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Aim of this talk

to give a brief history of the method of alternating projections
(MAP) employed to find a point in the intersection of two closed
sets.

to sketch the proof of linear convergence of MAP (in absence of
convexity) using two local main ingredients:

super-regularity and separable intersection.

to study these two properties and their relation to other relevant
properties.

Context: Alexandrov spaces, although for simplicity, some properties and
arguments will be given in Rn.



Alternating projections

X metric space, A,B ⊆ X closed, A ∩B 6= ∅
A sequence (xn) ⊆ X is an alternating projection sequence starting at
x0 ∈ X: ∀n ∈ N,

x2n+1 ∈ PB(x2n) and x2n+2 ∈ PA(x2n+1).



Rate of convergence

A sequence (xn) ⊆ X that converges to x ∈ X:

converges linearly to x: ∃ a constant k > 0 and a rate a ∈ (0, 1) s.t.

∀n ∈ N (d(xn, x) ≤ k · an) .

has a rate of convergence α : (0,∞)→ N:

∀ε > 0 ∀n ≥ α(ε) (d(xn, x) < ε) .

Any linearly convergent sequence has a rate of convergence that is
logarithmic in 1/ε for ε < k.
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Convex case - Global convergence

H Hilbert space, A,B ⊆ H closed, A ∩B 6= ∅
von Neumann 1933: A,B subspaces.

Bregman 1965: A,B convex – weak convergence.

Hundal 2004: in general only weak convergence for closed convex
sets.

Key facts:

PA, PB singlevalued and firmly nonexpansive.

(xn) is Fejér monotone w.r.t. A ∩B.

can be slow converging even in Rn.

R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

Bacak, X CAT(0).

Aŕıza,López and Nicolae , X CAT(κ) , κ > 0.
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Aŕıza,López and Nicolae , X CAT(κ) , κ > 0.



Convex case - Global convergence

H Hilbert space, A,B ⊆ H closed, A ∩B 6= ∅
von Neumann 1933: A,B subspaces.

Bregman 1965: A,B convex – weak convergence.

Hundal 2004: in general only weak convergence for closed convex
sets.

Key facts:

PA, PB singlevalued and firmly nonexpansive.

(xn) is Fejér monotone w.r.t. A ∩B.

can be slow converging even in Rn.

R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

Bacak, X CAT(0).
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Nonconvex case - Local convergence

A,B ⊆ Rn closed, z ∈ A ∩B 6= ∅
PA, PB multivalued and global convergence observed heuristically
for some scenarios – very limited mathematical foundation.

local linear convergence in the presence of appropriate local
geometric features: e.g. transversality: NA(z) ∩ (−NB(z)) = {0},
NA(z): points near z projected onto A → vectors → limits when
approaching z.

D. Drusvyatskiy, A.D. Ioffe, A.S. Lewis, Transversality and alternating projections
for nonconvex sets, Found. Comput. Math. 15 (2015), 1637–1651.



Alexandrov angle

X geodesic space
γ : [0, l]→ X, γ′ : [0, l′]→ X nonconstant geodesics with γ(0) = γ′(0)

t ∈ (0, l], t′ ∈ (0, l′]
∠γ(0) (γ(t), γ′(t′)) – interior angle at γ(0) in ∆(γ(0), γ(t), γ′(t′)) ⊆ R2

Alexandrov angle between γ and γ′:

∠(γ, γ′) = lim
ε↘0

sup
0<t,t′<ε

∠γ(0) (γ(t), γ′(t′)) ∈ [0, π].

Notation ∠x(y, z) if unique geodesics from x to y and x to z.



Super-regularity

Definition

Let (X, d) be a geodesic space and A ⊆ X. We say that A is
super-regular at z ∈ A if given any ε > 0 there exists r > 0 such that any
two points in B(z, r) are joined by a unique geodesic segment and for all
y ∈ B(z, r/2) \A, x ∈ PA(y), and all x′ ∈ A ∩B(z, r) with x′ 6= x,
∠x(y, x′) ≥ π/2− ε.

A.S. Lewis, D.R. Luke, J. Malick, Local linear convergence for alternating and
averaged nonconvex projections, Found. Comput. Math. 9 (2009), 485–513.



Separable intersection

Definition

Let (X, d) be a geodesic space and A,B ⊆ X. We say that A intersects
B separably at z ∈ A ∩B if there exist α, r > 0 such that any two points
in B(z, r) are joined by a unique geodesic segment and for all
x ∈ (A ∩B(z, r)) \B, y ∈ PB(x) \A satisfying
max{d(y, x), d(y, z)} < r/2 and all x′ ∈ PA(y), ∠y(x, x′) ≥ α.

D. Noll, A. Rondepierre, On local convergence of the method of alternating
projections, Found. Comput. Math. 16 (2016), 425–455.



Main result

Theorem

Let κ > 0, X be a complete CAT(κ) space, and A,B be closed subsets
of X. Suppose that, at z ∈ A ∩B, A is super-regular and intersects B
separably. Then any alternating projection sequence (xn) starting at
x0 ∈ A sufficiently close to z converges linearly to a point in A ∩B.



Local linear convergence of MAP (Sketch)

A,B ⊆ Rn closed, z ∈ A ∩B, (xn) alternating projection sequence,
ε > 0:

A super-regular at z =⇒ ∠x2n+2(x2n, x2n+1) ≥ π/2− ε.

A intersects B separably at z =⇒ ∠x2n+1
(x2n, x2n+2) ≥ α.

Hence,

∠x2n
(x2n+1, x2n+2) ≤ π/2 + ε− α.

‖x2n+2 − x2n+1‖
sin(π/2 + ε− α)

≤ ‖x2n − x2n+1‖
sin(π/2− ε)

.

for fixed c ∈ (cosα, 1), taking ε sufficiently small,

‖x2n+2 − x2n+3‖ ≤ ‖x2n+2 − x2n+1‖ ≤ c‖x2n − x2n+1‖.

(xn) converges linearly to a point in A ∩B with rate
√
c.

A.S. Lewis, D.R. Luke, J. Malick, Local linear convergence for alternating and
averaged nonconvex projections, Found. Comput. Math. 9 (2009), 485–513.

D. Drusvyatskiy, A.S. Lewis, Local linear convergence for inexact alternating
projections on nonconvex sets, Vietnam J. Math. 47 (2019), 669–681.



Uniform approximation by geodesics (UAG)

(X, d) metric space, A ⊆ X is uniformly approximable by geodesics
(UAG) at z ∈ A: ∀ε > 0, if x, x′ ∈ A are distinct and sufficiently close
to z, there exists a mapping f : [0, l]→ A with f(0) = x and f(l) = x′,
and a geodesic γ : [0, l]→ X geodesic starting at x with

d(γ(t), f(t))

t
< ε ∀t ∈ (0, l].

A ⊆ Rn is UAG at z ∈ A: ∀ε > 0, if x, x′ ∈ A are distinct and
sufficiently close to z, there exists a mapping f : [0, 1]→ A with
f(0) = x and f(1) = x′, and a direction d ∈ Rn \ {0} such that

‖f(t)− (x+ td)‖ ≤ εt‖d‖ ∀t ∈ [0, 1].

A.S. Lewis, G. López-Acedo, A. Nicolae, Local linear convergence of alternating
projections in metric spaces with bounded curvature, SIAM J. Optim. (in press).



Super-regularity via UAG

Theorem

X CAT(κ) space, A UAG at z =⇒ A super-regular at z.

UAG and super-regularity are not persistent nearby.

Define f : [0, 1]→ R,

f(x) =



1

2n

(
x− 1

2n+1

)
if x ∈

(
1

2n+1
,

3

2n+2

]
, n ∈ N

1

2n

(
1

2n
− x
)

if x ∈
(

3

2n+2
,

1

2n

]
, n ∈ N

0 if x = 0.

A = gph f , A is UAG at (0, 0), but is not UAG at all points in a ball
centered at (0, 0).
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Where does UAG hold?

(X, d) metric space, A ⊆ X, z ∈ A

A has a finite extrinsic curvature at z: ∃σ ≥ 0,∃r > 0 s.t.

dA(p, q)− d(p, q) ≤ σ d(p, q)3 ∀p, q ∈ B(z, r) ∩A.

based on Haantjes notion for curves.

local version of the notion of 2-convexity (Lytchak).

X CAT(κ) space, A ⊆ X locally compact
A finite extrinsic curvature at z =⇒ A UAG at z.

Haantjes, Distance geometry. Curvature in abstract metric spaces, Nederl. Akad.
Wetensch., Proc. 50 (1947), 496–508.

A. Lytchak, Almost convex subsets, Geom. Dedicata 115 (2005), 201–218.
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Where does UAG hold?

A ⊆ Rn closed, z ∈ A

A is prox-regular at z: ∃r > 0 s.t. dist(·, A) is continuously diferentiable
on B(z, r) \A.

A has positive reach: ∃δ > 0 s.t. ∀x ∈ X with dist(x,A) < δ,
PA(x) is a singleton.

A is prox-regular at z

m
∃R > 0 s.t. A ∩B(z,R) has positive reach

m
∃R > 0 s.t. A ∩B(z,R) is 2-convex

m
A has a finite extrinsic curvature at z

⇓ 6⇑
A is UAG at z
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What other sets are UAG?

Images of convex sets under a sufficiently smooth function (Suppose that
F : Rn → Rm is differentiable on a neighborhood of u, DF is continuous
at u, and DF (u) is injective. Then for any sufficiently small r > 0,
F (B(u, r) ∩ C) is UAG at F (u)).
Epigraphs of approximately convex functions:
f : Rn → (−∞,∞] is approximately convex at z ∈ Rn:
∀ε > 0, ∀x, x′ sufficiently close to z,

f((1− t)x+ tx′) ≤ (1− t)f(x) + tf(x′) + εt(1− t)‖x′−x‖, ∀t ∈ [0, 1].

Sets defined by C1 inequality constraints satisfying the
Mangasarian-Fromovitz condition:
A ⊆ Rn, U neighborhood of z ∈ A, f1, . . . , fm : U → R C1 functions s.t.

A ∩ U = {x ∈ U | fj(x) ≤ 0,∀j ∈ {1, . . . ,m}}

and ∃d ∈ Rn s.t. Dfj(z)(d) < 0,∀j ∈ {1, . . . ,m}.
H.V. Ngai, D.T. Luc, M. Théra, Approximate convex functions, J. Nonlinear

Convex Anal. 1 (2000), 155–176.
R. T. Rockafellar, R. J. B. Wets, Variational analysis, Springer-Verlag, Berlin,

1998.



Separable intersection

X CAT(κ) space, A,B ⊆ X, z ∈ A ∩B, A,B both super-regular at z

∃α > 0 s.t. if p ∈ A \B and q ∈ B \A are sufficiently close to z, then
∠z(p, q) ≥ α
=⇒ A intersects B separably at z.
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Separable intersection - convex case

X complete CAT(κ) space, r-geodesic extension property
A,B ⊆ X closed convex, z ∈ A ∩B

A and B are transversal at z: @ γ : [0, l]→ X nonconstant geodesic s.t.
z = γ(l/2) and z ∈ PA(γ(0)) ∩ PB(γ(l)).

X additionally locally compact
A,B transversal at z =⇒ A intersects B separably at z.

X additionally CBB(κ′)
∃w ∈ int(A) ∩B with d(w, z) < r =⇒ A,B transversal at z.



Example

Take a unit vector a and the set A = {x ∈ Sn | 〈x, a〉 = 1/2}. This set is
nonconvex but super-regular at all its points.

Take another unit vector b such that 〈a, b〉 ∈ (−
√

3/2, 0) ∪ (0,
√

3/2),
and let B be the subset of Sn orthogonal to b. The sets A and B will
intersect, and we fix z ∈ A ∩B. Note that B is super-regular at z since
it is weakly convex. Moreover, A and B intersect separably there.


