑓ஶ ∈ H, then σ T = (l/ T)׬ 𝑢 𝑡 𝑑𝑡்

଴ converges weakly to
the asymptotic center of the curve u(t).

Theorem (BDR, 1990)
If u is a weak solution of the system (2) on every interval [0, T],
and satisfies supt>0 ∥u(t)∥ <+∞ and for all h ≥ 0,
u(t + h) − u(t) ⇀ 0 as t → +∞ , and if f − f∞ ∈ L1((0, +∞ ) ; H)
for some f∞ ∈ H, then u(t) converges weakly as t → +∞ to the
asymptotic center of the curve u(t).
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Quasi-autonomous Dissipative Systems

Theorem (Brezis-Browder, 1977)(Extension by BDR, 1990)

If u is a weak solution of the system (2) on every interval [0,T],

Behzad Djafari Rouhani
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and satisfies lim⟨u(t),u(t + h)⟩ = α(h) exists uniformly in h ≥ 0,
T ∫Tthen σ = (l/ T) u(t)dt converges strongly as T→ +∞ , to the

asymptotic center
0
of the curve u(t).
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Expansive Curves

Backgrounds

Definition
A map T : D(T) ⊂ H→ H is said to be expansive if ∥x − y∥ ≤ ∥Tx − Ty∥, for  
all x, y ∈ D(T).

The study of expansive maps began with L. Nirenberg’s problem concerning  
the surjectivity of such self maps of H. Djafari Rouhani proved the first mean  
ergodic theorem for expansive mappings, where applications to autonomous  
evolution systems of expansive type in H were also considered.

Behzad Djafari Rouhani
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For a sequence un ∈ H, we define

E1 = {q ∈ H : the sequence ∥un − q∥ is nondecreasing}.
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Expansive Curves

Theorem (BDR, 2001)
Let D be a nonempty subset of H, T an expansive self-mapping of D and
u0 ∈ D. Let un = T u0 and sn =

n 1

𝑛
෍ 𝑢௞

௡ିଵ

௞ୀଵ

(i) If lim infn→+∞ ∥sn ∥ < +∞ and ∥un ∥ = o( 𝑛) ,then the weak limit q of  
any weakly convergent subsequence sni of sn belongs toE1.

(ii) If in addition to (i), lim infn→+∞  ∥un ∥ < +∞ ,  then un is bounded and sn 

converges weakly to the asymptotic center p of un. Moreover we have
p =limn→+∞  PE1 un.

(iii) If in addition to (ii), un is weakly asymptotically regular, then un  

converges weakly to p as n → +∞ .

(iv)If limn→+∞  ∥un ∥ exists, then sn converges strongly to the asymptotic 
center p of un, and moreover in addition to p = limn→+∞  PE1 un, wehave  
p = PK0, where Kn = clco(un) and K =∩∞n=0Kn.
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Expansive Curves

Definition
An expansive curve u in H is a curve satisfying
∥u(t + h) − u(s + h)∥ ≥ ∥u(t) − u(s)∥ for all s,t,h ≥ 0.
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Expansive Curves

Theorem (BDR, 2001)
1

∫
T

TLet u be an expansive curve in H and σT = u(t)dt for T >0.

(i) If lim infT→+∞ ∥σT∥ < +∞ and ∥u(t)∥ = o( 𝑡) ,then the weak limit q of
any weakly convergent subsequence of σTof sn belongs to E1.

(ii) If in addition to (i), lim inf t→+∞ ∥u(t)∥ < +∞ , then u is a bounded curve
and σTconverges weakly to the asymptotic center p of u(t). Moreover we
have p =lim t→+∞ PE1 u(t).

(iii) If in addition to (ii), u is weakly asymptotically regular, then u(t)
converges weakly to p as t → +∞ .

(iv) If lim t→+∞ ∥u(t)∥ exists, then σT converges strongly to the asymptotic
center p of u(t), and moreover in addition to p = lim t→+∞ PE1 u(t), we
have p = PK0, where Kt = clco{u(s);s ≥ t} and K = ∩t≥0Kt.

Behzad Djafari Rouhani
Expansive Type Evolution and Difference Equations



Introduction Dissipative Systems Expansive-type Systems

Expansive Curves

Lemma (BDR, 2001)

Let A be a monotone operator in H; if u is weak solution
of

Behzad Djafari Rouhani
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𝑢ሶ(t) ∈Au(t),  
u(0) = u0, (3)

on [0, T] for every T > 0, then u is an expansive curve inH.

Theorem
With the same assumptions as in the above lemma, the
statements  (i), (ii), (iii) and (iv) in the previous theorem describe 
the  asymptotic behavior of a solution u(t) of system (3).
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Expansive Curves

Remark (Comparing these results to the corresponding 
ones for  dissipative systems)

If A is maximal monotone and u0 ∈D(A), then the system

Behzad Djafari Rouhani
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− 𝑢ሶ(t) ∈Au(t),  
u(0) = u0, (4)

has a unique weak solution and p ∈A−1(0), whereas forsolutions
to

𝑢ሶ(t) ∈Au(t),  
u(0) = u0, (5)

neither existence nor uniqueness is not guaranteed in this case.
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Almost Expansive Curves

Definition
The curve u in H is called almost expansive if

[ ]limsup sup(∥u(s)− u(t)∥ଶ   − u(s + h)− u(t + h) ∥ଶ) ≤ 0,

i.e. for every ε > 0, there exists t0 ≥  0 such that for all s, t ≥  t0, and forall
h ≥  0, wehave

∥u(s)− u 2(t)∥ ≤ ∥u (s+h )− u(t + h)∥ଶ + ε.

Remark

s , t→+∞ h≥0

We note that if u is bounded, then this definition is equivalent to

limsupsup(∥u(s)− u(t)∥ − ∥u(s + h)− u(t + h)∥) ≤ 0.

.    .  .

UTEPBehzad Djafari Rouhani
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Almost Expansive Curves

Ergodic Theorems for almost expansive curves in H

Proposition (BDR, 2004)

If lim infT→+∞ ∥σT∥ < +∞ and ∥u(t)∥ = o( 𝑡) ,then either the  
weak limit q of any weakly convergent subsequence σTn of σT  
belongs to F(u) or ∥u(t)∥ → +∞ as t→ +∞ .

Theorem (BDR, 2004)

T→+∞ T t→+∞

Let u be an almost expansive curve in H. Assume
lim inf ∥σ  ∥ < +∞ , lim inf ∥u(t)∥ < +∞ and
∥u(t)∥ =  o( 𝑡) .Then u is bounded and σT converges weakly as

Behzad Djafari Rouhani
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T→ +∞ , to the asymptotic center p of u.
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Almost Expansive Curves

Theorem (BDR, 2004)

Let u be an almost expansive curve in H such that
lim infT→+∞∥σT∥ < +∞ , lim inft→+∞ ∥u(t)∥ < +∞ and
∥u(t)∥ =  o( 𝑡) .Then u(t) converges weakly as t →  +∞  to 
the  asymptotic center p of u, if and only if u is weakly
asymptotically  regular.

Behzad Djafari Rouhani
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Almost Expansive Curves

Strong ergodic theorem for almost expansive curves in H

Theorem (BDR, 2004)
Let u be an almost expansive curve in H. If 0 ∈F(u), then σT  
converges strongly as T→ +∞ to the asymptotic center p of
u.  Moreover we have p = PK0, where Kt = clco{u(s); s ≥ t} and
K = ∩t≥0Kt.

Behzad Djafari Rouhani
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Almost Expansive Curves

Strong convergence theorem for almost expansive 
curves in H

Theorem (BDR, 2004)
Let u be an almost expansive curve in H. Assume u is  
asymptotically regular. Then limt→+∞ u(t) = p = PK0 where p
is  the asymptotic center of u and Kt =  clco{u(s); s≥ t} and
K = ∩t≥0Kt.

Behzad Djafari Rouhani
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Quasi-autonomous Expansive Type Evolution Systems

Proposition (BDR, 2004)

If u is a weak solution of

Behzad Djafari Rouhani
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𝑢ሶ(t) +  f(t)∈Au (t),
u(0) = u0,

(6)

on [0, T] for every T > 0, and if supt≥0 ∥u(t)∥ < +∞ and

s,r→+∞ ∫
+∞

s
lim ∥f(θ+ (r− s)) − f(θ)∥dθ = 0, (∗)

then the curve u is almost expansive in H.
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Quasi-autonomous Expansive Type Evolution
Systems

Asymptotic Behavior of Quasi-Autonomous
Expansive Type Evolution Systems

Theorem (BDR, 2004)

Assume u is a weak solution of (6) on every interval [0, T]and

Behzad Djafari Rouhani
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supt≥0 ∥u(t)∥ < +∞ .  Assume f− f ∞ ∈ L1((0,+∞); H) for some f ∞ ∈ H. Then
the following hold:

(i) σT ⇀ p as T → +∞ , where p is the asymptotic center of u.
(ii) u(t) ⇀ p as t → +∞ ,  if and only if u is weakly asymptotically regular.

(iii) If lim t→+∞  ∥u(t)∥ exists, then limT→+∞  σT = p = PK0, where K is
already defined.

(iv) lim t → +∞ u(t) = p = PK0 if and only if u is asymptotically regular.



Introduction Dissipative Systems Expansive-type Systems

Expansive Type Difference Equation

Unlike the dissipative case, the systems of the form

𝑢ሶ(t) ∈Au(t)
u(0) ∈D(A),

(7)

are “strongly ill-posed” as shown for example by considering the  
simple linear case of A =  −∆ with Dirichlet boundary conditions,  
where we obtain the heat equation with a final Cauchy data which  
is not generally solvable. A similar situation occurs for the  
backward discretization

(8)

(9)

un+1 − un ∈λnAun+1.

Hence, we consider the following forward discretization:

un+1 − un ∈λnAun,

which is well-posed, and the sequence un is always well-defined.
Behzad Djafari Rouhani
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Expansive Type Difference Equation

Similar to the continuous case, by introducing the notion of 
almost  expansive sequences and study their asymptotic 
behavior under  some suitable conditions, we describe the 
asymptotic behavior of  the solution to (9).
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Expansive Type Difference Equation
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limsup
௜,௝→ஶ

ሾsup
௞ஹ଴

∥ 𝑢௜ െ 𝑢௝ ∥ଶെ∥ 𝑢௜ା௞ െ 𝑢௝ା௞ ∥ଶ ሿ ൑ 0.

Definition
A sequence un in H is said to be almost expansive if forall i, j,k ≥ 0,
we have

i.e ∀ε > 0, ∃N0 such that ∀i, j ≥ N0, ∀k ≥ 0,
∥ui − uj∥2 ≤ ∥ui+k − uj+k∥2 + ε.

We note that if un is bounded, then this definition is equivalent to
limsup

௜,௝→ஶ
ሾsup

௞ஹ଴
∥ 𝑢௜ െ 𝑢௝ ∥െ∥ 𝑢௜ା௞ െ 𝑢௝ା௞ ∥ ሿ ൑ 0.
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Expansive Type Difference Equation

Proposition (BDR-MRP, 2020)
Let λn be a nondecreasing sequence of positive numbers such
that

j ≥ i
limsup

i, j → + ∞

෍ሺ
𝜆 ௝ି௜ ା௟

𝜆௟
െ 1ሻ

ାஶ

௟ୀ௜

ൌ 0 (∗ )

If un is a bounded solution to (9), then un is almost expansive.

Remark
Condition (∗) in the above proposition is in particular satisfied if supn≥1 λn ≤ λ

an+1 λn n
λ 1for some λ > 0, and ≤ for some a ∈ l .

Example
n2

The sequence λn = satisfies the conditions of the above proposition.1+n2

Behzad Djafari Rouhani
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Expansive Type Difference Equation

Theorem (BDR-MRP, 2020)

Assume that λn is a nondecreasing sequence satisfying condition
(∗), and un is a bounded solution to (9). Then the following hold:
(i) sn ⇀ p, as n→ +∞ where p is the asymptotic center of un.
(ii) un ⇀ p, as n→ +∞ if and only if u is weakly 

asymptotically  regular.
(iii) If limn→+∞ ∥un∥ exists, then limn→+∞ sn = p = PK0, where K  

is as already defined.
(iv) limn→+∞ un =  p = PK0 if and only if un is asymptotically  

regular.

Behzad Djafari Rouhani
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Expansive Type Difference Equation

If A has a nonempty zero set, then we can conclude 
stronger results:
Theorem (BDR-MRP, 2020)
Let un be the sequence generated by (9), where A−1(0) ≠ ∅ and 
lim infn→+∞  λn ≥  λ for some λ > 0. If un is bounded, then there exists some  
p ∈ A−1(0) such that un ⇀ p as n→ +∞ . Otherwise ∥un ∥ → +∞ as
n → +∞ .

Remark
If the step size λn goes to infinity as n → +∞ ,  then the existence of a bounded  
solution to (9) implies that A−1(0) ്∅. In fact, let un be a bounded solution

Behzad Djafari Rouhani
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to (9) and 𝑏௡ ൌ
𝑢௡ାଵ െ 𝑢௡

𝜆௡

. Clearly 𝑏௡ ∈ 𝐴𝑢௡ and  𝑏௡ → 0. 

Since 𝑢௡ is bounded, there exist some q ∈ H and a subsequence 𝑢௡ೖ
 such 

that 𝑢௡ೖ ⇀ q as k → +∞ .  Now the maximality of A implies that q ∈ A−1(0).
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Expansive Type Difference Equation

Definition
The operator T : D(T) ⊂ H → H is said to be α-expansive if

α∥x− y∥ ≤ ∥Tx− Ty∥, ∀x, y ∈ D(T).

If α = 1, we say that T isexpansive.

Lemma
If T : H → H is α-expansive and onto, then T−1 exists and it is

Behzad Djafari Rouhani
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α
1-Lipschitz.
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Expansive Type Difference Equation

Theorem (BDR-MRP, 2020)
Suppose that A is a single-valued and maximal strongly 
monotone  operator in H. If λn is a periodic sequence with 
period N, then  there exists an N-periodic solution to (9).

Remark
The following simple example shows that the above theorem does  
not hold for a general maximal monotone operator A, not even for  
subdifferentials of proper, convex and lower semicontinuous  
functions, or for inverse strongly monotone operators. Let
A : R → R be the constant function A ≡ 1, and λn≡ 1. Then (9)
reduces to un+1 = un + 1, which shows that the sequence un tends
to +∞ , as n → +∞ , for all u0 ∈R. Therefore it does not have a
periodic solution.

.

UTEPBehzad Djafari Rouhani
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Expansive Type Difference Equation

Theorem (BDR-MRP, 2020)
Assume that A is a single-valued and maximal monotone operator in H, 
and  the sequence λn is periodic with period N. If (9) has an N-periodic 
solution  wn, then every bounded solution to (9) is also periodic with period 
N, and  differs from wn by an additive constant.

Remark
We show by an example that the existence of periodic solutions does not 
imply  the boundedness of all solutions to (9). Let D = [0,1], A = (I− PD), and
λn ≡  1. Then (9) reduces to un+1 = 2un −  PDun. If we choose u0 = 0, then
un ≡  0, which is a periodic solution with period N for all N ∈ N. But if we  
choose u0 = 2, then un+1 = 2un −  1, which clearly goes to +∞ ,  as n → +∞ .

Behzad Djafari Rouhani
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Expansive Type Difference Equation

Remark
Now we compare the results of this section, to the results in  
[Rouhani-Khatibzadeh,2012] for the first order difference
equation

Behzad Djafari Rouhani
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un−1 − un ∈λnAun + fn,
u0 = x.

(10)

In [Rouhani-Khatibzadeh,2012], the authors proved the existence  
of an N-periodic solution wn to (10), where λn and fn are periodic  
with period N, and (10) has a solution un satisfying
lim infn→+∞ ∥sn∥ < +∞ .  They also proved that un − wn ⇀ 0, as 
n →  +∞ ,  and any two periodic solutions differ by an additive  
constant.
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A Gradient System of Expansive Type

An important example of a maximal monotone operator is the  
subdifferential of a proper, convex and lower semicontinuous  
function. Inspired by its applications in economics, the study of  
functions that are not convex but have convex sublevel sets 
have  received a particular attention. The functions with convex 
sublevel  sets are called quasiconvex.
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Definition

A function ϕ : H→ (−∞, +∞ ] is called quasiconvex if

ϕ(λx+(1−λ)y) ≤ max{ϕ(x), ϕ(y)}, ∀x, y ∈H and ∀λ ∈[0,1].  

ϕ is strongly quasiconvex if there exists α > 0 such that

ϕ(λx+ (1 − λ)y) ≤ max{ϕ(x),ϕ(y)}− αλ(1− λ)∥x− y∥2,
∀x, y ∈H and ∀λ ∈[0,1].

Behzad Djafari Rouhani
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There are many attempts to generalize the notion of
subdifferential  for non convex functions. However in any 
circumstance, the  subdifferential of a quasiconvex function is 
not monotone. On the  other hand, if ϕ : H →  R is Gâteaux 
differentiable, then the  following characterization for a 
quasiconvex function ϕ holds:

ϕ is quasiconvex on H ⇔ (∀x,y ∈ H, ϕ(y) ≤ ϕ(x) ⇒ ⟨∇ϕ(x), x−y⟩ ≥ 0)

The above characterization may prove to be useful given the 
lack  of monotonicity.
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We consider the following differential
equation

𝑢ሶ(t) =  ∇ϕ(u(t))+ f(t), t ∈[0,+∞ ) ,
u(0) =  u0 ∈H,

(11)

where ϕ : H →  R is a differentiable quasiconvex function such that
∇ϕ is Lipschitz continuous and f ∈W1,1((0, +∞ ) ;  H). 
The  Lipschitz continuity of ∇ϕ implies that the system (11) with 
an  initial condition has a unique solution u(t). In order to study 
the  asymptotic behavior of such a solution, we define

L(u) =  {y ∈H : ∃T > 0 s.t. ϕ(y)≤ ϕ(u(t)) ∀t ≥ T}.
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The set of all global minimizers of ϕ is denoted by argmin 
ϕ.  Clearly, argmin ϕ ⊂ L(u).

Behzad Djafari Rouhani
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Proposition (BDR-MRP, 2021)

Assume that u(t) is a solution to (11). For an arbitrary interval
[a,b], where b ≥ a ≥ 0, and each y ∈ L(u), we have

∫
b

∥u(a) − y∥ ≤ ∥u(b) − y∥ + ∥f(t)∥dt, (12)
a

and therefore limt→+∞ ∥u(t) − y∥ exists (it may be infinite).

Proposition (BDR-MRP, 2021)

Let u(t) be a solution to (11) such that
lim inft→+∞ ∥u(t)∥ < +∞ . Then limt→+∞ ∇ϕ(u(t)) = 0 and
limt→+∞ ϕ(u(t)) exists and is finite.

Behzad Djafari Rouhani
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Proposition (BDR-MRP, 2021)
If u(t) is a solution to (11) such that lim inft→+∞ ∥u(t)∥ <+∞ ,   
then L(u) ് ∅ and u is bounded.

Theorem (BDR-MRP, 2021)

there exists some p ∈ (∇ϕ)−1(0) such that u(t) ⇀ p as t→ +∞ ,
and if p ∉argmin ϕ, the convergence is strong. If u(t) is

Let u(t) be a solution to (11). If lim inft→+∞ ∥u(t)∥ < +∞ , then

unbounded, then ∥u(t)∥ → +∞ as t→ +∞ .

Remark
The above theorem shows that if (∇ϕ)−1(0) = ∅, then for any 
solution to  (11), we have limt→+∞ ∥u(t)∥ = +∞ .

Behzad Djafari Rouhani
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Theorem (BDR-MRP, 2021)
If either one of the following assumptions is satisfied, then bounded  
solutions to (11) converge strongly to some point in (∇ϕ)−1(0):
(i) Sublevel sets of ϕ are compact.
(ii) int L(u)് ∅.

Theorem (BDR-MRP, 2021)
Assume that ϕ : H →  R is a strongly quasiconvex function and  
u(t) is a bounded solution to (11). Then argmin ϕ is a singleton  
and u(t) converges strongly to the unique minimizer of ϕ.

Behzad Djafari Rouhani
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We consider the following discrete version of (11):

un+1 − un = λn∇ϕ(un) + fn,  
u0 =  x∈H, (13)

where fn ∈l1, λn ≥ ε for some ε > 0, and ϕ : H →  R is a  
differentiable quasiconvex function such that ∇ϕ is
Lipschitz  continuous with Lipschitz constant K.
In order to study the asymptotic behavior of un, we define 
the  following discrete version of L(u):

L(un) =  {y ∈H : ∃N > 0 s.t. ϕ(y)≤ ϕ(un) ∀n ≥ N}.
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Proposition (BDR-MRP, 2021)
Let un be the sequence generated by (13). For each y ∈ L(un), and k < m, we  
have

m− 1
∑k m n∥u −  y∥ ≤  ∥u  − y∥ + ∥ f ∥, (14)
n=k

and consequently limn→+∞  ∥un −  y∥ exists (it may be infinite).

Proposition (BDR-MRP, 2021)
Let un be a solution to (13) such that lim infn→+∞  ∥un ∥ < +∞ .  Then L(un) is  
nonempty if and only if limn→+∞  ϕ(un) exists, and in this case un is bounded.

Behzad Djafari Rouhani
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Remark
If ϕ is convex, we can omit the condition that ∇ϕ  is Lipschitz continuous.
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Proposition (BDR-MRP, 2021)

Assume that un is a solution to (13) such that
lim inf n→+∞ ∥un∥ < +∞ .  If either one of the following 
conditions is  satisfied, then L(un) is nonempty.
(i) ϕ is convex and the sequence of step sizes λn is 

bounded above.

n→+∞ n
2
K(ii) lim sup λ < .

Open problem. In the continuous case, we showed that if 
lim inft→+∞ ∥u(t)∥ < +∞ ,  then L(u) ്∅. However, in the  
discrete case, we do not know whether without any additional  
assumption, lim infn→+∞ ∥un∥ < +∞ implies that L(un) is
nonempty.
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Theorem (BDR-MRP, 2021)

Let un be the sequence generated by (13) and L(un) ് ∅. If
lim infn→+∞  ∥un ∥ < +∞ ,  then there exists some p ∈ (∇ϕ)−1(0) such that  
un ⇀ p as n → +∞  and if p ∈/ argmin ϕ the convergence is strong. If un is  
unbounded, then ∥un ∥ → +∞ , as n → +∞ .

Example
Assume that ϕ :  R→ R  is the function defined as 𝜑 𝑥 ൌ arctanሺ𝑥ଷሻ and
consider (13) with λn = (2/3)

Behzad Djafari Rouhani
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n and fn ≡  0. Then all the assumptions of the
above theorem are satisfied. The following table compares 1000 iterations of 
the  sequence un given by (13) with two different initial values u0 = −0.5 and
u0 = 1. The numerical results show that for u0 = −0.5, un → 0 ∈ (∇ϕ)−1(0)
and for u0 = 1, un slowly goes to infinity.
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Numerical results
n
0

un

-0.5
un

1

1 -0.00769231 2
10 -0.00404869 3.63765
20 -0.00171074 4.68854
30 -0.0008858 5.46951
40 -0.000533135 6.11128
50 -0.000354164 6.66517
60 -0.000251763 7.15741
70 -0.000187942 7.60348
80 -0.000145564 8.01339
90 -0.000116023 8.39404

100 -0.0000946225 8.7504
1000 -9.94968×10−7 21.8786
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Theorem (BDR-MRP, 2021)
Assume that un is a bounded sequence which satisfies (13) 
and  L(un) ്∅. If either one of the following assumptions is
satisfied,  then un converges strongly to some point in
(∇ϕ)−1(0):
(i) Sublevel sets of ϕ arecompact.
(ii) int L(un) ്∅.
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