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Partially ordered topological spaces 

Let (X, 𝜏) be a topological space equipped with a partial order ≼. For every x  X, 

we denote the ≼-principal ideal and principal filter of x in (X, ≼), respectively, as 

follows

𝑥↓={u  X: u ≼ x}   and       𝑥↑ ={u  X: u ≽ x}.

Let A be a nonempty subset of X, we write

𝐴↓ ={u  X: u ≼ x, for some x  A},

and

𝐴↑ ={u  X: u ≽ x, for some x  A}.

For any A ⊆ X, we have A ⊆ 𝐴↓ ∩ 𝐴↑. 

If 𝐴↓ = A, then A is said to be ≼-decreasing；

If 𝐴↑ = A, then A is said to be ≼-increasing. 



Partially ordered topological spaces 

Let (X, 𝜏) be a topological space equipped with a partial order ≼. If ≼ is a closed 

subset in X×X, then (X, 𝜏, ≼) is called a partially ordered topological space.

Proposition 2.1 (topology and order by Nachbin) Let (X, 𝜏) be a topological space 

equipped with a partial order ≼. Then the following two properties are equivalent:

(i) (X, 𝜏, ≼) is a partially ordered topological space；

(ii) For x, y ∈ X, whenever x ≼ y false, there exist disjoint neighborhoods V of x and 

U of y such that V is ≼-increasing and U is ≼-decreasing.

Moreover, (ii) implies the following (iii) and (iii) does not imply (ii).

(iii) For every x ∈ X, both 𝑥↓ and 𝑥↑ are 𝜏-closed.



Topologies on the hyperspaces of partially ordered topological spaces

Let (X, 𝜏, ≼) be a partially ordered topological space. Let C(X) denote the 

collection of all 𝜏-closed subsets of X and C0(X) = C(X)\{∅}. Denote the 

set of all ≼-principal ideals in X by 

𝐶↓(X) = {𝑥↓: x ∈ X}. 

By Part (iii) in Proposition 2.1 (Nachbin), we have 𝐶↓(X) ⊆ C(X). 

We recall several topologies defined on C(X) 



The Fell topology 𝝉𝑭 on C(X)

For every 𝜏-open subset O of X and every 𝜏-compact subsets D of X, we denote the 

following subsets of C(X):

𝑂− = {A ∈ C(X): A∩O ≠ ∅} and (X\𝐷)+ ={A ∈ C(X): A∩D = ∅}.  

The set of subsets 𝑂− for O running through the collection of all 𝜏-open subsets and 

(X\𝐷)+ for D running through all 𝜏-compact subsets of X form the base of a topology 

on C(X), which is called the Fell topology on C(X) and it is denoted by 𝜏𝐹. 

Therefore, (C(X), 𝜏𝐹) is called the Fell topological hyperspace induced by this 

topological space (X, 𝜏). 

Then (C0(X), 𝜏𝐹) and (𝐶↓(X), 𝜏𝐹) are also topological spaces with relative topology 𝜏𝐹.



Some properties of the Fell topological hyperspace (C(X), 𝝉𝑭) 

Let (X, 𝜏) be a Hausdorrf topological space. The Fell topological hyperspace (C(X), 𝜏𝐹) 

has many useful properties (see the book by Beer and a paper by Beer and Ok). We list 

two of them below 

(F1)   (C(X), 𝜏𝐹) is compact;

(F2)   x → {x} (topologically) embeds X in C(X).

G. Beer, Metric spaces with nice closed balls and distance functions for closed sets,

Bull. Austral. Math. Soc. 35 (1987), 81-96.

G. Beer and E. A. Ok, Embedding of topological posets in hyperspaces, arXiv:2111.

11575vl [math.GN], Nov. 2021.



The Vietoris topology 𝝉𝑽 on C(X). 

The Vietoris topology 𝜏𝑉 on C(X) is induced by the following base

{𝑂−: O is an 𝜏-open subset of X} ∪ {(X\𝐸)+: E is a 𝜏-closed subset of X}.

Then (C(X), 𝜏𝑉) is called the Vietoris topological hyperspace of (X, 𝜏).



The Hausdorff topology 𝝉𝑯 on C(X). 

In particular, let (X, τ) be a metric space and the topology τ is induced by a metric 

d on X. The Hausdorff metric H on C(X) is defined, for any distinct A, B ∈ C(X) as

H(A, B) = max sup
𝑎∈𝐴

inf
𝑏∈𝐵

𝑑(𝑎, 𝑏) , sup
𝑏∈𝐵

inf
𝑎∈𝐴

𝑑(𝑏, 𝑎) .

Then the Hausdorff metric H induces the Hausdorff topology on C(X), denoted by 

τH and (C(X), τH) is called the Hausdorff topological hyperspace of (X, τ). 



The natural partial order ⊆ on (C(X), 𝝉𝑭) (inclusion ordering) 

Proposition (Beer and Ok). Let (X, 𝜏, ≼) be a Hausdorff topological space. 

Then the following conditions are equivalent:

(i) X is locally compact;

(ii) ⊆ is closed in C(X)×C(X) with the Fell topology;

(iii) ⊆ is closed in C0(X)×C0(X) with the relative Fell topology.



The canonical map x → 𝒙↓

Let (X, 𝜏, ≼) be a partially ordered topological space. In this paper, we 

consider some properties of the canonical map x → 𝑥↓ which is from X to C(X) 

with respect to the above three topologies 𝜏𝐹, 𝜏𝑉, and 𝜏𝐻 on C(X).  

When (X, 𝜏, ≼) is a partially ordered Hausdorrf topological space, we have

{x} ∈ C(X), for every x ∈ X.

The property (F2) states that the map x → {x} embeds (X, 𝜏) in (C(X), 𝜏𝐹). 



Order-embedding of (X, 𝝉, ≼) in (C(X), 𝝉𝑭, ⊆)

In a partially ordered topological space (X, 𝜏, ≼), 𝐶↓(X) ⊆ C(X)\{∅} and 

(𝐶↓(X), 𝜏𝐹) is a topological subspace of (C(X), 𝜏𝐹) with respect to the relative 

Fell topology.

Let (C(X), 𝜏𝐹) be equipped with the natural partial order ⊆ (inclusion ordering). 

Since ≼ and ⊆ are partial orders on X and C(X), respectively, the canonical map 

is an order-embedding map, which satisfies that, for x, y ∈ X,

E1. x ≼ y if and only if 𝑥↓ ⊆ 𝑦↓;

E2. x = y if and only if 𝑥↓ = 𝑦↓.



Topologically order-embedding of (X, 𝝉, ≼) in (C(X), 𝝉𝑭, ⊆)

We say that the canonical map x → 𝑥↓ topologically order-embeds (X, 𝜏, ≼)

in (C(X), 𝜏𝐹, ⊆), whenever, in addition to E1 and E2:

E1. x ≼ y if and only if 𝑥↓ ⊆ 𝑦↓;

E2. x = y if and only if 𝑥↓ = 𝑦↓,

this map x → 𝑥↓ is also a homeomorphism between (X, 𝜏) and (𝐶↓(X), 𝜏𝐹).

More precisely speaking, the following two conditions are also satisfied

E3. The canonical map x → 𝑥↓ is continuous from (X, 𝜏) to (𝐶↓(X), 𝜏𝐹);

E4. The map 𝑥↓ → x is continuous from (𝐶↓(X), 𝜏𝐹) to (X, 𝜏).



The topologically order-embedding of partially ordered topological spaces in 

hyperspaces and its applications have been studied by many authors.

In particular, many authors studied the topologically order-embedding of topological 

lattices in hyperspaces. 
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Beer and Ok recently proved an embedding theorem on Hausdorff topological 

∧-semilattices.

G. Beer and E. A. Ok, Embedding of topological posets in hyperspaces, arXiv:2111.

11575vl [math.GN], Nov. 2021.

Theorem (Beer and Ok).

Let (X, 𝜏, ≼) be a locally compact and order-connected Hausdorff topological

∧-semilattice. Then the canonical map x → 𝑥↓ topologically order-embeds 

(X, 𝜏, ≼) in (C(X), 𝜏𝐹, ⊆).



Embedding of partially ordered topological spaces in Fell 

topological hyperspaces 

We introduce some concepts with respect to partially ordered

topological spaces, which are used to prove the topologically 

embedding property of the order-embedding canonical map. 



Definition. Let (X, 𝜏, ≼) be a partially ordered topological space. If, for any 

x  X and for any open subset O in X ,

𝑥↓ ∩ 𝑂 ≠ ∅

implies that there is an open neighborhood D of x such that

𝑦↓ ∩ 𝑂 ≠ ∅, for any y  D, 

then ≼ is said to be continuously decreasing on (X, 𝜏).

Proposition. Let (X, 𝜏, ≼) be a partially ordered Hausdorff topological 

space. If ≼ is continuously decreasing on (X, 𝜏), then the canonical map x 

→ 𝑥↓ from (X, 𝜏) to (𝐶↓(X), 𝜏𝐹) is continuous.



Definition (Proper inclusion property)

Let (X, 𝜏, ≼) be a partially ordered topological space. If, for any x, y ∈
X with y ≼ x,  

y ∈ int 𝑥↓ ⟹𝑦↓ ⊆ int 𝑥↓ and     x ∈ int 𝑦↑ ⟹ 𝑥↑ ⊆ int 𝑦↑, 

then ≼ is said to have proper inclusion property.



Definition (Dense boundaries)

If, for any x ∈ X and any open neighborhood O of x, there are a, b ∈ X with 

b ≼ a and x ∈ int (𝑏↑ ∩ 𝑎↓) such that, for any y ∈ X with y ∉ 𝑏↑ ∩ 𝑎↓ and for 

any z ∈ int (𝑏↑ ∩ 𝑎↓), we have that  

(a)   y ≼ z implies that there is u  𝜕(𝑏↑ ∩ 𝑎↓) such that y ≼ u ≼ z;

(b)   z ≼ y implies that there is v  𝜕(𝑏↑ ∩ 𝑎↓) such that z ≼ v ≼ y,

then, (X, 𝜏, ≼) is said to have dense boundaries. 



Definition (Singular point) 

Let x ∈ X. If, for any open neighborhood O of x, there is an

open neighborhood O1 of x with O1 ⊆ O, such that

{y ∈ X\O1: u ≼ y, for some u ∈ O1} = ∅,

then, x is called an ≼-upper singular point.



Definition (Upper compact bounded point) 

Let x ∈ X. If, for any open neighborhood O of x, there are points a, b 

O with b ≼ a such that

𝑏↑ ∩ 𝑎↓ ⊆ O, x  int(𝑏↑ ∩ 𝑎↓) 

and     (𝑏↑ ∩ 𝑎↓)\(int 𝑎↓) is nonempty and compact,

then, x is called an ≼-upper compact bounded point. 



Proposition. Let (X, 𝜏, ≼) be a partially ordered Hausdorff topological 

space. Suppose that (X, 𝜏, ≼) satisfies the following conditions:

(i) It has proper inclusion property;

(ii) It has dense boundaries;

(iii) For any point x ∈ X, x is either an ≼-upper singular point, or an

≼-upper compact bounded point.

Then the map 𝑥↓ → x is continuous from (𝐶↓(X), 𝜏𝐹) to (X, 𝜏).



We provide a counter example below to show that condition (iii) in above proposition 

is a necessary condition to assure the continuity of the map 𝑥↓ → x, from (𝐶↓(X), 𝜏𝐹) 

to (X, 𝜏).

Example. Define 

X ={(u, v) ∈ ℝ2: uv > 0}∪{𝜃}, where 𝜃 = (0, 0).  

Let X be equipped with the standard Euclidean topology 𝜏 and equipped with the 

coordinate wise partial order ≼. Then (X, 𝜏, ≼) is a partially ordered topological 

space. Moreover, 

(a) 𝜃 is neither an ≼-upper singular point, nor an ≼-upper compact bounded point;

(b) The map 𝑥↓ → x from (𝐶↓(𝑋), 𝜏𝐹) to (X, 𝜏) is not continuous at 𝜃↓.



Theorem (the main theorem in this paper). Let (X, 𝜏, ≼) be a partially 

ordered Hausdorff topological space with ≼ being continuously decreasing. 

Suppose that (X, 𝜏, ≼) satisfies the following conditions:

(i) It has proper inclusion property;

(ii) It has dense boundaries;

(iii) For any point x ∈ X, x is either an ≼-upper singular point, or an ≼-upper

compact bounded point.

Then map x → 𝑥↓ topologically order-embeds (X, 𝜏, ≼) in (C(X), 𝜏𝐹, ⊆).



Corollary.  Let (X, 𝜏, ≼) be a finite-dimensional partially ordered topological 

vector space. Then the canonical map x → 𝑥↓ topologically order-embeds

(X, 𝜏, ≼) in (C(X), 𝜏𝐹, ⊆).



Applications to subsets of finite-dimensional partially ordered topological vector spaces

Based on our motivation of applying the embedding theory to vector variational analysis, we 

study the properties of hyperspaces of finite-dimensional partially ordered topological vector 

spaces. 

Let (X, 𝜏, ≼) be a given finite-dimensional partially ordered topological vector space. By the 

above Corollary, it satisfies that the canonical order-embedding is a topological embedding 

from (X, 𝜏, ≼) to (C(X), 𝜏𝐹, ⊆). 

If we take an arbitrary subset Y ⊆ X satisfying that the subspace (Y, 𝜏, ≼) is a partially 

ordered topological space, in which 𝜏 is the relative topology restricted on Y, and the 

hyperspace space (C(Y), 𝜏𝐹, ⊆) is equipped with the relative Fell topology restricted on C(Y).  

Then, the canonical map y → 𝑦↓ is always an order-embedding map from (Y, 𝜏, ≼) to

(C(Y), 𝜏𝐹, ⊆). Then one may ask the following



Question: 

Does the canonical map y → 𝑦↓ topologically embed (Y, 𝜏) in (C(Y), 𝜏𝐹)?

It is a little surprising to see that, in general, the answer is negative. Moreover, with 

the relative topology 𝜏𝐹 on 𝐶↓(Y), we have 

(a) The canonical map y → 𝑦↓ from (Y, 𝜏) to (𝐶↓(Y), 𝜏𝐹) may not be continuous;

(b) The map 𝑦↓ → y from (𝐶↓(Y), 𝜏𝐹) to (Y, 𝜏) may not be continuous.



Let ℝ𝑛 denote the n-d Euclidean space, for some n > 1, equipped with the 

standard topology 𝜏. 

Let K be a pointed closed and convex cone in ℝ𝑛 with nonempty interior, 

which induces a partial order ≼ on ℝ𝑛. 

Then (ℝ𝑛, 𝜏, ≼) is a finite-dimensional partially ordered topological 

vector space, and the canonical map x → 𝑥↓ topologically order-embeds 

(ℝ𝑛, 𝜏, ≼) in (C(ℝ𝑛), 𝜏𝐹, ⊆). 



Lemma 1. For any a ∈ K, 𝑎↓ ∩ (−𝑎)↑ is bounded.

Lemma 2. For any x ∈ ℝ𝑛 and any open neighborhood U of x, there are 

points a, b ∈ U with b ≼ x ≼ a, such that x ∈ int(𝑎↓ ∩ 𝑏↑) ⊆ 𝑎↓ ∩ 𝑏↑ ⊆ U.

Lemma 3. For any a, b, c ∈ ℝ𝑛 with b ≼ a, suppose that c ∉ 𝑎↓ ∩ 𝑏↑. Then we have

(a) If c ≼ x, for some x ∈ int(𝑎↓ ∩ 𝑏↑), then there is y ∈ 𝜕(𝑎↓ ∩ 𝑏↑) such that c ≼ y ≼ x;

(b) If x ≼ c, for some x ∈ int(𝑎↓ ∩ 𝑏↑), then there is z ∈ 𝜕(𝑎↓ ∩ 𝑏↑) such that x ≼ z ≼ c.



Theorem. Let Y be a nonempty open subset of ℝ𝑛 equipped with a partial 

order ≼ induced by a pointed closed and convex cone K in ℝ𝑛 with 

nonempty interior. Then 

(i) (Y, 𝜏, ≼) is a partially ordered topological space;

(ii) the map y → 𝑦↓ topologically order-embeds (Y, 𝜏, ≼) in (C(Y), 𝜏𝐹, ⊆). 



In contrast to the embedding property on the open subsets of ℝ𝑛, the 

situations of closed subsets are very different. We provide next 

example of closed and locally compact subset Y of ℝ3 such that the 

canonical map y → 𝑦↓ from (Y, 𝜏, ≼) to (𝐶↓(Y), 𝜏𝐹, ⊆) is not 

continuous. 



Special partially ordered topological spaces: topological ∧-semilattices, 

topological ∨-semilattices and topological lattices

Let (X, 𝜏, ≼) be a partially ordered topological space. In addition, 

(a)  if ≼ is an ∧-semilattice and ∧: X×X→ X is a continuous operator, then

(X, 𝜏, ≼) is called a topological ∧-semilattice;

(b) if ≼ is an∨-semilattice and ∨: X×X→ X is a continuous operator, then

(X, 𝜏, ≼) is called a topological ∨-semilattice;

(c)  if (X, 𝜏, ≼) is both topological ∧-semilattice and topological ∨-semilattice,

then (X, 𝜏, ≼) is called a topological lattice. 



Example. Define two closed triangles T1 and T2 in ℝ3 by

T1 has vertexes (0, 0, 0),  (0, −1, 0),  (−1, −1, 0);

T2 has vertexes (0, 0, 0),  (−1, −1, 0),  (−1, −1, −1).

Let Y = T1∪ T2 be equipped with the standard Euclidean topology 𝜏 and the 

coordinate wise partial order ≼. Then

(i) (Y, 𝜏, ≼) is a locally compact ≼-connected lattice (it is not a topological lattice);

(ii) ∧: Y×Y → Y is not continuous at point ((0, 0, 0), (0, −1, 0)). It follows that 

(Y, 𝜏, ≼) is not a topological ∧-semilattice;

(iii)   The canonical map y → 𝑦↓ from (Y, 𝜏, ≼) to (𝐶↓(Y), 𝜏𝐹, ⊆) is not continuous at

point (0, 0, 0). 



Vietoris and Hausdorff topologies on Hyperspaces of topological 

∧-semilattices

We provide examples of locally compact and order-connected Hausdorff

topological ∧-semilattices (Y, 𝜏, ≼) in which, the order-embedding x → 𝑥↓

(i)     can topologically order embeds (Y, 𝜏, ≼) in (𝐶↓(Y), 𝜏𝐹, ⊆);

(ii)    is not continuous at (every) point from (X, 𝜏, ≼) to (𝐶↓(X), 𝜏𝑉, ⊆); 

(iii)   is not continuous at (every) point from (X, 𝜏, ≼) to (𝐶↓(X), 𝜏𝐻, ⊆).



Example. Define X (a subset of ℝ3) by

X = {(u, v, w) ∈ ℝ3: −∞ < u, v, w ≤ 0 and uv + w − 1 ≤ 0}.      

Let 𝑋 be equipped with topology 𝜏 induced by the standard ordinary Euclidean norm ∙

and equipped with the coordinate wise partial order ≼ on ℝ3. Then, 

(a) (X, 𝜏, ≼) is a locally compact and order-connected Hausdorff topological ∧-semilattice. 

(b) Moreover, the canonical map x → 𝑥↓ satisfies that

(i) It topologically order-embeds (X, 𝜏, ≼) in (C(X), 𝜏𝐹);

(ii) It is not continuous at every point from (X, 𝜏, ≼) to (𝐶↓(X), 𝜏𝐻);

(iii) It is not continuous at every point excepting (0, 0, 0) from (X, 𝜏, ≼) to (𝐶↓(X), 𝜏𝑉). 





Some considerations for further studies



Let (X, 𝜏) be a Hausdorrf topological space. The Fell topological space (C(X), 𝜏𝐹) has 

the following properties (see G. Beer [1])

(F1)   (C(X), 𝜏𝐹) is compact;

(F2)  x → {x} embeds X in C(X) (since 𝜏 is Hausdorrf, for every x ∈ X, {x} ∈ C(X));

(F3)  C0(X) is 𝜏𝐹-open in (C(X), 𝜏𝐹);

(F4) When X is first countable, Fell topology convergence of sequence in C(X) is 

equivalent to their K-P convergence;  

(F5)   When X is uniform space, the Fell topology is coarser than the Hausdorrf

uniform topology on C(X);



(F6)   (C(X), 𝜏𝐹) is Hausdorrf iff X is locally 𝜏-compact; in this setting, as an 𝜏𝐹-open subset 

of a 𝜏𝐹-compact Hausdorrf space C(X), C0(X) is a locally 𝜏𝐹-compact Hausdorrf space;

(F7)   If X is locally 𝜏-compact and has a countable base W(that is, (X, 𝜏) is second countable), 

then the following subset of 𝜏𝐹

{𝑉−: V ∈ W}∪{𝑐𝑙(𝑉)⊥: V ∈ W with V relatively 𝜏-compact},

forms a countable subbase for 𝜏𝐹; that is, it is a countable base of 𝜏𝐹, which 

generates the topology 𝜏𝐹 and 𝜏𝐹 is the smallest topology containing it.

In this setting, (C(X), 𝜏𝐹) is also second countable), by Urysohn metrization theorem, 

(C(X), 𝜏𝐹) is metrizable. Furthermore, in this setting, it follows that both (X, 𝜏) and 

(C(X), 𝜏𝐹) all are Fréchet–Urysohn spaces, that is, for every subset S of X, the 

sequential closure of S is the 𝜏-closure of S in X.



(F8)  If C0(X) is Hausdorrf in the relative Fell topology 𝜏𝐹 on C(X), then (X, 𝜏) is locally 

compact (Proposition 5.1.2 in [4] by Beer).

(F9) If (X, 𝜏) is a Hausdorrf locally compact and second countable topological space, then, 

(i) From (F6), (C(X), 𝜏𝐹) is Hausdorrf and, as an 𝜏𝐹-open subset of a 𝜏𝐹-compact Hausdorrf

space, C0(X) is a locally 𝜏𝐹-compact Hausdorrf space;

(ii) From (F7), (C(X), 𝜏𝐹) is also second countable; 

(iii) Both (X, 𝜏) and (C(X), 𝜏𝐹) all are Fréchet–Urysohn spaces;

(iv) For every subset S of X, the sequential closure of S is the 𝜏-closure of S in X;

(v) For every subset T of C(X), the sequential closure of T is the 𝜏𝐹-closure of T in C(X).

In this setting (F9), for every subset T ⊆ C(X), we use the sequential closure of T to check the 

𝜏𝐹-closure of T. It follows that, from (F4), the Fell topology closure property of T can be 

checked by the K-P sequentially convergence in C(X).  



Thank you very much for your attention !!


