Local linear convergence of alternating projections in metric spaces with bounded curvature

Genaro López (University of Seville)

A workshop on Nonlinear Functional Analysis and Its Applications in memory of Professor Ronald E. Bruck
Haifa (Israel), April 2022

Aim of this talk

- to give a brief history of the method of alternating projections (MAP) employed to find a point in the intersection of two closed sets.

- to sketch the proof of linear convergence of MAP (in absence of convexity) using two local main ingredients:

 super-regularity and separable intersection.

- to study these two properties and their relation to other relevant properties.

Context: Alexandrov spaces, although for simplicity, some properties and arguments will be given in \mathbb{R}^n.
Alternating projections

Let X be a metric space, $A, B \subseteq X$ closed, $A \cap B \neq \emptyset$.

A sequence $(x_n) \subseteq X$ is an alternating projection sequence starting at $x_0 \in X$: \forall n \in \mathbb{N},

$$x_{2n+1} \in P_B(x_{2n}) \quad \text{and} \quad x_{2n+2} \in P_A(x_{2n+1}).$$
A sequence \((x_n) \subseteq X\) that converges to \(x \in X\):

- **converges linearly** to \(x\): \(\exists\) a constant \(k > 0\) and a rate \(a \in (0, 1)\) s.t.

\[
\forall n \in \mathbb{N} \ (d(x_n, x) \leq k \cdot a^n).
\]

- has a rate of convergence \(\alpha : (0, \infty) \rightarrow \mathbb{N}\):

\[
\forall \varepsilon > 0 \forall n \geq \alpha(\varepsilon) \ (d(x_n, x) < \varepsilon).
\]

Any linearly convergent sequence has a rate of convergence that is logarithmic in \(1/\varepsilon\) for \(\varepsilon < k\).
A sequence \((x_n) \subseteq X\) that converges to \(x \in X\):

- **converges linearly** to \(x\): \(\exists\) a constant \(k > 0\) and a rate \(a \in (0, 1)\) s.t.

\[
\forall n \in \mathbb{N} \ (d(x_n, x) \leq k \cdot a^n).
\]

- has a **rate of convergence** \(\alpha : (0, \infty) \rightarrow \mathbb{N}\):

\[
\forall \varepsilon > 0 \forall n \geq \alpha(\varepsilon) \ (d(x_n, x) < \varepsilon).
\]

Any linearly convergent sequence has a rate of convergence that is logarithmic in \(1/\varepsilon\) for \(\varepsilon < k\).
A sequence \((x_n) \subseteq X\) that converges to \(x \in X\):

- **converges linearly** to \(x\): \(\exists\) a constant \(k > 0\) and a rate \(a \in (0, 1)\) s.t.
 \[
 \forall n \in \mathbb{N} \left(d(x_n, x) \leq k \cdot a^n \right).
 \]

- has a **rate of convergence** \(\alpha : (0, \infty) \to \mathbb{N}\):
 \[
 \forall \varepsilon > 0 \forall n \geq \alpha(\varepsilon) \left(d(x_n, x) < \varepsilon \right).
 \]

Any linearly convergent sequence has a rate of convergence that is logarithmic in \(1/\varepsilon\) for \(\varepsilon < k\).
Convex case - Global convergence

\[H \text{ Hilbert space, } A, B \subseteq H \text{ closed, } A \cap B \neq \emptyset \]

- von Neumann 1933: \(A, B \) subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- \(P_A, P_B \) singlevalued and firmly nonexpansive.
- \((x_n) \) is Fejér monotone w.r.t. \(A \cap B \).
- can be slow converging even in \(\mathbb{R}^n \).
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, \(X \) CAT(0).
- Aríza, López and Nicolae, \(X \) CAT(\(\kappa \)), \(\kappa > 0 \).
Convex case - Global convergence

H Hilbert space, $A, B \subseteq H$ closed, $A \cap B \neq \emptyset$

- von Neumann 1933: A, B subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- P_A, P_B singlevalued and firmly nonexpansive.
- (x_n) is Fejér monotone w.r.t. $A \cap B$.
- can be slow converging even in \mathbb{R}^n.
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, X CAT(0).
- Aríza,López and Nicolae , X CAT(κ), $\kappa > 0$.
Convex case - Global convergence

H Hilbert space, $A, B \subseteq H$ closed, $A \cap B \neq \emptyset$

- von Neumann 1933: A, B subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:
- P_A, P_B singlevalued and firmly nonexpansive.
- (x_n) is Fejér monotone w.r.t. $A \cap B$.
- can be slow converging even in \mathbb{R}^n.
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.
- Bacak, X CAT(0).
- Aríza, López and Nicolae, X CAT(κ), $\kappa > 0$.
Convex case - Global convergence

\(H \) Hilbert space, \(A, B \subseteq H \) closed, \(A \cap B \neq \emptyset \)

- von Neumann 1933: \(A, B \) subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:
- \(P_A, P_B \) singlevalued and firmly nonexpansive.
- \((x_n) \) is Fejér monotone w.r.t. \(A \cap B \).
- can be slow converging even in \(\mathbb{R}^n \).
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.
- Bacak, \(X \) CAT(0).
- Aríza,López and Nicolae , \(X \) CAT(\(\kappa \)) , \(\kappa > 0 \).
Convex case - Global convergence

H Hilbert space, $A, B \subseteq H$ closed, $A \cap B \neq \emptyset$

- von Neumann 1933: A, B subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:
- P_A, P_B singlevalued and firmly nonexpansive.
- (x_n) is Fejér monotone w.r.t. $A \cap B$.
- can be slow converging even in \mathbb{R}^n.
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.
- Bacak, X CAT(0).
- Aríza, López and Nicolae, X CAT(κ), $\kappa > 0$.

Convex case - Global convergence

\(H \) Hilbert space, \(A, B \subseteq H \) closed, \(A \cap B \neq \emptyset \)

- von Neumann 1933: \(A, B \) subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- \(P_A, P_B \) singlevalued and firmly nonexpansive.
- \((x_n) \) is Fejér monotone w.r.t. \(A \cap B \).
- can be slow converging even in \(\mathbb{R}^n \).
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, \(X \text{ CAT}(0) \).
- Aríza,López and Nicolae, \(X \text{ CAT}(\kappa) , \kappa > 0 \).
Convex case - Global convergence

\(H \) Hilbert space, \(A, B \subseteq H \) closed, \(A \cap B \neq \emptyset \)

- von Neumann 1933: \(A, B \) subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- \(P_A, P_B \) singlevalued and firmly nonexpansive.
- \((x_n) \) is Fejér monotone w.r.t. \(A \cap B \).
- can be slow converging even in \(\mathbb{R}^n \).
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, \(X \) CAT(0).
- Aríza,López and Nicolae, \(X \) CAT(\(\kappa \)), \(\kappa > 0 \).
Convex case - Global convergence

H Hilbert space, $A, B \subseteq H$ closed, $A \cap B \neq \emptyset$

- von Neumann 1933: A, B subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- P_A, P_B singlevalued and firmly nonexpansive.
- (x_n) is Fejér monotone w.r.t. $A \cap B$.
- can be slow converging even in \mathbb{R}^n.
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, X CAT(0).
- Aríza,López and Nicolae, X CAT(κ), $\kappa > 0$.
Convex case - Global convergence

H Hilbert space, $A, B \subseteq H$ closed, $A \cap B \neq \emptyset$

- von Neumann 1933: A, B subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- P_A, P_B singlevalued and firmly nonexpansive.
- (x_n) is Fejér monotone w.r.t. $A \cap B$.
- can be slow converging even in \mathbb{R}^n.
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, X CAT(0).
- Aríza, López and Nicolae, X CAT(κ), $\kappa > 0$.
Convex case - Global convergence

H Hilbert space, $A, B \subseteq H$ closed, $A \cap B \neq \emptyset$

- von Neumann 1933: A, B subspaces.
- Hundal 2004: in general only weak convergence for closed convex sets.

Key facts:

- P_A, P_B singlevalued and firmly nonexpansive.
- (x_n) is Fejér monotone w.r.t. $A \cap B$.
- can be slow converging even in \mathbb{R}^n.
- R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.

- Bacak, X CAT(0).
- Aríza, López and Nicolae, X CAT(κ), $\kappa > 0$.
Nonconvex case - Local convergence

\(A, B \subseteq \mathbb{R}^n\) closed, \(z \in A \cap B \neq \emptyset\)

- \(P_A, P_B\) multivalued and global convergence observed heuristically for some scenarios – very limited mathematical foundation.
- local linear convergence in the presence of appropriate local geometric features: e.g. transversality: \(N_A(z) \cap (-N_B(z)) = \{0\}\), \(N_A(z)\): points near \(z\) projected onto \(A \rightarrow\) vectors \(\rightarrow\) limits when approaching \(z\).

Alexandrov angle

X geodesic space
$\gamma : [0, l] \to X$, $\gamma' : [0, l'] \to X$ nonconstant geodesics with $\gamma(0) = \gamma'(0)$
$t \in (0, l]$, $t' \in (0, l']$
$\angle_{\gamma(0)} (\gamma(t), \gamma'(t'))$ – interior angle at $\gamma(0)$ in $\Delta(\gamma(0), \gamma(t), \gamma'(t')) \subseteq \mathbb{R}^2$

Alexandrov angle between γ and γ':

$$\angle(\gamma, \gamma') = \lim_{\varepsilon \searrow 0} \sup_{0 < t, t' < \varepsilon} \angle_{\gamma(0)} (\gamma(t), \gamma'(t')) \in [0, \pi].$$

Notation $\angle_x(y, z)$ if unique geodesics from x to y and x to z.
Super-regularity

Definition

Let \((X, d)\) be a geodesic space and \(A \subseteq X\). We say that \(A\) is super-regular at \(z \in A\) if given any \(\varepsilon > 0\) there exists \(r > 0\) such that any two points in \(B(z, r)\) are joined by a unique geodesic segment and for all \(y \in B(z, r/2) \setminus A\), \(x \in P_A(y)\), and all \(x' \in A \cap B(z, r)\) with \(x' \neq x\), \(\angle_x(y, x') \geq \pi/2 - \varepsilon\).

Separable intersection

Definition

Let \((X, d)\) be a geodesic space and \(A, B \subseteq X\). We say that \(A\) intersects \(B\) *separably* at \(z \in A \cap B\) if there exist \(\alpha, r > 0\) such that any two points in \(B(z, r)\) are joined by a unique geodesic segment and for all \(x \in (A \cap B(z, r)) \setminus B\), \(y \in P_B(x) \setminus A\) satisfying
\[
\max\{d(y, x), d(y, z)\} < r/2 \quad \text{and all} \quad x' \in P_A(y), \quad \angle_y(x, x') \geq \alpha.
\]

Main result

Theorem

Let $\kappa > 0$, X be a complete CAT(κ) space, and A, B be closed subsets of X. Suppose that, at $z \in A \cap B$, A is super-regular and intersects B separably. Then any alternating projection sequence (x_n) starting at $x_0 \in A$ sufficiently close to z converges linearly to a point in $A \cap B$.
Local linear convergence of MAP (Sketch)

\(A, B \subseteq \mathbb{R}^n \) closed, \(z \in A \cap B \), \((x_n) \) alternating projection sequence, \(\varepsilon > 0 \):

- \(A \) super-regular at \(z \) \(\implies \angle x_{2n+2}(x_{2n}, x_{2n+1}) \geq \pi/2 - \varepsilon \).
- \(A \) intersects \(B \) separably at \(z \) \(\implies \angle x_{2n+1}(x_{2n}, x_{2n+2}) \geq \alpha \).

Hence,

- \(\angle x_{2n}(x_{2n+1}, x_{2n+2}) \leq \pi/2 + \varepsilon - \alpha \).
- \(\frac{\|x_{2n+2} - x_{2n+1}\|}{\sin(\pi/2 + \varepsilon - \alpha)} \leq \frac{\|x_{2n} - x_{2n+1}\|}{\sin(\pi/2 - \varepsilon)} \).

for fixed \(c \in (\cos \alpha, 1) \), taking \(\varepsilon \) sufficiently small,

\(\|x_{2n+2} - x_{2n+3}\| \leq \|x_{2n+2} - x_{2n+1}\| \leq c \|x_{2n} - x_{2n+1}\| \).

- \((x_n) \) converges linearly to a point in \(A \cap B \) with rate \(\sqrt{c} \).

Uniform approximation by geodesics (UAG) on (X, d) metric space, $A \subseteq X$ is uniformly approximable by geodesics (UAG) at $z \in A$: $\forall \varepsilon > 0$, if $x, x' \in A$ are distinct and sufficiently close to z, there exists a mapping $f : [0, l] \rightarrow A$ with $f(0) = x$ and $f(l) = x'$, and a geodesic $\gamma : [0, l] \rightarrow X$ geodesic starting at x with

$$\frac{d(\gamma(t), f(t))}{t} < \varepsilon \quad \forall t \in (0, l].$$

A $A \subseteq \mathbb{R}^n$ is UAG at $z \in A$: $\forall \varepsilon > 0$, if $x, x' \in A$ are distinct and sufficiently close to z, there exists a mapping $f : [0, 1] \rightarrow A$ with $f(0) = x$ and $f(1) = x'$, and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

$$\|f(t) - (x + td)\| \leq \varepsilon t \|d\| \quad \forall t \in [0, 1].$$

Super-regularity via UAG

Theorem

\[X \text{ CAT}(\kappa) \text{ space, } A \text{ UAG at } z \implies A \text{ super-regular at } z. \]

UAG and super-regularity are not persistent nearby.

Define \(f : [0, 1] \to \mathbb{R}, \)

\[
f(x) = \begin{cases}
\frac{1}{2^n} \left(x - \frac{1}{2^{n+1}}\right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{3}{2^{n+2}}\right], n \in \mathbb{N} \\
\frac{1}{2^n} \left(\frac{1}{2^n} - x\right) & \text{if } x \in \left(\frac{3}{2^{n+2}}, \frac{1}{2^n}\right], n \in \mathbb{N} \\
0 & \text{if } x = 0.
\end{cases}
\]

\(A = \text{gph } f, \) A is UAG at \((0, 0), \) but is not UAG at all points in a ball centered at \((0, 0). \)
Super-regularity via UAG

Theorem

\(X \text{ CAT}(\kappa) \) space, \(A \text{ UAG at } z \implies A \text{ super-regular at } z. \)

UAG and super-regularity are not persistent nearby.

Define \(f : [0, 1] \to \mathbb{R}, \)

\[
f(x) = \begin{cases}
\frac{1}{2^n} \left(x - \frac{1}{2^{n+1}} \right) & \text{if } x \in \left(\frac{1}{2^{n+1}}, \frac{3}{2^{n+2}} \right), n \in \mathbb{N} \\
\frac{1}{2^n} \left(\frac{1}{2^n} - x \right) & \text{if } x \in \left(\frac{3}{2^{n+2}}, \frac{1}{2^n} \right), n \in \mathbb{N} \\
0 & \text{if } x = 0.
\end{cases}
\]

\(A = \text{gph } f, \) \(A \) is UAG at \((0,0), \) but is not UAG at all points in a ball centered at \((0,0). \)
Where does UAG hold?

\((X, d)\) metric space, \(A \subseteq X, \ z \in A\)

\(A\) has a \textbf{finite extrinsic curvature} at \(z\): \(\exists \sigma \geq 0, \exists r > 0\ \text{s.t.}\)

\[d^A(p, q) - d(p, q) \leq \sigma d(p, q)^3\quad \forall p, q \in B(z, r) \cap A.\]

- based on Haantjes notion for curves.
- local version of the notion of 2-convexity (Lytchak).

\(X\) \(\text{CAT}(\kappa)\) space, \(A \subseteq X\) locally compact
\(A\) \text{finite extrinsic curvature at } z \quad \implies A \text{ UAG at } z.

\begin{itemize}
 \item A. Lytchak, Almost convex subsets, Geom. Dedicata 115 (2005), 201–218.
\end{itemize}
Where does UAG hold?

\((X, d)\) metric space, \(A \subseteq X\), \(z \in A\)

\(A\) has a **finite extrinsic curvature** at \(z\): \(\exists \sigma \geq 0, \exists r > 0\) s.t.

\[d^A(p, q) - d(p, q) \leq \sigma d(p, q)^3 \quad \forall p, q \in B(z, r) \cap A.\]

- based on Haantjes notion for curves.
- local version of the notion of 2-convexity (Lytchak).

\(X\) CAT(\(\kappa\)) space, \(A \subseteq X\) locally compact

\(A\) finite extrinsic curvature at \(z\) \(\implies\) \(A\) UAG at \(z\).

Where does UAG hold?

\(A \subseteq \mathbb{R}^n \) closed, \(z \in A \)

\(A \) is prox-regular at \(z \): \(\exists r > 0 \) s.t. \(\text{dist}(\cdot, A) \) is continuously differentiable on \(B(z, r) \setminus A \).

\(A \) has positive reach: \(\exists \delta > 0 \) s.t. \(\forall x \in X \) with \(\text{dist}(x, A) < \delta \), \(P_A(x) \) is a singleton.

\[
\begin{align*}
A \text{ is prox-regular at } z & \quad \updownarrow \\
\exists R > 0 \text{ s.t. } A \cap \overline{B}(z, R) \text{ has positive reach} & \quad \updownarrow \\
\exists R > 0 \text{ s.t. } A \cap \overline{B}(z, R) \text{ is 2-convex} & \quad \updownarrow \\
A \text{ has a finite extrinsic curvature at } z & \quad \updownarrow \uparrow \\
A \text{ is UAG at } z
\end{align*}
\]
Where does UAG hold?

\[A \subseteq \mathbb{R}^n \text{ closed, } z \in A \]

\(A \) is prox-regular at \(z \): \(\exists r > 0 \text{ s.t. } \text{dist}(\cdot, A) \text{ is continuously differentiable on } B(z, r) \setminus A. \)

\(A \) has positive reach: \(\exists \delta > 0 \text{ s.t. } \forall x \in X \text{ with } \text{dist}(x, A) < \delta, \ P_A(x) \text{ is a singleton.} \)

\[
A \text{ is prox-regular at } z \\
\Updownarrow \\
\exists R > 0 \text{ s.t. } A \cap \overline{B}(z, R) \text{ has positive reach} \\
\Updownarrow \\
\exists R > 0 \text{ s.t. } A \cap \overline{B}(z, R) \text{ is 2-convex} \\
\Updownarrow \\
A \text{ has a finite extrinsic curvature at } z \\
\Downarrow \uparrow \\
A \text{ is UAG at } z
\]
Where does UAG hold?

$A \subseteq \mathbb{R}^n$ closed, $z \in A$

A is prox-regular at z: $\exists r > 0$ s.t. $\text{dist}(\cdot, A)$ is continuously differentiable on $B(z, r) \setminus A$.

A has positive reach: $\exists \delta > 0$ s.t. $\forall x \in X$ with $\text{dist}(x, A) < \delta$, $P_A(x)$ is a singleton.

A is prox-regular at z

\Updownarrow

$\exists R > 0$ s.t. $A \cap \overline{B}(z, R)$ has positive reach

\Updownarrow

$\exists R > 0$ s.t. $A \cap \overline{B}(z, R)$ is 2-convex

\Updownarrow

A has a finite extrinsic curvature at z

$\Downarrow \Uparrow$

A is UAG at z
Images of convex sets under a sufficiently smooth function (Suppose that $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable on a neighborhood of u, DF is continuous at u, and $DF(u)$ is injective. Then for any sufficiently small $r > 0$, $F(B(u,r) \cap C)$ is UAG at $F(u)$).

Epigraphs of approximately convex functions:
$f: \mathbb{R}^n \to (-\infty, \infty]$ is approximately convex at $z \in \mathbb{R}^n$:
$\forall \varepsilon > 0$, $\forall x, x'$ sufficiently close to z,

$$f((1-t)x + tx') \leq (1-t)f(x) + tf(x') + \varepsilon t(1-t)\|x' - x\|, \quad \forall t \in [0,1].$$

Sets defined by C^1 inequality constraints satisfying the Mangasarian-Fromovitz condition:
$A \subseteq \mathbb{R}^n$, U neighborhood of $z \in A$, $f_1, \ldots, f_m: U \to \mathbb{R} C^1$ functions s.t.

$$A \cap U = \{x \in U \mid f_j(x) \leq 0, \forall j \in \{1, \ldots, m\}\}$$

and $\exists d \in \mathbb{R}^n$ s.t. $Df_j(z)(d) < 0, \forall j \in \{1, \ldots, m\}$.

X CAT(κ) space, $A, B \subseteq X$, $z \in A \cap B$, A, B both super-regular at z

$\exists \alpha > 0$ s.t. if $p \in A \setminus B$ and $q \in B \setminus A$ are sufficiently close to z, then
$
\angle_z (p, q) \geq \alpha
$
$\implies A$ intersects B separably at z.
X CAT(κ) space, $A, B \subseteq X$, $z \in A \cap B$, A, B both super-regular at z

$\exists \alpha > 0$ s.t. if $p \in A \setminus B$ and $q \in B \setminus A$ are sufficiently close to z, then

$\angle_z(p, q) \geq \alpha$

$\implies A$ intersects B separably at z.
X complete CAT(κ) space, r-geodesic extension property
$A, B \subseteq X$ closed convex, $z \in A \cap B$

A and B are transversal at z: $\not\exists \gamma : [0, l] \to X$ nonconstant geodesic s.t.
$z = \gamma(l/2)$ and $z \in P_A(\gamma(0)) \cap P_B(\gamma(l))$.

X additionally locally compact
A, B transversal at $z \implies A$ intersects B separably at z.

X additionally CBB(κ')
$\exists w \in \text{int}(A) \cap B$ with $d(w, z) < r \implies A, B$ transversal at z.
Example

Take a unit vector a and the set $A = \{x \in S^n \mid \langle x, a \rangle = 1/2\}$. This set is nonconvex but super-regular at all its points.

Take another unit vector b such that $\langle a, b \rangle \in (-\sqrt{3}/2, 0) \cup (0, \sqrt{3}/2)$, and let B be the subset of S^n orthogonal to b. The sets A and B will intersect, and we fix $z \in A \cap B$. Note that B is super-regular at z since it is weakly convex. Moreover, A and B intersect separably there.