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Aim of this talk

@ to give a brief history of the method of alternating projections
(MAP) employed to find a point in the intersection of two closed
sets.

@ to sketch the proof of linear convergence of MAP (in absence of
convexity) using two local main ingredients:

super-regularity and separable intersection.

@ to study these two properties and their relation to other relevant
properties.

Context: Alexandrov spaces, although for simplicity, some properties and
arguments will be given in R™.



Alternating projections

X metric space, A, B C X closed, AN B # ()
A sequence (x,) C X is an alternating projection sequence starting at
zo € X: VneN,

Zont1 € Pp(r2n) and  Zoni2 € Pa(T2n11).
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Rate of convergence

A sequence (z,,) C X that converges to z € X:
@ converges linearly to x: 3 a constant & > 0 and a rate a € (0, 1) s.t.

Vn € N(d(zy,x) <k-a").

@ has a rate of convergence « : (0,00) — N:
Ve > 0Vn > ale) (d(zn,z) <e).

Any linearly convergent sequence has a rate of convergence that is
logarithmic in 1/e for e < k.
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Convex case - Global convergence

H Hilbert space, A, B C H closed, ANB # ()
@ von Neumann 1933: A, B subspaces.
@ Bregman 1965: A, B convex — weak convergence.

@ Hundal 2004: in general only weak convergence for closed convex
sets.

Key facts:
@ P4, Pg singlevalued and firmly nonexpansive.
@ (z,,) is Fejér monotone w.r.t. AN B.
@ can be slow converging even in R™.

@ R.E Bruck: the rate of asymptotic regularity.

More recently: results in sufficiently regular geodesic spaces.
e Bacak, X CAT(0).
@ Ariza,Lépez and Nicolae , X CAT(x) , k > 0.



Nonconvex case - Local convergence

A, BCR" closed, z€ ANB #(

@ P4, Pp multivalued and global convergence observed heuristically
for some scenarios — very limited mathematical foundation.

@ local linear convergence in the presence of appropriate local
geometric features: e.g. transversality: N4(z) N (—Np(z)) = {0},
N4(z): points near z projected onto A — vectors — limits when
approaching z.

D. Drusvyatskiy, A.D. loffe, A.S. Lewis, Transversality and alternating projections
for nonconvex sets, Found. Comput. Math. 15 (2015), 1637-1651.



Alexandrov angle

X geodesic space
~v:[0,1] = X, v :[0,I'] = X nonconstant geodesics with v(0) = ~/(0)

te (0,1, t' e (0,0]

Zy0) (7(t),7'(t")) — interior angle at (0) in A((0), (1), 7 (")) € R?

Alexandrov angle between v and +':

/ " =1l / 1),y (¢ .
(v,7") lm s 20 (v(),+'(t")) € [0,7]

Notation Z.(y, z) if unique geodesics from z to y and x to z.



Super-regularity

Definition

Let (X, d) be a geodesic space and A C X. We say that A is
super-regular at z € A if given any € > 0 there exists r > 0 such that any
two points in B(z,7) are joined by a unique geodesic segment and for all
y € B(z,7/2)\ A, x € P4(y), and all 2’ € AN B(z,r) with 2/ # ,
Lo(y,x’) > /2 —e.

A.S. Lewis, D.R. Luke, J. Malick, Local linear convergence for alternating and
averaged nonconvex projections, Found. Comput. Math. 9 (2009), 485-513.



Separable intersection

Definition

Let (X,d) be a geodesic space and A, B C X. We say that A intersects
B separably at z € AN B if there exist a,r > 0 such that any two points
in B(z,r) are joined by a unique geodesic segment and for all

x € (AN B(z,1))\ B, y € Pg(z) \ A satisfying

max{d(y,z),d(y,z)} <r/2and all 2’ € Pa(y), Z,(z,2’) > a.

D. Noll, A. Rondepierre, On local convergence of the method of alternating
projections, Found. Comput. Math. 16 (2016), 425-455.



Main result

Let k > 0, X be a complete CAT (k) space, and A, B be closed subsets
of X. Suppose that, at z € AN B, A is super-regular and intersects B
separably. Then any alternating projection sequence (x,,) starting at

xo € A sufficiently close to z converges linearly to a point in AN B.




Local linear convergence of MAP (Sketch)

A, B CR"™ closed, z € AN B, (x,) alternating projection sequence,
e>0:

o A super-regular at 2 = Zu,, ., (Ton, Tony1) > 7/2 — €.

o A intersects B separably at z = 2., (T2n, T2ny2) > a.

Hence,
® Luy, (T2nt1,T2nt2) < T/2+6—a.

[£2n+2 = Zoniall _ 1220 = Z2n]
sin(r/24+e¢—a) — sin(r/2 —¢)

o for fixed ¢ € (cosa, 1), taking ¢ sufficiently small,

lz2nt+2 — Tontsll < |z2nt2 — zant1l| < cl|zen — Tonta]|-

@ (x,) converges linearly to a point in AN B with rate \/c.

A.S. Lewis, D.R. Luke, J. Malick, Local linear convergence for alternating and
averaged nonconvex projections, Found. Comput. Math. 9 (2009), 485-513.

D. Drusvyatskiy, A.S. Lewis, Local linear convergence for inexact alternating
projections on nonconvex sets, Vietnam J. Math. 47 (2019), 669-681.



Uniform approximation by geodesics (UAG)

(X, d) metric space, A C X is uniformly approximable by geodesics
(UAG) at z € A: Ve > 0, if z,2" € A are distinct and sufficiently close
to z, there exists a mapping f : [0,]] = A with f(0) =z and f(I) = 2/,
and a geodesic v : [0,1] — X geodesic starting at  with

LCIOI (Q) ST
t 1),

ACR"is UAG at z € A: Ve > 0, if 2,2’ € A are distinct and
sufficiently close to z, there exists a mapping f : [0,1] — A with
f(0) ==z and f(1) = 2', and a direction d € R™\ {0} such that

1f(t) = (z +td)|| < etf|d]] vt <[0,1].

A.S. Lewis, G. Lépez-Acedo, A. Nicolae, Local linear convergence of alternating
projections in metric spaces with bounded curvature, SIAM J. Optim. (in press).
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Super-regularity via UAG

X CAT(k) space, A UAG at z = A super-regular at z.

UAG and super-regularity are not persistent nearby.
Define f:[0,1] — R,

1 1 i 1 3
27 x72n+1 ITx € W,W ,n€N

fley=9 1 /1 . 3 1
2n<2n_x> |fx€<2n+2,2n],n€N
0 .

A=gph f, Ais UAG at (0,0), but is not UAG at all points in a ball
centered at (0,0).
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Where does UAG hold?

(X,d) metric space, AC X, z€ A

A has a finite extrinsic curvature at z: do > 0,3r > 0 s.t.

d*(p,q) — d(p,q) < od(p,q)® Vp,q € B(z,7)N A.

@ based on Haantjes notion for curves.

@ local version of the notion of 2-convexity (Lytchak).

X CAT(k) space, A C X locally compact
A finite extrinsic curvature at z = A UAG at z.

Haantjes, Distance geometry. Curvature in abstract metric spaces, Nederl. Akad.
Wetensch., Proc. 50 (1947), 496-508.
A. Lytchak, Almost convex subsets, Geom. Dedicata 115 (2005), 201-218.
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Where does UAG hold?

ACR" closed, z € A

A is prox-regular at z: Ir > 0 s.t. dist(-, A) is continuously diferentiable
on B(z,7)\ A.

A has positive reach: 3§ > 0 s.t. Vo € X with dist(z, A) < 4,

Pa(z) is a singleton.

A is prox-regular at z

)

3R > 0s.t. AN DB(z, R) has positive reach

)

3R > 0s.t. AN B(z, R) is 2-convex

0

A has a finite extrinsic curvature at 2

s
Ais UAG at z



What other sets are UAG?

Images of convex sets under a sufficiently smooth function (Suppose that
F:R™ — R™ is differentiable on a neighborhood of u, DF is continuous
at w, and DF(u) is injective. Then for any sufficiently small r > 0,
F(B(u,r)NC) is UAG at F(u)).

Epigraphs of approximately convex functions:

f:R™ = (—o00,00] is approximately convex at z € R™:

Ve > 0, Vz, z’ sufficiently close to z,

f((A=t)z+ta") < (1 —t)f(x)+tf(a')+et(1—t)||a’ —z|, Vte][0,1].

Sets defined by C! inequality constraints satisfying the
Mangasarian-Fromovitz condition:
A CR"™, U neighborhood of z € A, f1,..., fm : U = R C! functions s.t.

ANU={z€eU| fj(z) <0,Vje{l,...,m}}

and 3d € R" s.t. Dfj(z)(d) <0,Vj € {1,...,m}.

H.V. Ngai, D.T. Luc, M. Théra, Approximate convex functions, J. Nonlinear
Convex Anal. 1 (2000), 155-176.

R. T. Rockafellar, R. J. B. Wets, Variational analysis, Springer-Verlag, Berlin,
1998.
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Separable intersection

X CAT(k) space, A,BC X, z € AN B, A, B both super-regular at z

Ja>0st ifpe A\ B and ¢ € B\ A are sufficiently close to z, then

Z:(p,q) = o
= A intersects B separably at z.



Separable intersection - convex case

X complete CAT(k) space, r-geodesic extension property
A, B C X closed convex, z € AN B

A and B are transversal at z: 71 v : [0,1] — X nonconstant geodesic s.t.
2= 1(1/2) and = € Pa(3(0)) 1 P(7(0)).

X additionally locally compact
A, B transversal at z = A intersects B separably at z.

X additionally CBB(k’)
Jw € int(A) N B with d(w, z) < r => A, B transversal at z.



Take a unit vector a and the set A = {z € S" | (x,a) = 1/2}. This set is
nonconvex but super-regular at all its points.

Take another unit vector b such that (a,b) € (—v/3/2,0) U (0,/3/2),
and let B be the subset of S™ orthogonal to b. The sets A and B will
intersect, and we fix z € AN B. Note that B is super-regular at z since
it is weakly convex. Moreover, A and B intersect separably there.



