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What is symmetric cone?

Definition (Symmetric cone)

A closed convex cone IC in V is called a symmetric cone if it is
self-dual, i.e.,

K=K":={yeV]|(x,y) >0 V¥xeK},

and homogeneous, i.e., for any two elements x, y € intIK (the
interior of ), there exists an invertible linear transformation
I:V — Vsuch that [(K) =K and I'(x) = y.

Theorem (Symmetric cone in Euclidean Jordan algebra)

In Euclidean Jordan algebra (V, o, (-,-)), the symmetric cone is the
set of squares, i.e., K :={xox|x € V}.
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Definition of Jordan algebra

Definition

Let V be a vector space over the field of real numbers. (V,0) is
called a Jordan algebra if there is a bilinear mapping
0:V xV — V satisfying

(i) xoy =yoxforall x,y €V,

i) xo(x?0y)=x%0(xoy) forall x,y € V, where x* := x o x.
y

V.

Example (Examples of Jordan algebra)

Every associative algebra becomes a Jordan algebra under
x oy = 3(xy + yx), for instance, Sym(n,R), C[0,1], L(H).
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Definition of Euclidean Jordan algebra

Definition
A finite dimensional Jordan algebra V is Euclidean if it is formally
real, that is,

XX+y’=0 = x=y=0.

Equivalently, there exists an associative inner product such that
<X°y72>V:<y,XOZ>V an%zev‘

In other words, a Euclidean Jordan algebra is a triple (V, o, (-, -)y),
satisfying the following three conditions:

(i) xoy =yoxforall x,y €V,

(i) xo(x?oy)=x%0(xoy) forall x,y € V, where x? := x o x;

(i) (xoy,z)y = (y,xoz)y forall x,y,z€ V.
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Examples of Euclidean Jordan algebra

Example (Examples of symmetric cones)

@ The space of real n x n symmetric matrices S” under
X oY =3(XY+YX)and (X,Y)y =tr(XY) is a Euclidean
Jordan algebra with symmetric cone K := S which is the set
of all positive semidefinite matrices.

@ The space IR x IR"! under “Jordan product”

(x1,x2) © (y1,¥2) = (xwy1 + (x2, y2), x1y2 + y1x2)

and ((x1,x2), (v1,¥2))v = x1y1 + x5 y» is a Euclidean Jordan
algebra with symmetric cone

L™= {(x1, ) | [pell < xi}

which is usually called second-order cone or Lorentz cone.
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Symmetric cones vs Non-symmetric cones

Symmetric cones

Symmetric cones include IR"}, I.”, S7 as special cases and can be
unified under Euclidean Jordan algebra.

Non-symmetric cones

@ Plenty of non-symmetric cones in reality.

@ There is no unified framework for non-symmetric cones. How
to classify them?

o Like PDEs (elliptic, hyperbolic, and parabolic), we try to
classify non-symmetric cones by looking into their structures.

@ Some non-symmetric cones have connection to symmetric
cones. For example, circular cones, elliptic cones, and
ellipsoidal cones.
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Examples of non-symmetric cones (1)

Example (Some well-known non-symmetric cones)

o Circular cone:
Lg:={xecR"||x]cosh < x1}.
@ p-order cone: (p > 1,p # 2)
Kpi={x=(x,%) ERxR"||xl|p,<x}.

@ Geometric cone:
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Examples of non-symmetric cones (2)

Example (Some well-known non-symmetric cones)

o [P cone: (here p=(p1,p2, - ,pn) € R" with p; > 1)

n .| Pi
> P <kt
pioPi—1

i=1

LP = {(X,G,k) cR" x IR+ X IR+

@ Copositive cone:
¢ i={AeS"|xTAx >0 forall x € R }.

@ Power cone: our focus in this talk.

@ Exponential cone: our focus in this talk.
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Common concepts

Although there exists discrepancy between symmetric cones and
non-symmetric cones, there are still common concepts for both
types of optimization problems.

@ Spectral decomposition associated with cone.

Jein-Shan Chen



Common concepts

Although there exists discrepancy between symmetric cones and
non-symmetric cones, there are still common concepts for both
types of optimization problems.

@ Spectral decomposition associated with cone.

@ Smooth and nonsmooth analysis for conic-functions.

Jein-Shan Chen



Common concepts

Although there exists discrepancy between symmetric cones and
non-symmetric cones, there are still common concepts for both
types of optimization problems.

@ Spectral decomposition associated with cone.

@ Smooth and nonsmooth analysis for conic-functions.

@ Cone-convexity and cone-monotonicity.

Jein-Shan Chen



Common concepts

Although there exists discrepancy between symmetric cones and
non-symmetric cones, there are still common concepts for both
types of optimization problems.

Spectral decomposition associated with cone.

Smooth and nonsmooth analysis for conic-functions.

Cone-convexity and cone-monotonicity.

Projection onto cones.
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The circular cone

The circular cone is defined as

Ly :={xe€R"|||x]|cosh < x1}.

M

Theorem (Zhou-Chen, JNCA, 2013)

Let Ly and IL." be circular cone and second-order cone,
respectively. Then, we have

(a) Ly =A"L" and L" = ALy.
(b) AL" = L3 _g and L3 _g = ALy,
(c) L5 =Lz g and (Lj)" = Lo.

tanf O
0 |

where A = {
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The graphs of circular cones

Figure: Three different circular cones in IR3.
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Spectral decomposition associated with Ly

Theorem (Zhou-Chen, JNCA, 2013)

For any z = (z1,z2) € IR x IR""1, one has the decomposition

z=M\(2)- ul + Xo(z) - u?

M(z) = z1—||z] coth
Where{ M(z) = 7+ ||z|tand and

Q 1 1 0 1] sin? 6
Y2 T T cot20 |0 cotf- 1| |—w| —(sin 6 cos §)w

S 1 1 0 1] cos®
" 1+tan26 |0 tan6-/| |w| |(sinfcosf)w

z

2” if z» # 0, and any vector in IR"~! satisfying
22
|lw||=1ifz =0.

with w =
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Projection onto Ly

Theorem (Zhou-Chen, JNCA, 2013)

For any z = (z1,z2) € R x R""1, the projection of z onto Ly is
given by
z, ifzelLly
Mg,(z) =14 0, if ze-L;
u, otherwise,
where
z1 + ||22|| tan@
1+tan26

u =
z1 + ||22||;:an 0 tan 6 22
1+ tan“ 0 |zl
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The p-order cone

The p-order cone is defined as

Kp = {x=(x,x2) ERx R ||xal[, <xa}, (p>1). ’

If we write x := (x1,x2,- -+ ,xn) € R X R X --- x IR, the p-order
cone K, can be equivalently expressed as

x> (Z W)p (p>1).

i=2

Kp:=<xeR"
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Graphs of three different p-order cones

(a) 2-order cone

prorder cone withp =2 porder cone withp =5

o yais 2

(b) 5-order cone

prorder cone with p = 100

.
///2.
. I
S—
O T~ 1 zas
)

(c) 100-order cone

Figure: Three different p-order cones in IR3.
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Dual cone of p-order cone

It is well known that K, is a convex cone and its dual cone is given
by

Ky,=<{yeR"

n )
"> (Z M!")

i=2

or equivalently

K5 ={r=01y2) e RX RO |1 2 lyzllg} =Ko, |

where g > 1 and satisfies %4— % = 1. In addition, the dual cone K}
is also a convex cone.
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Graphs of dual cones of three different p-order cones

dual cone of p-order cone with p = 100

dual cone of parder cone withp =2 ual cone ofprder cone withp =5
| e n =
§ o] 3o
/’% ' )
ol o 15 ~
@ T S 0
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(a) dual of 2-order (b) dual of 5-order (c) dual of 100-order
cone cone cone

Figure: Dual cones of three different p-order cones in IR3.
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Projection onto C,

Theorem (Miao-Qi-Chen, JNCA, 2017)

Let z = (z1,22) € R x R"~L. Then, the projection of z onto K, is
given by
z, ze Kk,
Mi,(z2) =4 0, ze —K; =K, (1)
u, otherwise (i.e.,—||z2llqg < z1 < ||Z2]|p)
where u = (uy, @) with @ = (up, u3,--- ,u,)" € R"! satisfying
1
up = [[uflp = (lual® + |us]? + - - + ua]P)
and
u—z .
o= 4 1p711 lui|P~2u; =0, Vi=2,---,n
U
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Spectral decomposition associated with K,

Theorem (Miao-Qi-Chen, JNCA, 2017)

Let z = (z1,22) € R x IR"~L. Then, z can be decomposed as
z=a1(z) - vD(2) + ax(z) - v@(2),
where
{ ai(z) = z+|z2p
ax(z) = z—|zl,
and .
1
1) = =
vi(z) > [ W) }
1 1
) = =
vid)(z) > [ wy ]
with wy = HzZTZH,, when zy # 0; while wo being an arbitrary element
satisfying |[wz||, = 1 when z3 = 0.
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The geometric cone

The geometric cone is defined as

g” =5 {(X,e) GIRC:_ X R+

Zn:e_xeigl}. |

i=1

Note that G" is solid (i.e., int G" # (), pointed (i.e.,
G"N —G" = 0), closed convex cone, and its dual cone is given by

Yi

MZZ)’imzni

(G") =4 (y,p) e RY xRy :
yi>0 i=1Yi

where p € Ry and y = (y1,-+- ,yn) " € RT.

When n = 1, we note that the geometric cone G is just
nonnegative orthant IRi.
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The structure of geometric cone

The boundary of the geometric cone G"” and its dual cone (G")*
can be respectively expressed as follows:

|2

bd G = {(x,a) eR? x R,

ie‘x- :1} |
i=1

and

bd (G")* =< (v,p) €RY xRy (=Y y;ln Z,,yi

yi>0 i=1Yi
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Graph of geometric cone

0-axis

geometric cone in R®

4

x2-axis
x1-axis 10 0

Figure: The graph of geometric cone
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Graph of dual of geometric cone

dual cone of geometric cone in R®

p-axis

y2-axis
y1-axis 10 0

Figure: The graph of dual of geometric cone
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Projection onto geometric cone

Theorem (Miao-Lu-Chen, PJO, 2018)

Let x = (x,0) € R x IR. Then, the projection of x onto the
geometric cone G" is given by

x, if x € g",
Mgn(x) =< 0, if x € (G")°, (2)
u, otherwise,
where u = (u,\) € RY, x Ry with u= (uy, up,--- ,u,,)T € R}
satisfying
AN —6 u;
uj — xj + ( ? x=0, i=12,---,n (3)
rie Ay
and

i=1
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Some deficiency

@ Even though we figure out the projection onto geometric
cone, it is not an explicit formula because it is hard to solve
equations (3)-(4).

@ The decomposition associated with geometric cone is still
unknown so that the corresponding nonsmooth analysis for its
cone-functions is not established.
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Two core non-symmetric cones

Now, we will pay attention to two very special non-symmetric
cones, power cone and exponential cone.

These two cones can be viewed as core non-symmetric cones for
some reasons.

Jein-Shan Chen



The power cone

The power cone is defined by

K, = {(xl,)_() GRXR2’2f122“2 > x|, % >0, i= 1,2}, J

where X := (%1, %)" € R? a1,a2 € (0,1) and a3 + ap = 1.

To-axis

Do~ oW

Figure: The graph of power cone K.



The exponential cone

The exponential cone is defined by

X
ICeXp = C|{(X1,)_<) € R x R2‘)_(2 - exp (_1> <x1, Xp >0, x1 >0,
X2

where X := (X1, %)7 € R? and cl(Q) denotes the closure of Q.

*1-axis

15

— . [u) .
To-axis v 2

Figure: The graph of exponential cone Keyp.

Jein-Shan Chen



Why study these two cones?

Why do we pay attention to these two core non-symmetric cones
(power cone K, and exponential cone Keyp)?

@ These two non-symmetric cones appear in a lot of practical
applications such as location problems and geometric
programming.

@ Through appropriate transformations (a-representation and
extended a-representation), many non-symmetric cones can
be generated by the power cone K, and the exponential cone
Kexp, see Chares, Ph.D. Thesis, 2009.
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Examples that can be generated by C,, or Keyp (1)

(a) Second-order cone:
_{(Xl7 GRXR" 1“|XH<X1}

where ||x|| stands for the classical Euclidean norm of a point
x e RML

(b) p-order cone:
)_{Xl, GRXR”1|HXHP<X1}
where [|X|, (p > 1) denotes the p-norm of a point X € R""1, i.e.,

n—1 %
1x[lp := (Z \*f!”) :

i=1
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Examples that can be generated by C,, or Keyp (2)

(c) Geometric cone:

n
Do (X> <120, %20, i=12
i=1

X1

g" .= {(X1,>_<) eERxR"

where for x; = 0 we define exp (—%) = 0.

(d) L, cone:
LP = {(X,)_() € R? x R"

n -
v L <\X) <2l
S Pi\x X1

where the parameter p; > 0 fori=1,2,--- ,n.
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Examples that can be generated by C,, or Keyp (3)

(e) Geometric mean's hypo-graph cone:

Cem :{xl, ) € R x R? }\/X1XQ>X1, Xi>0,i=1 2}

(f) Unhomogeneous power cone:
Co = {(x1,%) € Rx R? | 5" %52 > |x1|, X, > 0, i = 1,2},

where the parameters o, ap € (0,1) and a3 + ap < 1.
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Examples that can be generated by /C,, or Keyp (4)

(g) Unhomogeneous p-order cone:

n
Cp = {(Xl,x) ERXR"| ) x| <X, x> 0},

i=1

where 1 < p < minys... »p;.

(h) High-dimensional power cone:

n
K = {(xl,f() eERxR"| [[5 = x|, x>0, i=1,2,-- ,n},

i=1

where the parameter o; € (0,1) and > ; o = 1.
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Examples that can be generated by C,, or Keyp (5)

(i) High-dimensional p-order-power cone:

n
I15" = lxllp, % >0, i=1,2,--
i=1

\.3
—

ngj;,’n) = {(X,)_() e R" xR"

where the parameter o; € (0,1) and > ; o = 1.

(j) High-dimensional power-exponential cone:

Kexp,a

Xo - exp( ) H)‘(",XQ>O xi>0,i=12,- }
2 ‘_

= {(x %) € R> x R”
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The generalized power cone

There exists a generalized power cone, which is defined as

m
2]l < HX,-Q’}

i=1

Kmn = {(X, z) e RT xR"
where aj >0and Y7, aj =1, x = (x1,- -+ ,xm) € RT,

z=(z1,--- ,zp) € R".

Indeed, its dual cone is given by

()" = {(m €RY x R”

Iyl < f[ <2)}

where A = (A,--- ,Apm) € RT and y = (y1,- - ,yn) € R".
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Graphs of generalized power cones (1)

(m. )= (21)and (a, ;) = (0.125,0875) (m.)= 2.1)and (o, 0,) = 05,05) (m.n)=(2:1)and (a,.a,) = (06750125
,,,,,,,,,,,,,,,,,,,,,
ol Ve /10
’ ' / ' / I /
S A . /4
T~/ T~ w( : P / .
ViV
A e

Figure: The 3-dimensional power cones and its dual cones with
m = 2,n =1 and different a1, as
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Graphs of generalized power cone

(m,n) = (1,2)

15 5

10 H

X-axis

10

0

10 -10

y-axis

Figure: The 3-dimensional power cone with m=1,n=2, i.e,,
second-order cone
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Projection onto generalized power cone (1)

Theorem (Hien, MMOR, 2015)
Let (x,z) € R™ x IR with x = (x1," - ,xm)" € R™ and

z=(z1,- - ,2z2)7 € R". Set (X, 2) be the projection of (x, z) onto
the generalized power cone Ky, ,. Denote

i =
d(x,z,r) = . H <x,- + \/x,2 + dair(||z|| — r)> —r.

i=1

(a) If(x,2) ¢ Kpy, , U—(K7, )" and z # O, then its projection
onto K7, , is

{)?i:

where r = r(x, z) is the unique solution to the system:

=

X; + Xi2—|—4oz,-r(HzH - r)), i=1,---,m,

r f— .« ..
Ima /_]-7 , N

>

Il
N N

Y
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Projection onto generalized power cone (2)

Theorem (Hien, MMOR, 2015)

®(x,z,r) =0,
0<r<l|z|.

E(x,z) : {

(b) If(x,2) & K5, , U—(K3, ,)* and z =0, then its projection
onto K7, , is

%= (xi)+ = max{0,x;}, i=1---,m,
S=0, f=1...a

(c) If (x,z) € Ky, . then its projection onto K¢, . is itself, i.e.,
(X,2) = (x, 2).

(d) If(x,z) € —=(K5, ,)", then its projection onto K7,  is zero
vector, i.e., (X,2) = 0.
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Projection onto exponential cone

Theorem (Miao-Lu-Chen, PJO, 2018)

Let x = (x1,x2,x3) € IR3. Then the projection of x onto the
exponential cone K. is given by

x, if x € IC,
Mi.(x) =4 0, if xe (Ke)°, (5)

v, otherwise,

where v = (v1, v, v3) € IR? has the following form:
(a) ifx1 <0 and x <0, then v = (x,0, %‘Xﬂ)
(b) otherwise, the projection My, (x) = v satisfies the equations:

v v

vi— X1+ en (vzevz — X3> = 0,

(v —x2) —(vi —x1)(va —v1) = 0,
il

we2 =  v3.
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Still not good enough

@ Even though the projections onto power cone and exponential
cone are available, there are not in explicit expressions
because there (respectively) needs to solve some system to
achieve the expression, which is hard.

@ Looking for explicit expressions for the projections onto power
cone and exponential cone are still desirable.
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Looking for decompositions of K, and Keyp

Is it possible to achieve the explicit decomposition expressions of
the power cone K, and the exponential cone Keyp?

Answer

Two types of decompositions will be provided.

@ One motivation is based on observations from Moreau
decomposition.

@ The other motivation comes from geometric structures of
these two core cones.
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Moreau Decomposition Theorem

Theorem (Moreau Decomposition Theorem)

Let IC be a closed convex cone. For any given z € R", one can
decompose z as follows:

z = MN(2) + Mo (2) = N(2) — M= (—2),

where My (z) stands for the metric projection of z € R" onto IC,
while Mo (z) means the projection of z onto the polar cone K°.

v

Remark: The polar cone is defined by
Ke:={y eR"|xTy <0, Vx € K}. Traditionally, we use K* to
denote the dual cone of I, where £* = —K°.

Jein-Shan Chen



About the Moreau Decomposition

@ For some famous symmetric cones, like SOC and S7, we can
define the corresponding conic functions such as SOC-function
and Lowner's operator. Accordingly, one can further establish
their analytic properties and design numerical algorithms
based on this Moreau decomposition.

@ However, due to the lack of explicit expressions for projections
onto non-symmetric cones, one cannot employ this classical
theorem directly to non-symmetric cones.
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Moreau Decomposition in SOC setting (1)

The second-order cone (SOC) is defined by
L™ := {(x,%) € Rx R" | ||X]| < x1}.

For any given z = (z1,2) € R x R™1, we have

Mea(z) = max(0, A1(2)) - u & 4 max(0, \2(2)) - o, J

where

M) =2+ (U2, o) = {

NI N[
—
[
—~~
\
[
~
S
SN—
N
Il

for i = 1,2 with w being any vector in R"! satisfying ||w| = 1.
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Moreau Decomposition in SOC setting (2)

Moreau Decomposition w.r.t. SOC

The decomposition at z € R"” with respect to IL” becomes

z=x+y, xel" ye(L")°

with
x = max(0,\1(2)) - ()+max(0 Ao(2)) - uf?) = Npa(2),
y = min(O,/\l(z))-uz + min(0, \2(2)) - u @) = = Nwnyo(2).
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Moreau Decomposition in circular cone setting (1)
The circular cone Ly is defined by
Lo :={(x1,%) € Rx R™|||%] < xytan6}.

For any given z = (z1,Z) € R x R"™!, we have

Me,(2) = max(0, A1 (2)) - i) + max(0, \a(z)) - iy @) J

where

M(z) = z1 — ||Z]| cot B, Aa(z) := z1 + ||Z|| tan 6,

O 1 1 0 1
“ 7 14cot20| 0 cotf —w |’

ﬁ(z) . 1 1 0 1
Z 7 1+tan26 | 0 tanf w

with w = % if X # 0, and any vector in R"~! satisfying ||w|| =1
if x=0.

N



Moreau Decomposition in circular cone setting (2)

Moreau Decomposition w.r.t. Circular Cone

The decomposition at z € R” with respect to £y becomes

Z:)?—i_y’ ieﬁe;f’Eﬁ;»

where
% = max(0,X1(2)) - i + max(0, A2(2)) - i ):nﬁe(z)
y = min(0,X1(2)) - @t + min(0,32(2)) - i) = Mg (2). |
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The main source of difficulties

Difficulties

@ For most non-symmetric convex cones, computing the metric
projection at any given point is also a difficult task.

@ For the given point lying outside the union of the cone and its
polar, the projection mapping does not have explicit formula.

v

To conquer these difficulties, we look into the structures of the
power cone K, and the exponential cone Keyp.
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Type | decomposition of power cone K,: Main idea

Recall the Moreau decomposition:

z =Ng(z) + Nko(2).

As mentioned earlier, if z ¢ IC U K°, we usually do not have an
exact projection formulas of My (z) and Mo (2).

Thus, we wish to find two scalars s,,s, € R and two vectors
x,y € R" such that the point z can be decomposed into the form
of

z=s.-x+s,-y, x€0K, yecoKk® (ss,)#(0,0). (6)
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Graph for Type | decomposition of power

To-axis

0

5 —
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Figure: Type | decomposition of the power cone.
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Type |l decomposition of power cone K,: Main idea

In view of the existing decomposition for SOC setting, we observe
that any given point z can be decomposed as

Z:sX'X+Sy’Y7 XeaK,yealCa (SX7sy)7é(O7O)7 (Y)J

where s,,s, € R and x,y € R".

Only the boundary of the given cone is involved in formula (7)
compared with Type | decomposition.
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Graph for Type |l decomposition of /C,

x1-axis o 0

Figure: Type Il decomposition of the power cone.
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The dual of power cone IC,

The dual of the power cone K, (denoted by K},) is described in
the form of

. _ 5 X1 o X2 a2 _ .
K = (xl,x)e]RxR’ ) (2) >k, x>0 i=12",

a1 a2

where a1, a3 € (0,1) and a3 + ap = 1.
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The boundary of K, and K,

Denote oy, : R%r — R and 7, : Ri — R as follows:

1\ 3\ *
oa(X) == X552, na(X) = (041> <o¢2> )

Then, the boundary of K, and K}, (denoted by 0K, and 9K},) are
respectively given by

oK, = 51U52U53U{0}, 8IC; = 51U52U54U{0}, ’

where the sets S; (i = 1,2, 3,4) are defined by

S1 = {(x,X) ERxR?|x; =0, x >0, % =0},
S = {(x,%) ERxR?*|x =0, X =0, % >0},
S3 = {(x1,%) ERxR?||x1| = 0a(X), X1 >0, % >0},
Sa = {(x,%) eRx R? | |x1| = 170 (%), X1 >0, %o > 0}.
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The polar of power cone K,

The polar of Iy, (denoted by K9) is characterized as

o _ o (X" =%\ - , )
K = (xl,x)ERx]R’ — —= > x|, i <0, i=1,2

aq (6% J

and its boundary is given by

OKS == Ty U T, U T3 U {0}, ]

where the set T; (i = 1,2,3) are described as follows:

T1 = {(Xl,)_()GRXR2‘X1:O, )_<1<07 )_(2:0},
T = {(x,%) ERxR?|x; =0, % =0, % <0},
T3 = {(Xl,)_()ERXRszﬂzna(—)_(), )_(1<0, )_<2<0}.
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The set of K, UK?

The set K, U K, can be divided into seven parts:

KaUKS =SUSUTiUT,UPUP,U {0}, |

with the sets P; and P, given by

P = {(x,%) e RxR?||xq| < 0u(X), 51 >0, % >0},
P, = {(x,%) e RxR?||xq| < 1a(—X%), % <0, X <0}.
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Notational Simplifications

The key to deriving Type | and Type Il decompositions is dividing
the space R x R? into four blocks. J

To this end, we adapt some notations that will be used in the
sequel. More specifically, we let

z = (z1,Z) e Rx R?,

z = (z1,2)" € R?

Zmin = min{Zl,Zg},

Zmax = max{Zzi, 2},

I = {ie{l,2}|z <0},
Io = {iG {1,2}|2,':0},
n = {ie{l,2}|z > 0}.
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Four blocks (1)

In light of these notations, we divide the space R x R? into the
following four blocks:

Block I:
B; = {(21, € R x R? | Zmin * Zmax > 0 of (Zmin = Zmax = 0 and z; # 0)

The set By includes: (i) all elements of z-part is greater than 0 or
less than 0. (ii) Z =0 but z; # 0.

Block II:
By = { 21,2 ERXR ‘me Zmax = 0 and Zmln"‘zmax?’éo}

The set B, consists of the points that all elements of z-part is not
greater than 0 or not less than 0 and there exist at least one zero
element.
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Four blocks (2)

Block IllI:
B3 _{21, ERXR | Zmin - zmax<0}

The set B3 contains the points that the Z-part has at least one
element greater than 0 and at least one element less than 0.

Block IV:
Bs = {(21,2) € R x R? | Zyin = Zmax = 0 and z; = 0} .

This set includes only one point (0,0) € R x R?.
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Type | decomposition of power cone (1)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

For any given z = (z1,Z) € R x R?, the Type | decomposition of
the power cone IC,, can be described as follows:

(a) If z € By, then

5-_)((31,3) . x(B1,a ) .(B1,a) . )-/(Bl,a)7 if |I_’ _ |I0| =0,
z=1{ &b x(Brb) s(Blv )y B if || = |14] =0,

() (B 1 B B0 i |L| =|1,] =0,
where x(B1:3) | y(B1.a), S)((Bl’a), .é}(,Bl’a) are described as in (i),

)‘((Blzb), )‘/(Blyb), é)((Blvb), s}(/Blvb)
X‘(Blyc), y(Bl7C), S')(<BLC)’ s‘}(/Blvc)

are described as in (ii), and

are described as in (iii).

Jein-Shan Chen



Type | decomposition of power cone (2)

(i)
-(B1,a) ._ 1
x\ob = z e&lCa,
oa(2)
(Br,a) . [ 1 ] o
y = _z S 8’Ca,
77&(2)
(B1,a) 71 + 1a(2) _
Sx = = " 0a\Z),
@)+ ) 7

(B,a) 71 — 04(2) _
S = — = N«

Y @ @) "
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Type | decomposition of power cone (3)

(ii)

Bi,b)
y(Bhb)
s')(<Blzb)

(Blrb)

1
|: -z :| € alcaa

oa(-2)

1
[ z :| S 8’C;,
Na(—Z2)

z1 — 7704(_2) co(—3
ool-2) +ma(-3) 7P
z1 + O'a(*z) —

R RN e RS
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Type | decomposition of power cone (4)

(iii) Denote 1 := (1,1)7 € R2.

)-((Bl,c) — ]1' ] Ea]CO“
oa(1)
- (B1,c) ._ 1 o
y = 1 Galca,
na(l)
'(Blvc) . 21
st - 1 5.(1),
oo@) + o) 7o
A S )
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Type | decomposition of power cone (5)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(b) Ifz € By, then

L [ KB g y(Bea), if |I-|=0,
L (1) kBB (1) yBRD), 1] =0,

Bg,a) B> ,b)

where x(B2:3) y( are described as in (i), and x(

y(B2:b) are described as in (ii).
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Type | decomposition of power cone (6)

(i) Let x(B22) = (x{P%) 5(B22)) ang j(B2a) = (y(F2) j(B2)).

(8273)

X =,

Zj if jelg,
J % it j=k.

I (3727

7 =0

0 if jelg,
}*,_(8273) _ -1 N if j€lpandj#k,
J o

Hi;ﬁk(xi > )
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Type | decomposition of power cone (7)

(i) Let %(B2b) = (x{PF) 3(Bab)) and y(Bab) — (y(Fob) j(Bab))

k](.BLb) = -,

—Z if jel,
)‘—((Bz,b) L 1 N if j€lyandj+#k,
: - EN o

B if j=k.

(Hi#k (*i(Bz’b)) ) J
(Ba,b
B,

0 if jel,

_ e ey
)*/(32713) B 1 if j€lpandj#k,

7 = o ar
S S 1 it = k.
s (3727 /
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Type | decomposition of power cone (8)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(c) Ifz € Bs, then z = x(B3) + y(B3) where x(B3) = (x{B) (B3))
and y(B3) = (yl(B3),f/(B3)) are given by
N
Z if jeli,
By =7 B if jel_andj#k,
L ER
NN T J =K.
L Hi¢k(Xi(B3))
(B
W o=,
(0 if jel,
}_/.(83) _ 2Z; B if jel_ andj # k,
R 21 )ak i j=k
Z — | —Fer if j=k.
, ITizk _'(53)) J /
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Type | decomposition of power cone (9)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(d) Ifz € By, then z = %(Ba) 4+ y(B3) where x(Bs) = (x{B) x(B4))
and y(Bs) = (yl(B"),j/(B“)) are given by

X{B“) = 0,
x(B) = 11,
A = a
yB) = 1, -1,

with 1, being the kth column of the identity matrix
h € R2X2 (k =1,2).
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Type Il decomposition of power cone (1)

Using the same blocks defined as earlier and applying the 2nd idea.

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

For any given z = (z1,Z) € R x R2, the Type Il decomposition of
the power cone K, is described as follows:

(a) If z € By, then

B 3(Bra) 1 (Bra) 5(BLa) i (1| = |ky| =0,
2= B0 e L 5B et |l =|1,| =0
09 800 1 8 50 L] = [1y] =0,
where x(B1:3) | j;(B1.2), §(BLa) _;;-}(/Bl,a)
)'&(Bhb) y(Bl,b) S(B1,b) (Bl,)

(Bl,c), 5)(<31,C), )(/5’17 )

are given as in (i),

are given as in (ii), and X(B1-€),

y are given as in (iii).
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Type Il decomposition of power cone (2)

()
1
x(Bra) . { ; ] € 0Ka,
ca(2)
)'}(Bl,a) = |: _21 :|€8]Ca7
oa(2)
(Bra) . _ 71 + 04(2)
X . 2 b
.(Bra) _ 0a(Z)— 2
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Type |l decomposition of power cone (3)

(i)

x(Bub) [ } € OKa,
0‘&( Z)

yleuR [ } € 0Ka,
oa( Z)

(Bl,b) o Z1 — O'a

Sx = 5 )

A(Bib)  —0a(=Z)— 2

Sy f.
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Type Il decomposition of power cone (4)

(iii)

5(B1,c)

i (B1,¢)

S)(( 17C)

..(Bl,c)
Sy

1
[ 1 € 8IC047
oa(1)
-1
[ 1 € 8IC047
oa(1)
a
2 )
_a
5
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Type |l decomposition of power cone (5)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(b) Ifz € By, then

g { R L (-1). B || =0,
C L (- xB) 4y (B if 1] =0,

where x(B2:2) | y(B2:2) gre described as (i), and %(B2;b) ' ;(B2,b)
are described as in (ii).
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Type Il decomposition of power cone (6)

(1) Let (B22) = (x(%9) %(B) and j(B2a) = (3{*) §(B22)).

..(Bz’a)
X1

= Z]_,
Zj if jel,
;—%(5’2,2) L 1 N if j€lyandj+#k,
’ . A o
N E if j=k
H:#k( (B2, ))
..(Bp,a
B2 = g
0 if jelg,
}'—}(3213) L 1 ) if j€lpandj#k,

g - |z1 | k . .
<W> if _]:k.
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Type |l decomposition of power cone (7)

(i) Let %(B28) = (3PP X(Bab)) and j(Bab) — (y{Fob) j(Baib))

o B27b .
Xf ) = -1,

4

. B b 1
(B2:0)

.(Ba,b
ar =0,

0

:.(Bg,b) 1

x

it jel,
if jelyandj#k,

if j=k.

if jel,
if j€lypandj# k,

if j=k.

Jein-Shan Chen



Type Il decomposition of power cone (8)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(c) If z € Bs, then z = X(B3) 4 (—1) - y(B3), where
)%(B?;) — (X](_ 3)7):((53)) and y‘(B3) _ (y{B:g)’j_}(B?’)) are gl_ven by
56](.83) =,

(2 if jel,
.y ) @ i jelandj#k
L 12 o
Hi#k ()_(i(B3)) j
B = o
0 if jel,
=(B3) .__ —2Zj ) if j€l_andj # Kk,
G 12 o
~Zk+ | ——Emne if j=k
\ ‘ Hi;ﬁk(;(,-(33)>
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Type Il decomposition of power cone (9)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(d) If z € By, then z = x(B%) 4 (—1) - j(B4) where x(B+) and j(B+)
are given by

5(Ba) ()'51(54)7)'—;(34)) and }';(34) — ()','1(54)’)'-}(34))

with
5&{54) = 0,
x(B) = 11,
= 0
yB) = 11y,

and 1, being the kth column of the identity matrix
h € R?*2 (k =1,2).
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Manipulation of a real example

Example

The power cone K1 and its polar cone K9 are respectively given by
2 2

11
— {(xl,;) eRsz‘ifif > |x1], %1 >0, % 20},

kS = {(x1,>_<) € R x R? ‘ (—2%1)3(=2%)% > |xa|, % <0, % < o}.

v

According to the aforementioned four blocks, we pick four different
points to figure out their decompositions with respect to K1,

2
respectively.
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z=1(1,2,2)" € R?in Block |

Let z = (1,2,2)" € R3. In this case, we have z; = 1 and
Z=(2,2)7, which implies

Zmin = 2> 0, Zpax =2 >0,
=0, lb=0, I.={1,2},
| =0, |bl=0, [L|=2,

\
01(2)=2>0, m(2)=4>0.

N=

This point z = (1,2,2) 7 indeed lies in case (i) of the set B;.
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Type | decompositions of z = (1,2,2)7

x(B1,3)

}',(Blya)

.(B1,
sila)

'(Bl7a)
Sy

- 1
Z_ = 1 s
| 93(®) 1
s 11
7712(2) B :E ’
- 2
71 + 1a(2) 0(_):14—4‘ 5
oa(Z) +1a(2) 2+4 3’
21— a(2) 12 2
— = " TNa :74:—7
N R e B T R
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Type Il decompositions of z = (1,2,2)7

5(B1,2)

)','(5’1,3)

S)(< 1,3)

"(8173)
Sy

SN 1
= z =11/,
L@ ] |
- _1 - __1
J— 5 — 1 ,
L@ ] |
 zmtoa(z) 1+2 3
- 2 2 2
oa(2) =z 2-1 1
- 2 T2 T2
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z=(1,0,1)7 € R3 in Block Il

Let z = (1,0,1)" € R3. In this case, we have z; = 1 and
7z =(0,1)", which implies

Zmin = 07 Zmax = 1> Oa
=0, b={1}, L ={2
[I-[=0, |bl=1, [k[=1

This point z = (1,0,1) 7 indeed lies in case (i) of the set Bo.
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Type | decompositions of z = (1,0,1)7

Ba) = (xB) 5(Bra)) 5{Bd) g 5(B0) = (1,1)T,
Sx = 1,

B = (yy ) ylBea)), B = 0, §B) = (1,0)7
Sy = 1.

The Type | decompositions of z = (1,0,1)7 with respect to K1 is
2
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Type Il decompositions of z = (1,0,1)7

#(Bra) = (3B 3(Baa)y 3(Bd) g 3(Bea) = (1 1)T
Sx = 1,
gB2a) = (j{Bra) G(Baa)y (B2 _ o (Baa) — (1,0)7
s, = -1

The Type Il decompositions of z = (1,0,1)" with respect to K1 is
2
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z=(1,1,-1)" € R® in Block IlI

Let z = (1,1,—1)" € R3. In this case, we have z; = 1 and
7z =(1,-1)T, which implies

Zmin = —1< 0, Zmax = 1> 07

=12}, lo=0, I ={1},
Ll=1, |l=0, [L]=1.

This point z = (1,1, —1)7 indeed lies in the set Bs.
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Type | decompositions of z = (1,1, —1)"

(B = (;<<B3 %B), (B =1, %(Bs) = (1,1)7,
Sx =
yB) = (“33),-33) AW =0, 5B = (0,-2)7,
Sy =

The Type | decompositions of z = (1,1, —1)T with respect to K1
. 2
is
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Type Il decompositions of z = (1,1, —1)"

$(B) = (B (B2 k(B — 1 %(B) = (1,1)T,
Sx = 1,

yB) = (ny3) §B), B — o 5B = (0,2)T,
Sy = -1

The Type Il decompositions of z = (1,1, 1) with respect to IC%
1 1 0
1 |=|1|+(1-|0].
-1 1 2

Jein-Shan Chen

is




z=(0,0,0)" € R3 in Block IV

Let z = (0,0,0)" € R3. In this case, z indeed lies in the set Bj.
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Type | decompositions of z = (0,0,0)7

0 0
<(B) — | o 7 y(B4) - 0

0 0
XB)= 1|, yBI=1 _1].

The Type | decompositions of z = (0,0,0)7 with respect to K1 is
2

or
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Type Il decompositions of z = (0,0,0)7
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The dual of exponential cone Kep

Now, we turn to the exponential cone Keyp, which is defined as

S =l {(xl,i) € R x R? ‘ Xo - exp ()_(1> <x1, >0, x>0
X2

The dual of the exponential cone Kex, (denoted by Kg,) is
described in the form of

Kexp ::cl{(xl,f()ERxRZ‘ —X—el-exp <)_<2) <x1, X1 <0, x 20}.
X1
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The boundary of K\, and K, (1)

Denote 0eyxp : R x {R\ {0}} = R and 7jexp : {R\ {0}} xR =R
as follows:

— — X1 _ X1 X2
Oexp(X) 1= X - exp %) Nexp(X) 1= . exp | — | .

X1

Then, the boundary of Keyp and K, (denoted by 0K ey, and

exp

OKZ.p) are respectively given by
81Cexp = S5USUS3USU {0},
3K:Xp = SsUSUS;USgU {O},
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The boundary of Ke, and Cf, (2)

where the sets S; (i = 1,2,---,8) are defined by

)
li

x1,X) ERxR?|x >0, 1 <0, X =0},

%) eRxR?|x =0, % <0, % =0},
X)eRXR?|x >0, =0, % =0},

%) €R x R?|x1 >0, 0exp(X) = x1, X2 >0},
X)

X)

X)

)

g
i

3

&
I

o

&
I

ERXxR?[xg >0, X =0, % >0},
ERXxR?[x =0, X =0, % >0},
ERXxR?[xg >0, =0, % =0},
x1,X) € RxR?|x; >0, &1 <0, —nexp(f():xl}.

=

Ey
I

=

»
i

?

&
e W et N e N e W e N e N e ]
/—\/\f\f\fx\f\f\f\
=

&
I
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The polar of exponential cone KCeyp

The polar of Keyp (denoted by K is characterized as

exp)

ICZXP_CI{(XL )6RXR2‘ Xl'exp<)_<2>lea)_<l>ovxlgo}
e X1

and its boundary is given by

OKS, = TeU T, U T3 U T4 U {0}, |

exp -

where the set T; (i = 1,2,3,4) are described as follows:

Tii={(x,%x) ERxR?|x <0, X1 =0, X <0},
TzZ{(Xl,)?)GRxR2|x1:O, X1 =0, % <0},
T3:={(x,%) ERxR?*|x; <0, 5 =0, X% =0},
Ts:={(x1,%) ERxR?*|x; <0, % >0, —7exp(X) =x1}.
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The set of Kexp U Kg

exp

The set Kexp U gy, can be divided into the following nine parts

K:eprK —51U52U53UT1UT2UT3UP1UP2U{O}, J

exp

with the sets P; and P, given by

6RXR2|X]_>O Uexp( )<X1, X2>0}
6R><]R2|x1<0 X1 >0, —Nexp(X) >x1}

{Ca
{Ca
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Four blocks for exponential cone setting: Type | (1)

cone Kexp is dividing the space R x R? into the following four

Again, the key to deriving Type | decomposition of exponential
blocks: |

Block I:
Bl—{Zl, GRXR’Zl 22>00r( OandzlyéO)}.

The set B includes three subcases: (i) z; > 0, Z > 0; (ii)
71 <0, % <0; (iii)) Z=0, z1 #0, where z := (Z,%)" € R2

Block II:
Bz—{zl, GRXR2|(21—O ZQ#O)OF(21<0 22>0)}

The set B, consists of the points in the following three subcases:
(i) z1=0, > 0; (ii) z1=0, 2 <0; (iii) z1 <0, > 0.



Four blocks for exponential cone setting: Type | (2)

Block IlI:
By :={(z1,2) e RxR?| (2, #0, 2 =0) or (z1 >0, 2 <0)}.

Like the set By, this set also includes three subcases: (i)
z1>0, b =0; (ii) z1 <0, 2 =0; (iii) z1>0, 2 <0.

Block 1V:
By —{21, ERXR212—Oand21—O}

This set includes only one point (0,0) € R x R?.
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Type | decomposition of exponential cone Koy, (1)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

For any given z = (z1,Z) € R x R?, the Type | decomposition of
the exponential cone Kep is described as follows:

(a) If z € By, then

O S RN R LN )
g)((Blvb) . )’%(él,b) de §)(/Blyb) .

where )?(él,a)' )f}(él,a)' §>(("§173)' §}(/l§1,3)

)?(él,b)' }f;(él,b), §)(<Blzb), §}(/‘§17b)

are defined as in (i), and

are defined as in (ii).
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Type | decomposition of exponential cone Koy, (2)

(i)
5 1
£(Bra) . [ z S 8/CeXP7
Texp(Z)
(Bi,a) . -1 o
yvy = z S 8’Cexp7
Nexp(Z)
a(Bra)  _ 71 + Texp(2) =
SX = — - 'Uex Z,
ron(@) + (@) ")
a(Bra) _ Texp(Z) — 21 =
S = — — * Nexp\Z ).
Y to(@) + () ")

Jein-Shan Chen



Type | decomposition of exponential cone Koy, (3)

(i) Denote 1 :=(1,1)7 € R2.

= 1
)?(Bhb) - 1 € aICexp,
Texp(1)
(Bib) . -1 o
yyy = 1 S a/CeXp,
Nexp(1)
A(B1,b) z1
Sy = - Oexp(1),
ron (D) + @) 7P
N > —Z
5}(’817[)) = - 'nexp(l)'

Texp(1) + Nexp(1)

Jein-Shan Chen



Type | decomposition of exponential cone Koy, (4)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(b) Ifz € By, then z = &% . 2(B) 1 5B . p(B)  where 2(52),
f/(é?), 8B and §}(,Bz) are given by
o(Br) . 1
X 2 = z E aICexp7
Uexv(z)
}’}(§2) = |: _’21 _gexp(z)l :| e alchp’
8B = o(2),
85— sgn(0exp(X) — 21)-
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Type | decomposition of exponential cone Koy, (5)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(c) If z € Bs, then z = §>(<é3) 2(Bs) 1 5(33) y(B3) where (5,
y(B3), &8 and §§B3) are given by
)?(é3) — [ |21 +77exp(2)| ] € Oexp,
0
= -1

)’}(83) = [ z € BICSXP,

TIeXP(E)
§>(<B3) = sgn(z1 + Nexp(2)),
§}(/B3) = nexp(z)'
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Type | decomposition of exponential cone Koy, (6)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)
(d) Ifz € By, then z = RBa) 4 p(Bs) yyhere £(B4) and (Bs) are

given by
g0 o | O o,
0
o o [0 o,

with w being any scalar in R.
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Four blocks for exponential cone setting: Type Il (1)

For deriving Type |l decomposition of exponential cone Keyp,
another different four blocks for the space R x R? is needed.

Block I:

By := {(z1,2) e Rx R?*| 2, # 0}, where z := (z21,2)" € R?.
The set By includes six subcases: (1) z; >0, Z > 0. (2)
z1=0, b > 0. (3) z1 <0, z >0. (4) z1>0, 2 <0. (5)
721=0, <0. (6) 1 <0, 2 <0.

Block Il:
By :={(z1,2) e RxR*|(2=0, z1 £0) or (21 <0, 2 =0)}.

The set B, consists of the points in the following two subcases:
(1)21=0, =0, z1 #0. (2) z1 <0, z =0.
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Four blocks for exponential cone setting: Type Il (2)

Block IllI:
Bs = {(z1,2) e RxR?|z >0, 2 =0} .

Similar to the set By, this set also includes the points
(z1,Z) € R x R? that z; > 0, z, = 0.

Block 1V:
By:={(z,Z2) eRxR*|z=0and z; = 0}.

This set includes only one point (0,0) € R x R2.
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Type Il decomposition of exponential cone Ky, (1)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

For any given z = (z1,Z) € R x R?, the Type Il decomposition of
the exponential cone Kexp is described as follows:
(@) Ifz € By, then z = S)EBI) - x(By) ¢ §}(,Bl) -)V/( 1) where x(B1)
y(B1), s>((Bl), and 5}(, B1) are given by
s 1
x(B1) .= ! 3 € OKexp,
Oexp(Z)

}7(51) = [ |Zl _0(')exp(z)| :| e 8ICexp7

$B) = 5u(2),

§}(,Bl) = sgn(z1 — Oexp(Z2))-
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Type Il decomposition of exponential cone Ky, (2)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(b) If z € By, then z = x(B2) (-1) - (B2 where (B2) and y(B2)
are given by

8 — | O o,
}7(32) = [ _mmgo’zl} ] € OKexp-
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Type Il decomposition of exponential cone Ky, (3)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(c) Ifz € Bs, then z = x(Bs) (-1) - 7(B3) | where %(B2) and y(B2)
are given by

)\2(53) = |: max{(g),zl} :| € aK:expa
o [ ] e,
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Type Il decomposition of exponential cone Ky, (4)

Theorem (Lu-Yang-Chen-Qi, JOGO, 2020)

(d) Ifz € By, then z = x(Bs) 1 (-1) - (B4 where (B+) and y(B+)
are given by

)\3(94) = |: max{O, W} :| € 8]Cexpa
0
yB) = [ —mm{OO,—w} ] € W exp,

with w being any scalar in R.
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Contributions and future directions

@ The uniqueness of our decompositions at any nonzero point is
a fascinating feature to avoid the hurdle for analyzing
theoretical properties of the related conic functions and very
helpful to designing numerical algorithms.

@ Which type of decomposition is more useful? We guess that
Type | may be more helpful for subsequent analysis towards
general non-symmetric cones, because the non-symmetric
feature is an uncertain factor and increases analysis
complexity.

@ Future direction: designing the solutions methods by
exploiting these decompositions.
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